
A Preliminary Investigation of MLOps Practices in GitHub
Fabio Calefato
University of Bari

Bari, Italy
fabio.calefato@uniba.it

Filippo Lanubile
University of Bari

Bari, Italy
!lippo.lanubile@uniba.it

Luigi Quaranta
University of Bari

Bari, Italy
luigi.quaranta@uniba.it

ABSTRACT
Background. The rapid and growing popularity of machine learn-
ing (ML) applications has led to an increasing interest in MLOps,
that is, the practice of continuous integration and deployment
(CI/CD) of ML-enabled systems. Aims. Since changes may a"ect
not only the code but also the ML model parameters and the data
themselves, the automation of traditional CI/CD needs to be ex-
tended to manage model retraining in production. Method. In this
paper, we present an initial investigation of the MLOps practices
implemented in a set of ML-enabled systems retrieved from GitHub,
focusing on G!"H#$ A%"!&’(and CML, two solutions to automate
the development work#ow. Results. Our preliminary results sug-
gest that the adoption of MLOps work#ows in open-source GitHub
projects is currently rather limited. Conclusions. Issues are also
identi!ed, which can guide future research work.

KEYWORDS
CI/CD, automatedwork#ows, ML-enabled systems, GitHub Actions,
CML

1 INTRODUCTION
ML-enabled systems, that is, software systems incorporating ma-
chine learning (ML) models, are receiving more and more attention
from both researchers and practitioners [8, 12, 13].

Accordingly, there is also an increasing interest in MLOps [10,
14], that is, the development of solutions for the rapid delivery and
deployment of ML models. Because ML models are the core part
of larger software systems, MLOps builds on DevOps and GitOps
practices [3, 9], and introduces additional actions that are speci!c
to machine learning.

Despite the increasing popularity of MLOps, studies on the adop-
tion of automation and its impact on changes of ML-enabled sys-
tems are lacking in the academic literature. As such, in this paper
we aim to gather an initial understanding of how MLOps solutions
are used to automate the execution of tasks to build and deploy
ML-enabled systems, starting from open source projects available
in GitHub. In doing so, we make sure to exclude all ML-related
projects that cannot be directly classi!ed as ML-enabled systems
or components: i.e., we discard all ML libraries, frameworks, and
utilities, as they ultimately represent instances of traditional soft-
ware projects for which the CI/CD practices have been already
investigated (e.g., [5]).

Then, we ask the following research questions:
RQ1.How common is work!ow automation inML-enabled systems

hosted on GitHub?

RQ2.What type of events are used to trigger MLOps work!ows?
RQ3.What are the most frequently enacted tasks?
We answer these questions by means of an explorative archival

study that mixes quantitative and qualitative analysis, focusing on
G!"H#$ A%"!&’(and CML. The former is a popular continuous
integration and continuous delivery (CI/CD) platform, backed by
GitHub, to automate software work#ows,1 while the latter is a
complementary solution to support continuous CI/CD practices
that are speci!c to ML-enabled systems.2

The remainder of the paper is structured as follows. In Sect. 2,
we brie#y illustrate how work#ow automation works in G!"H#$
A%"!&’(and CML. In Sect. 3, we present the design of the study,
namely how we built the experimental datasets and the analyses
conducted. The results are presented in Sect. 4 and their limitations
in Sect. 5. We discuss the !ndings and draw conclusions in Sect. 6.

2 WORKFLOW AUTOMATIONWITH
GITHUB ACTIONS AND CML

G!"H#$ A%"!&’(3 is an event-driven API that automates develop-
ment work#ows in GitHub.Work#ows are de!ned by storing YAML
!les (e.g., build.yml or deploy.yaml) checked-in to a project’s
.github/workflows/ directory, which will typically run when
triggered by an event occurring in the repository, such as a devel-
oper creating a pull request, opening an issue, or pushing a commit
to a repository.

A work#ow contains one or more jobs. A job is a set of steps
that are executed in order on the same dedicated runner (typically,
a container or a virtual machine) and are dependent on each other.
Each step lets developers either execute a script or run an action,
a custom application for the G!"H#$ A%"!&’(platform that per-
forms a complex but frequently repeated task (e.g., set up the correct
toolchain for a build environment, set up the cloud provider au-
thentication, etc.). As such, using actions helps reduce the amount
of repetitive code written in work#ow !les. In addition, actions can
be even published on the GitHub Marketplace for others to reuse.

