
DECAY ESTIMATES FOR A PERTURBED TWO-TERMS SPACE-TIME1

FRACTIONAL DIFFUSIVE PROBLEM2

PUBLISHED ON: EVOLUTION EQUATIONS AND CONTROL THEORY 12 (2023),3

1056�1082, HTTPS://DOI.ORG/10.3934/EECT.20220604

MARCELLO D'ABBICCO AND GIOVANNI GIRARDI5

Abstract. In the present paper we consider the Cauchy-type problem associated to the space-time
fractional di�erential equation

∂tu+ ∂β
t (−∆)1−βu−∆u = g(t, x), t > 0, x ∈ Rn

with β ∈ (0, 1), where the fractional derivative ∂β
t is in Caputo sense and (−∆)1−β is the fractional Laplace

operator of order 1− β. We provide su�cient conditions on the perturbation g which guarantees that the
solution satis�es the same long-time decay estimates of the case g = 0, assuming initial datum in Hs,m

for some s > 0 and m ∈ (1,∞). We apply the obtained results to study the existence of global-in-time
solutions to the associated nonlinear problems,

∂tu+ ∂β
t (−∆)1−βu−∆u =

{
|u|p,
∇(u|u|p−1),

assuming small initial datum in Hs,m and supercritical or critical powers.

1. Introduction6

We consider the Cauchy-type problem for a fractional di�erential equation7 {
∂tu+ (−∆)1−β∂βt u−∆u = g(t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x);
(1)

with β ∈ (0, 1). Here ∂βt u denotes the Caputo (left-sided) fractional derivative of order β, with starting8

time 0, with respect to the time variable. Namely, for any given x ∈ Rn, we put ∂βt u(t, x) = (Dβ
0+u(·, x))(t),9

as de�ned in [18, Section 2.4], that is,10

(Dβ
0+y)(t) = (J1−β

0+ y′)(t) =
1

Γ(1− β)

∫ t

0

y′(s)

(t− s)β
ds,

for any t > 0 and y ∈, where J1−β
0+ denotes the Riemann-Liouville integral of order 1−β and Γ is the Euler11

gamma function. Moreover, for any α > 0 we de�ne the fractional Laplace operator (−∆)α : Hs,m →12

Hs−2α,m, m ∈ (1,∞), as (−∆)αf = F−1(|ξ|2αf̂), where F is the Fourier transformation (in S ′), and13

f̂ = F (f) denotes the Fourier transform of f (see [12] for an introduction to fractional Laplace operator).14

The fractional di�erential operator L := ∂t+∂
β
t (−∆)1−β −∆ is scale-invariant, or �quasi-homogeneous�15

of type (1, 1, 1/2) (see [11, De�nition 2.2]), that is,16

L
(
u
(
λ ·, λ 1

2 ·
))
(t, x) = λ(Lu)

(
λt, λ

1
2x
)
,
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for any λ > 0, t > 0 and x ∈ Rn. This property of L implies a lack of oscillations in the fundamental1

solution to the homogeneous problem2 {
∂tu+ (−∆)1−β∂βt u−∆u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x),
(2)

that is, (1) with g = 0. In turn, this provides the Lm well-posedness of the problem. On the other hand,3

the fundamental solution gains some limited smoothing e�ect by its parabolic nature, so that the solution4

u ∈ C([0,∞), Hs,m) veri�es the following decay estimate (see later, Proposition 3.1)5

∥u(t, ·)∥Ḣs,m ≤ C (1 + t)−
s
2 ∥u0∥Hs,m for any s ∈ (0, 2β]. (3)

The restriction s ≤ 2β is due to the fact that the smoothing e�ect for the fundamental solution to (2) is6

limited to 2β derivatives (see later, (8)). This smoothing e�ect appears in many other evolution models7

(see, for instance, damped evolution models in [5,26]). However, in those cases no restriction on s appears:8

more derivatives always brings more decay rate in time, as per the heat equation.9

The fractional nature of the problem makes less obvious to deal with the perturbation term on the10

right-hand side g(t, x), since Duhamel's principle does not apply in the standard way (see, for instance, [18,11

Example 4.9] for a simpler equation, see also [29]).12

Having this in mind, we look for su�cient conditions on g(t, x) which guarantee that the solution to (1)13

remains in C([0,∞), Hs,m) and that ∥u(t, ·)∥Ḣs,m has a decay rate t−
s
2 as t goes to in�nity.14