Figure 1 shows an example of G!"H#$ A%"!&’(as a YAML !le
(Figure 1a) and as graphically displayed on GitHub (Figure 1b). The
work#ow is triggered on push events on the repository; it contains
one job (i.e., check-bats-version) consisting of four consecutive
steps, to be executed on an Ubuntu container as the chosen runner:
step (1) and (2) use actions that, respectively, check out the source
code and set up a NodeJS ver. 14 environment; then, step (3) runs a

1https://github.com/features/actions
2https://cml.dev/doc
3https://docs.github.com/en/actions/learn-github-actions/understanding-github-
actions

PERSONAL AUTHOR COPY
Editorial version available at:

https://doi.org/10.1145/3544902.3546636

Calefato et al.

(a) Worfklow de!ntion in a YAML !le (b) Graphic representation of the same work"ow

Figure 1: An example of a G!"H#$ A%"!&’(work"ow.

custom command to install the bats library via the npm package
manager; !nally, step (4) checks the version of the installed library.

CML4 is an open-source, command-line interface tool for im-
plementing CI/CD in machine learning projects hosted on GitHub
or GitLab. In GitHub, CML builds upon the G!"H#$ A%"!&’(in-
frastructure, therefore the way it works is fairly similar; in fact,
developers must de!ne jobs within a cml.y*ml !le to be stored
in the same .github/workflows/ directory. A typical CML work-
#ow can comprise shell commands, custom scripts, and speci!c
CML commands. CML commands can be used, for instance, to com-
mit changes to a new branch and open a Pull Request (PR), add
comments to a PR, and start a runner.

In the rest of the paper, we use the term task as an abstraction
of Action in G!"H#$ A%"!&’(and command in CML.

3 STUDY DESIGN
In this section, we describe the design of our study. First, we describe
the process adopted for building the two experimental datasets of
MLOps work#ows in GitHub, speci!c for G!"H#$ A%"!&’(and
CML. Then, we provide details about the data analysis method.

3.1 Dataset Construction
3.1.1 Identification ofG!"H#$ A%"!&’(Workflows. The !rst step in
our study was assembling an experimental dataset of G!"H#$ A%)
"!&’(work#ows taken from ML-related repositories. We decided
to focus on G!"H#$ A%"!&’(as it is the default work#ow automa-
tion tool o"ered by GitHub, the largest and the most popular code
hosting platform for open-source projects. Figure 2a summarizes
the steps of the dataset creation process.

We started from the dataset used in a recent work on the use of
G!"H#$ A%"!&’([7], comprising 446,862 GitHub repositories.

In GitHub, users mark with a star the repositories they like or
are interested to; these become part of the list of their favorites, aka
their stars. In the GitHub jargon, users that mark a repository with
a star are known as the repository stargazers. Many studies consider
the number of stargazers to be evidence of repository popularity
and – as such – a viable proxy of their quality [2, 11]. Hence, as a
measure to keep low-quality projects out of our dataset, we decided
4https://cml.dev

to analyze only repositories having more than one star on GitHub
(i.e., 183,127 out of the 446,862 repositories from the original set).

Moreover, Kalliamvakou et al. showed that a large portion of
GitHub repositories are typically found to be inactive [6]. In line
with the goals of our study, we decided to consider only repositories
that had been active for at least six months after the public release
of GitHub Actions – happened in November 2019. Speci!cally, we
!ltered out all repositories whose last-commit date preceded May
2020. In addition, to restrict our selection to ML-related repositories,
we adopted a strategy similar to the one used by Biswas et al. in [2].
Speci!cally, we leveraged the GitHub API to retrieve the descrip-
tions and topics of the repositories resulting from the !ltering above.
Then, we sought ML systems-related keywords contained therein
(e.g., ‘machine learning’, ‘deep learning’, ‘neural network’, ‘image pro-
cessing’, etc.).5 Roughly, we used the same set of keywords adopted
by Biswas et al., but also added a couple of noticeable absentees
(i.e., ‘AI’ and ‘prediction model’) and removed the subset of key-
words referred to speci!c data science technologies (e.g., ‘spark’,
‘hadoop’, and ‘cafe’). After applying the keyword-based !ltering,
we obtained a set of 2,516 repositories.