As an example of an application of the obtained decay estimates for the perturbed equation (1), we15

investigate the semilinear problem16 {
∂tu+ (−∆)1−β∂βt u−∆u = f(u), t > 0, x ∈ Rn,

u(0, x) = u0(x),
(4)

where f(u) = |u|p with p > 1, or, more in general,17

|f(u)− f(v)| ≤ C |u− v|(|u|p−1 + |v|p−1), (5)

for some constant C > 0 independent on u and v. It is well-known that such nonlinear perturbation may18

cause the solution to blow-up in �nite time, when p is smaller than some critical power, usually called19

Fujita exponent. Nevertheless, for p larger than Fujita exponent, global-in-time solutions exist, provided20

that initial data are su�ciently small, in some space. Fujita exponents have been determined for fractional21

partial di�erential equations in several papers, see for instance [8] for the fractional wave-di�usive equation22

and [7] for the fractional subdi�usive equation.23

1.1. Main Results. We here summarize the main results which we will prove in the paper, outlining the24

ideas of the proofs, for the ease of reading. The solution to (1) may be written in the form25

u(t, x) = K0(t, ·) ∗(x) u0 +
∫ t

0

K1(t− τ, ·) ∗(x) g(τ, ·) dτ, (6)

where the expression of FKj , j = 0, 1, may be explicitly obtained, see later, (26).26

We stress that the classical Duhamel's principle does not apply to fractional equations (see, for instance,27

[29]); as a consequence, the kernel K1 related to the right-hand side term in (1) is di�erent from the28

kernel K0 related to the initial datum u0; in particular, the two di�erent kernels have di�erent smoothing29

properties (see Remark 2.2).30

To estimate u, we get an integral representation formula for FKj , j = 0, 1. In particular, we derive the31

sharp estimate (see (27) and (28)):32

|FKj(t, ξ)| ≈ ⟨t|ξ|2⟩−β−j , j = 0, 1. (7)

In order to apply the Fourier multiplier theory, in particular, Mikhlin-Hörmander theorem (see later,33

Corollary 2.4), we also prove the following estimate which involves the derivatives of FKj(t, ξ), with34

respect to ξ.35
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Lemma 1.1. Let K0 and K1 be as in (6). Then it holds1

|∂γξ K̂0(t, ξ)| ≲ ⟨
√
t ξ⟩−2β |ξ|−|γ|

(8)

and2

|∂γξ K̂1(t, ξ)| ≲ ⟨
√
t ξ⟩−2β−2|ξ|−|γ|

(9)

for any γ ∈ Nn, with γ ≥ 0.3

Thanks to (8) in Lemma 1.1, it is immediate to prove the Lm well-posedness of the homogeneous4

problem (2), and get the decay rate ∥u(t, ·)∥Ḣs,m ≤ C (1 + t)−min{ s
2 ,β} ∥u0∥Hs,m for any s > 0 (see later,5

Proposition 3.1).6

However, in view of (6), the fact that K1 has di�erent properties with respect to K0, in particular, it7

has better smoothing properties (see Remark 2.2), makes interesting to study su�cient conditions on g8

which guarantee that this perturbation does not in�uence the behavior of the solution.9

A su�cient condition on the perturbation g which guarantees that the solution u to (1) remains in10

C([0,∞), Hs,m) may be easily given.11

Proposition 1.2. Let n ≥ 1, m ∈ (1,∞), s ∈ R, and u0 ∈ Hs,m. Assume that g ∈ L1
loc([0,∞), Hs,m) or12

that g ∈ Lr
loc([0,∞), Hs−2b,m) with b ∈ (0, 1), for some r > 1/(1− b). Then u ∈ C([0,∞), Hs,m).13

Remark 1.1. The mechanism which regulates the interplay between integrability in time and regularity14

in space assumed for g in Proposition 1.2 may be understood noticing that, in view of (9), �a gain of 2b15

derivatives in space may be obtained paying a singularity in time t−b as t→ 0�.16

The strict inequality in the condition r > 1/(1 − b) in Proposition 1.2 is related to the lack of Hardy-17

Littlewood-Sobolev inequality for L1. Indeed, the Hardy-Littlewood-Sobolev inequality (see [18, Lemma18

2.1(b)])19

∥J1−b
0+ h∥Lr∗ ([0,t]) ≤ C(r, b, t) ∥h∥Lr([0,t]), with

1

r∗
=

1

r
+ b,

holds for any h ∈ Lr([0, t]), with r ∈ (1,∞), provided that r∗ > 1, that is, r > 1/(1 − b). The inclusion20

Lr∗([0, t]) ⊂ L1([0, t]) guarantees the integrability of J1−b
0+ h over [0, t] for any t > 0.21