For each candidate repository, we then checked the adoption of
G!"H#$ A%"!&’(by verifying the existence of YAML !les (with
extension .yaml or .yml) in the ./github/workflows directory.
Out of the 2,516 selected repositories, only 155 contain at least
one G!"H#$ A%"!&’(work#ow. Contextually, by leveraging the
GitHub API, we downloaded all the available 399 work#ows: almost
all of them were valid YAML !les, with only 2 exceptions.

In conclusion, our !rst dataset — hereafter referred to as the
G!"H#$A%"!&’(dataset — consists of 397 valid work#ows extracted
from 155 GitHub repositories.

3.1.2 Identification of CMLWorkflows. To build the second dataset
of projects containing CMLwork#ows, we used the advanced search
web interface to search globally across all of GitHub for repositories
containing .github/work!ows/cml.y*ml !les. We decided to focus on
CML because it is designed as a natural, ML-oriented extension of
G!"H#$ A%"!&’(and it is also tightly integrated with DVC,6 one

5A complete list of the keywords we considered is available in the !le /settings.json
as part of the replication package of this study.
6https://dvc.org

A Preliminary Investigation of MLOps Practices in GitHub

Figure 2: Steps applied to create the two datasets of G!"H#$ A%"!&’((a) and CML (b) work"ows.

of the most popular data version control tools available to date [1].
Figure 2b illustrates the steps for the dataset building process.

The query returned a list of only 36 candidates. Given the few
hits, in this case we did not apply any further !ltering (e.g., number
of stars as a proxy of quality). Still, two authors manually vetted the
list to exclude non-relevant results. In particular, six repositories
were discarded because they contain no ML models (2), no code (3),
and an empty work#ow !le (1); we also discarded one repository
that is merely the implementation of one of the tutorials available
on the CML website.

The complete list of repositories is available as supplemental
material in the replication package.7 We then used the GitHub
API to download G!"H#$ A%"!&’(work#ows from the retained
repositories.

In conclusion, our second dataset — hereafter referred to as
the CML dataset — contains 41 CML work#ows extracted from 29
GitHub repositories, of which 38 valid.

3.2 Data Analysis Method
To answer RQ1 (i.e., “How common is work!ow automation in ML-
enabled systems hosted on GitHub?”), we characterized the general
adoption of G!"H#$ A%"!&’(and CML in our datasets by comput-
ing the number of repositories containing related work#ows as well
as the median number of work#ows per repository. Then, two of the
paper authors engaged in a manual inspection of the selected repos-
itories to verify that they actually qualify as ML-enabled systems,
discarding false positives from the !ltering process.

To answer RQ2 (i.e., “What type of events are used to trigger
MLOps work!ows?”), we computed the frequency of GitHub events
used to trigger the work#ows in our dataset.

Regarding RQ3 (i.e., “What are themost frequently enacted tasks?”),
to infer the most frequent tasks, we sought patterns among recur-
ring Actions and shell commands from the collected work#ows.
Speci!cally, with the term ‘task’ here we refer to any logical unit of
work that is typically found within an ML development work#ow
(e.g., ‘launching a model-retraining job,’ ‘deploying an ML-enabled
component to production,’ or ‘saving a newly created model into

7https://github.com/collab-uniba/mlops4aisystems

a model registry’). Within G!"H#$ A%"!&’(, such tasks can be
implemented by applying one or more pre-de!ned actions, by run-
ning a sequence of shell commands, or even using a combination of
both. Therefore, to uncover patterns that may possibly constitute
high-level tasks, we started by analyzing the most frequently used
actions. Accordingly, we !rst computed the descriptive statistics of
the actions found in our datasets, while also identifying the occur-
rence of those containing the words ‘cml’ or ‘docker’ in their slugs;
indeed, we consider the use of these technologies a trace of typical
MLOps practices (experiment tracking and ML models deployment,
respectively). Then, we leveraged the Apriori algorithm to compute
the set of frequently co-occurring actions; to do so, we grouped
action slugs (stripped of their version tags) by the work#ows in
which they appear, thus generating a collection of transactions.8

As in G!"H#$ A%"!&’(the steps of a work#ow job may consist
of either actions (denoted by the attribute uses) or shell command-
s/scripts (denoted by run), we applied a similar analytical procedure
– including the application of the Apriori algorithm – to particular
subsets of shell commands from the run steps. Speci!cally, we stud-
ied the (co-)occurrence of shell commands containing the keywords
cml and docker.

Finally, we performed a qualitative analysis of the work#ows by
manually inspecting the most interesting ones, i.e., those belonging
to repositories that contain ML-enabled software components.

4 RESULTS
In this section, we present and discuss the results of our preliminary
investigation of MLOps practices in GitHub.

4.1 RQ1. How common is work"ow
automation in ML-enabled systems hosted
on GitHub?

4.1.1 Results from the G!"H#$ A%"!&’(dataset. Our G!"H#$ A%)
"!&’(dataset comprises 397 valid GitHub Actions work#ows dis-
tributed across 155 repositories. The median number of work#ows

8In frequent pattern mining, a transaction is de!ned as a collection of items that have
been observed together; in our case, each transaction corresponds to the collection of
actions observed together in the context of a single work#ow.

Calefato et al.

contained in each repository is 2, while the third quartile of the
distribution is 3 and the maximum number of work#ows found in
a repository is 14.

Having retrieved only a limited number of repositories, we
could verify the results of the !ltering process with a manual in-
spection. Two authors inspected each repository on GitHub and
checked that it actually contained an ML-enabled system or an ML-
enabled software component to be integrated in a larger system.
The vast majority of the repositories (105) have been misclassi!ed
as ML-related projects; the remaining repositories (50) are ML li-
braries or frameworks (e.g., dmlc/xgboost, mlpack/mlpack,

h2oai/h2o-dev), mostly written in Python or Java. We decided
to discard these kinds of repositories as – apart from their ML-
oriented goal – they actually look no di"erent from traditional
software projects, with which they share the typical engineering
requirements and needs (e.g., the use of traditional unit testing, the
adoption of code quality assurance tools, etc.)[13]. By looking at
the misclassi!ed instances, we noticed that the ‘machine learning’
and ‘arti"cial intelligence’ topic labels are often used as buzzwords
due to the current hype.

Only one repository can be considered an actual example of ML-
enabled system (see tesseract-ocr/tesseract). However, the
related G!"H#$ A%"!&’(work#ows are devoted to testing and
benchmarking the application as a whole and none of them seems
to address any ML task directly.

Given the young age of mature ML techniques, we speculate
that most of the professional collaboration around ML-enabled
components and systems might currently be happening within
companies and private research institutions. In such contexts, high-
performance ML models constitute a valuable economical asset
and sharing them as open-source software would likely spoil their
value. Consequently, we argue that ML-enabled systems may be
more frequently found in private GitHub repositories rather then
in public ones.

Having not found relevant material for our study in the G!"H#$
A%"!&’(dataset, after our manual inspection, we decided to discard
it. As such, the analytical results hereafter presented are exclusively
referred to the CML dataset discussed next.

4.1.2 Results from the CML dataset. The CML dataset comprises 38
valid GitHub Actions work#ows distributed across 29 repositories.
The median number of work#ows contained in each repository is
1 and the third quartile of the distribution is still 1; the maximum
number of work#ows found in a repository is 4.

Also in this case, two authors manually vetted the dataset, in-
dividually examining the contents of the retrieved repositories.
As a result of this manual inspection, we classi!ed most of the
repositories from this collection (24) as test-driving (i.e., repos-
itories containing proof-of-concept ML projects, likely used by
GitHub users to test-drive the CML library). A couple of reposito-
ries are explicitly linked to educational material, i.e., a university
ML course (tue-5ARA0/mlops-demo-live) and a technical blog
post (amitvkulkarni/Bring-DevOps-to-Machine-Learning-

with-CML); as such, we classify them as educational. Finally, in 3
repositories we found small-size ML projects (i.e., up to three con-
tributors), to which we refer asML component: the !rst (Ascend

NTNU/perception_testing_21) is a workspace for building mod-
els for ROS, a robot operating system; the second (cheesama/mor

phine) an entity classi!er in Korean for the pynori Python library;
the third (mozartofmath/AmharicSpeechToText) a speech-to-
text engine for the Amharic language.

Also in this case, we observe a substantial lack of production-
grade ML projects containing traces of MLOps practices. However,
all repositories from this dataset contain CML work#ows, each of
which is speci!cally de!ned to accomplish one or more MLOps
tasks. As such, despite many of them having testing or educational
purposes, we deemed all repositories from this dataset worth of
being analyzed.