To understand how Lemma 1.1 comes into play, it is useful to split the integral in (6) in two intervals.22

In �3, using Corollary 2.4, we will be able to prove the following.23

Lemma 1.3. Let b ∈ [0, 1). Assume that g ∈ L1
loc([0,∞), Hs,m) if b = 0, or that g ∈ Lr

loc([0,∞), Hs−2b,m),24

for some r > 1/(1− b), if b ∈ (0, 1). Then25 ∫ t

(t−1)+

∥K1(t− τ, ·) ∗ g(τ, ·)∥Hs,m dτ ≤ C

∫ t

(t−1)+

(t− τ)−b ∥g(τ, ·)∥Hs−2b,m dτ, (10)∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Hs,m dτ ≤ C

∫ t−1

0

∥g(τ, ·)∥Hs−2−2β,m dτ, for t > 1, (11)

where C > 0 is independent on g and t.26

The proof of Proposition 1.2 easily follows from Lemma 1.3 (see �3 for the details).27

Due to the di�usive nature of the equation, it is expected that when s > 0, the homogeneous quantity28

∥u(t, ·)∥Ḣs,m decays as t → ∞. We show that this decay rate is t−min{ s
2 ,β} under suitable assumptions29

on g. We stress that the fact that the decay rate is not faster than t−β is related to the partial, polynomial,30

smoothing e�ect that appears for this equation, see (7), if we compare it with the heat equation, for instance31

(whose fundamental solution has exponential decay, e−t|ξ|2). This phenomenon also appears in the sub-32

di�usive case (19), treated in [7], even replacing the Caputo derivative ∂βt with the Riemann-Liouville33

fractional derivative; in [7] the homogeneity properties of problem (19) allows to investigate more general34

Lp − Lq decay estimates for the solution ṽ, for 1 ≤ p ≤ q ≤ ∞; however, due to the limited smoothing35

e�ect the restriction n(1/p− 1/q) < 2 appears, and then the decay rate t−
nα
2 ( 1

p−
1
q ) of ∥ṽ(t, ·)∥Lq can not36

be faster than t−α. We mention that problem (19) with α ∈ (1, 2) is studied in [8].37
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In order to obtain the desired decay rate for the solution to (1), we may replace (11) by an estimate of1

the integral for the homogeneous quantity2

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m ,

when s > 0. We have the following.3

Lemma 1.4. Let s > 0 and assume that g ∈ L1
loc([0,∞), Hs−2−2β,m). Then4 ∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m dτ ≤ C

∫ t−1

0

(t− τ)−min{ s
2 ,1+β} ∥g(τ, ·)∥Hs−2−2β,m dτ, (12)

where C > 0 is independent on t and g.5

Moreover, assume that s ∈ (0, 2 + 2β) and let q ∈ (1,m] and g ∈ L1
loc([0,∞), Hs+a−2−2β,q), where6

a = n

(
1

q
− 1

m

)
, is such that s+ a ≤ 2 + 2β. (13)

Then, additional decay may be produced replacing (12) by the estimate7 ∫ t−1

0

∥K1(t− τ, ·) ∗ g(τ, ·)∥Ḣs,m dτ ≤ C

∫ t−1

0

(t− τ)−min{ s+a
2 ,1+β} ∥g(τ, ·)∥Hs+a−2−2β,q dτ, (14)

We stress that (12) corresponds to (14) with a = 0. We always �x a = 0 in (14) if s ≥ 2 + 2β.8

Thanks to Lemmas 1.3 and 1.4, we are able to prove our main result (see �3 for the details).9

Theorem 1.5. Let n ≥ 1, m ∈ (1,∞) and s ≥ 0. Assume that g ∈ L1
loc([0,∞), Hs,m) or that g ∈10

Lr
loc([0,∞), Hs−2b,m) with b ∈ (0, 1), for some r > 1/(1 − b). If s < 2 + 2β, possibly also assume11

that g ∈ L1
loc([0,∞), Hs−2−2β+a,q) for some q ∈ (1,m] with a = a(n,m, q) de�ned by (13) such that12

s+ a ≤ 2 + 2β, otherwise �x a = 0. Assume that13

A = sup
t≥0

(1 + t)min{ s
2 ,β}

∫ t

(t−1)+

(t− τ)−b ∥g(τ, ·)∥Hs−2b,m dτ, (15)

and14

B = sup
t≥1

tmin{ s
2 ,β}

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ, (16)

are �nite. Then the unique solution u ∈ C([0,∞), Hs,m) veri�es the decay estimate15