4.2 RQ2. What type of events are used to
trigger MLOps work"ows?

Most of the work#ows from our dataset are triggered by git push

and pull_request events: they are used in 78.95% and 18.42% of
the work#ows, respectively. Moreover, these events co-occur as trig-
gers in 13.16% of the work#ows. Instead, GitHub-managed events
are rarely used to activate work#ows. Only 3 of them start as a
consequence of a new issue_comment and just 2 are triggered by
GitHub’s release event. The schedule event – allowing work-
#ows activation at speci!c times – is also used only twice.

While it is not surprising that the native git events push and
pull_request are the most commonly used triggers for projects
hosted on GitHub, we would have expected a prevalence of work-
#ows activated by pull_request and release events. Indeed, typ-
ical MLOps tasks are computationally heavy and time consuming
(e.g., model re-training and testing) and, as such, presumably ex-
pansive to run every time a new push operation is performed.

4.3 RQ3. What are the most frequently enacted
tasks?

To identify potential ML-related tasks accomplished within the
collected work#ows, we analyzed the pre-de!ned actions used in
each of them. The total number of distinct actions retrieved in the
CML dataset is 15 (14 if we ignore version tags). Typically, actions
are used slightly more than run commands: the average number of
work#ow steps using actions over the total number of work#ow
steps is 0.53. The median number of actions in each work#ow is 3
(mean: 2.55, standard deviation: 1.20); no work#ow uses more than
5 actions. Of the 14 distinct actions adopted by the work#ows in
our dataset, 11 (~79%) are available in the GitHub Marketplace and
8 of them are by creators veri!ed by GitHub.9 Moreover, we were
able to !nd only one action containing the substring ‘cml’ in its
slug (i.e., setup-cml), while no slug contained the word ‘docker’.

By using the Apriori algorithm, we computed the frequent sets
of actions with support higher than 0.07 (i.e., appearing in at least 3
work#ows); the results are reported in Table 1. The top-4 frequent
itemsets combine actions/checkout with actions/setup-cml

and actions/setup-python. Actually, actions/checkout is found
in almost every frequent itemset, as it is commonly required in all
jobs aimed at processing the contents of a repository.

9In the GitHub Marketplace, Actions get this label when they are developed by creators
that have an established relationship with GitHub; these Actions are typically the
result of the joint work of GitHub and their creators.

A Preliminary Investigation of MLOps Practices in GitHub

Table 1: Frequently co-occurring actions with support > 0.07 (i.e., actions co-occurring in at least 3 work"ows).

Action 1 Action 2 Action 3 Support

actions/checkout iterative/setup-cml 0.47 (18 work#ows)
actions/checkout actions/setup-python 0.37 (14 work#ows)
actions/setup-cml actions/setup-python 0.34 (13 work#ows)
actions/checkout actions/setup-python actions/setup-cml 0.34 (13 work#ows)
actions/checkout aws-actions/con!gure-aws-credentials 0.11 (4 work#ows)
actions/checkout actions/setup-go 0.08 (3 work#ows)

Table 2: Actions found within CML work"ows.

Action Frequency

actions/checkout 28
iterative/setup-cml 17
actions/setup-python 13
iterative/setup-dvc 2
ros-industrial/industrial_ci 1
aws-actions/con!gure-aws-credentials 1

If we limit our analysis to the work#ows containing ‘cml’ in
their !lename, we !nd that only 6 distinct actions are used. Ta-
ble 2 presents each of them together with their frequencies. In the
following, we brie#y report their de!nition:

actions/checkout Checks-out the contents of a reposi-
tory in the virtual environment in which a job is running;
iterative/setup-cml Enables CML functionalities with-
in G!"H#$ A%"!&’(work#ows.
actions/setup-python Sets up the requested version of
Python, to be used in the subsequent steps of a job.
iterative/setup-dvc Sets up DVC (Data Version Con-
trol) functionalities within G!"H#$ A%"!&’(work#ows.
ros-industrial/industrial_ci Con!gures a CI process
speci!cally tailored for packages powered by ROS (Robot
Operating System).
aws-actions/configure-aws-credentials Con!gures
AWS credentials and region environment variables to be used
for AWS API calls.

Every CML work#ow uses actions/checkout to make the con-
tents of the repository available in the Actions runner; then, about
half of them set up CML and Python using pre-de!ned actions.
Noticeably, iterative/setup-cml is not an action veri!ed by
GitHub and is not yet available in the Marketplace. We observe
that none of these actions can be used alone to perform an high-
level MLOps task. Instead, they are primarily used to set up the CI
environment and accomplish preliminary con!guration steps.

After characterizing the use of actions in our dataset, we delved
into the analyses of shell commands extracted from run attributes.
Of the 38 G!"H#$ A%"!&’(work#ows from the CML dataset, 28
present shell commands containing ‘cml’ as a substring. CML o"ers
a few commands to support the implementation of CI/CD in ML
projects; here we report a brief de!nition of those found in our
work#ows:

send-comment adds a Markdown report as a comment on
a commit or pull/merge request.
publish uploads and publicly hosts an image (e.g., a .png

plot) for displaying in a CML report.
runner starts a runner in any supported cloud compute

provider (or locally, in case of an on-premise CML deploy-
ment).
tensorboard-dev returns a link to tensorboard.dev, a

managed TensorBoard10 platform that lets users upload and
share their ML experiment results.

All 28work#ows containing aCML command use send-comm

ent to decorate a commit or pull-request message with model train-
ing and evaluation metrics. In 17 cases (~63%), the publish com-
mand is used along with send-comment to add an image to
the Markdown-formatted message. Only in 2 distinct cases we
observed the use of runner and tensorboard-dev. As the

send-comment and publish are used just for reporting pur-
poses, we !nd particularly interesting the adoption of runner

in (ibrahimkaratas88/cml_cloud_try); by manually inspect-
ing the work#ow, we found that it is used to set up an AWS virtual
machine to be used as a self-hosted runner in a subsequent job.
In the following, the work#ow uses DVC to reproduce the data-
transfer task on the cloud machine and report the related results
via the send-comment command. However, as far as we can tell,
model training or re-training tasks are not involved in this example.

In search for end-to-endMLOps pipelines, we also sought the use
of Docker commands. Within our dataset, Docker is used just once
(in 2796gaurav/automate, classi!ed as a test-driving reposi-
tory). Speci!cally, the build and push Docker commands are used
in dockerize.yml to build and upload a Docker image to AWS
Elastic Container Registry using Terraform, a multi-cloud tool to
implement infrastructure as code. This work#ow is executed only
when a message containing the string ‘/dockerize’ is published as a
comment in an issue or pull request.

Along with this and a few otherG!"H#$A%"!&’(work#ows, the
same repository contains aCMLwork#ow, named cml_report.yml,
which uses DVC to reproduce a full ML pipeline (from data prepara-
tion to model evaluation) and then makes training results available
on GitHub via the cml-send-comment command.

10TensorBoard is a visualization tool for tracking ML experiments. It is typically used
in combination with TensorFlow, a popular open-source experimentation platform for
ML.

Calefato et al.

5 LIMITATIONS
In this section, we illustrate the main limitations of our study and
our plans to overcome them. For the sake of transparency and
repeatability, we have made our scripts and data publicly available.

Being based on the analysis of a very limited sample of ML-
enabled projects, in its current form, our study lacks external va-
lidity. To overcome this, we plan on expanding our work along
di"erent paths. Upon inspecting the sample of open-source GitHub
repositories from the dataset used in [7], we could not !nd any
relevant project for our study. Nevertheless, we believe that other
datasets assembled from GitHub might be worth investigating as
well: for instance, we are currently analyzing the corpus of ML
projects gathered by Gonzalez et al. [4]. Moreover, we intend to
take into account additional code hosting platforms, such as GitLab
and Bitbucket, as they might also represent a valuable source for
ML-enabled systems. Furthermore, as already discussed in Sect. 4.1,
we argue that many interesting repositories containing ML-enabled
components or systems might not be currently available as open-
source software. To take into account the adoption of MLOps prac-
tices in the industry, we are now designing a couple of case studies
to be investigated at specialized companies.

Another limitation of our study is the focus on two particular
software solutions (i.e., G!"H#$ A%"!&’(and CML). The landscape
of CI/CD tools and MLOps platforms is large and constantly evolv-
ing. In a future study, we plan to take into consideration further
popular CI/CD solutions, such as GitLab CI/CD, TravisCI, and Cir-
cleCI. Also, we will take into account alternatives to CML as a
specialized MLOps solution: indeed, despite having been publicly
available for about one year now, CML appears to be still scarcely
adopted in GitHub and mostly for test-driving purposes.

Finally, in our study, we considered the use of Docker a viable
proxy to investigate deployment practices for ML-enabled com-
ponents. In our future work, we plan on considering additional
deployment strategies and tools, e.g., by studying deployment solu-
tions o"ered by commercial cloud providers and their integration
into MLOps work#ows.

6 CONCLUSIONS
In this paper, we present a preliminary investigation of MLOps
practices in GitHub. Overall — despite the popularity of the code
hosting platform — we highlight a substantial lack of open-source
projects concerning ML-enabled systems or components which
leverage G!"H#$ A%"!&’(; arguably, it is possible that such kind
of projects might be hosted as private repositories.

Conversely, many ML-related open-source libraries and frame-
works leverageG!"H#$A%"!&’(. However, these cannot be deemed
relevant for the study of MLOps practices as they are not di"erent
from traditional software systems, apart from the ML-related goal
or use-case.

Searching for projects that leverage CML– a specialized MLOps
tool – also yielded a few results. Therefore, researchers interested
in studying MLOps practices might want to consider broadening
the scope of potential sources by taking into account further code
hosting platforms (e.g., GitLab and Bitbucket), CI/CD services (e.g.,
TravisCI and CircleCI), and specialized MLOps tools.

REFERENCES
[1] Amine Barrak, Ellis E. Eghan, and Bram Adams. 2021. On the Co-evolution of ML

Pipelines and Source Code - Empirical Study of DVC Projects. In 2021 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Honolulu, HI, USA, 422–433. https://doi.org/10.1109/SANER50967.2021.00046

[2] Sumon Biswas, Md Johirul Islam, Yijia Huang, andHridesh Rajan. 2019. BoaMeets
Python: A Boa Dataset of Data Science Software in Python Language. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, Montreal, QC, Canada, 577–581. https://doi.org/10.1109/MSR.2019.00086

[3] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016.
DevOps. Ieee Software 33, 3 (2016), 94–100. Publisher: IEEE.

[4] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
State of the ML-universe: 10 Years of Arti!cial Intelligence & Machine Learning
Software Development on GitHub. In Proceedings of the 17th International Con-
ference on Mining Software Repositories. ACM, Seoul Republic of Korea, 431–442.
https://doi.org/10.1145/3379597.3387473

[5] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and bene!ts of continuous integration in open-source
projects. In Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering. ACM, Singapore Singapore, 426–437. https:
//doi.org/10.1145/2970276.2970358

[6] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories -
MSR 2014. ACM Press, Hyderabad, India, 92–101. https://doi.org/10.1145/2597073.
2597074

[7] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and Christoph Treude. 2021.
HowDo Software Developers Use GitHub Actions to Automate TheirWork#ows?.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). IEEE, Madrid, Spain, 420–431. https://doi.org/10.1109/MSR52588.2021.
00054

[8] Grace A. Lewis, Stephany Bellomo, and Ipek Ozkaya. 2021. Characterizing and
DetectingMismatch inMachine-Learning-Enabled Systems. In 2021 IEEE/ACM 1st
Workshop on AI Engineering - Software Engineering for AI (WAIN). IEEE, Madrid,
Spain. https://doi.org/10.1109/WAIN52551.2021.00028

[9] Thomas A. Limoncelli. 2018. GitOps: A Path to More Self-Service IT: IaC + PR =
GitOps. Queue 16, 3 (June 2018), 13–26. https://doi.org/10.1145/3236386.3237207
Place: New York, NY, USA Publisher: Association for Computing Machinery.

[10] Sasu Makinen, Henrik Skogstrom, Eero Laaksonen, and Tommi Mikkonen. 2021.
Who Needs MLOps: What Data Scientists Seek to Accomplish and How Can
MLOps Help?. In 2021 IEEE/ACM 1st Workshop on AI Engineering - Software
Engineering for AI (WAIN). IEEE, Madrid, Spain, 109–112. https://doi.org/10.
1109/WAIN52551.2021.00024

[11] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (Dec. 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[12] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2021. Collab-
oration Challenges in Building ML-Enabled Systems: Communication, Docu-
mentation, Engineering, and Process. arXiv:2110.10234 [cs] (Dec. 2021). http:
//arxiv.org/abs/2110.10234 arXiv: 2110.10234.

[13] Ipek Ozkaya. 2020. What is really di"erent in engineering ai-enabled systems?
IEEE Software 37, 4 (2020), 3–6. Publisher: IEEE.

[14] Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim
Zentici, Adrien Lavoillotte, Makoto Miyazaki, and Lynn Heidmann. 2020. Intro-
ducing MLOps. O’Reilly Media.