∥u(t, ·)∥Ḣs,m ≤ C(1 + t)−min{ s
2 ,β}(∥u0∥Hs,m +A+B), (17)

for any t ≥ 0, where C > 0 is independent of t, u0, g, A and B.16

The fact that the solution is in C([0,∞), Hs,m) in Theorem 1.5 is guaranteed by Proposition 1.2.17

1.2. Application of Theorem 1.5. In �4 we will apply Theorem 1.5 to obtain global-in-time existence18

results for the correspondent semilinear Cauchy-type problem (4). In particular, we have in mind to19

apply Theorem 1.5 for functions g for which some decay estimate holds. In view of this, we provide some20

concrete examples of assumptions on a polynomial decay rate on g to estimate the quantities A and B21

in (15) and (16). Estimates of integrals as in the forthcoming Examples 1.2 and 1.3 are standard in dealing22

with integral terms coming from the application of Duhamel's principle, especially in the application to23

nonlinear problems. An earlier version of these estimates goes back to [25]. For the ease of reading, we24

collect those integral estimates in Lemmas 3.2 and 3.3, in �3.25

Example 1.1. Assume that the estimate26

∥g(τ, ·)∥Hs−2b,m ≤ C (1 + τ)−min{ s
2 ,β}
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holds for any τ ≥ 0, for some b ∈ (0, 1) and C > 0. Then the quantity A in (15) is �nite. More precisely,1

one may estimate A ≤ 2C/(1− b). Indeed, if t ≥ 1, we may estimate2 ∫ t

t−1

(t− τ)−b (1 + τ)−min{s/2,β} dτ ≤ t−min{s/2,β}
∫ t

t−1

(t− τ)−bdτ

=
1

1− b
t−min{s/2,β} ≤ 2

1− b
(1 + t)−min{ s

2 ,β}.

On the other hand, if t ≤ 1, then we may estimate3 ∫ t

0

(t− τ)−b (1 + τ)−min{s/2,β} dτ ≤
∫ t

0

(t− τ)−b dτ =
1

1− b
t1−b

≤ 1

1− b
≤ 2

1− b
(1 + t)−min{ s

2 ,β}.

Example 1.2. Assume that s ∈ [0, 2) and that the estimate, possibly singular at τ = 0,4

∥g(τ, ·)∥Hs−2−2β+a,q ≤

{
C τ−1+ a

2 if s ≤ 2β,

C τ−1+ s+a
2 −β if s ∈ (2β, 2),

holds for any τ > 0, for some C > 0 and a ∈ (0, 2− s). Then the quantity B in (16) is �nite. Indeed (see5

later, Lemma 3.2),6 ∫ t−1

0

(t− τ)−
s+a
2 τ−1+ a

2 dτ ≤ C1 t
− s

2 ,

and7 ∫ t−1

0

(t− τ)−
s+a
2 τ−1+ s+a

2 −β dτ ≤ C1 t
−β ;

here, C1 > 0 depends only on s and a.8

Example 1.3. Assume that the estimate9

∥g(τ, ·)∥Hs−2−2β,m ≤ C (1 + τ)−d,

holds for any τ ≥ 0, for some C > 0 and d > 1. Then, the quantity B in (16) is �nite. Indeed (see later,10

Lemma 3.3),11 ∫ t−1

0

(t− τ)−
s
2 (1 + τ)−d dτ ≤ C1(d) t

− s
2 .

Background. A limited smoothing e�ect phenomenon appears in the following perturbed two-terms dif-12

fusive problem13 {
∂tv + ∂αt v −∆v = f(t, x) t > 0, x ∈ Rn,

v(0, x) = v0(x),
(18)

with α ∈ (0, 1), recently studied by the authors in [10]. However, this model is deeply di�erent from (1).14

First of all, the related homogeneous problem it is not quasi-homogeneous, and it can be shown that15

its asymptotic pro�le is described by the solution to the same problem where ∂tv is stroken (di�usion16

phenomenon), studied in [7],17 {
∂αt ṽ −∆ṽ = 0 t > 0, x ∈ Rn,

ṽ(0, x) = ṽ0(x),
(19)

Another crucial di�erence is that the smoothing e�ect for the solution operator to (18) is independent of18

the order α of the time fractional derivative: it amounts on 2 derivatives, independently on α.19

Di�erential equations with fractional in time derivatives are increasingly used to model physical phe-20

nomena in which some memory e�ect or hereditary process appear, for instance in areas like rheology,21

biology, engineering, mathematical physics, etc. (see for instance [20�23] and the reference given therein).22

One can refer to [18] or [23] for a deep study about the theory of time fractional derivatives. Also non-23

local in space operators are experiencing many applications in di�erent subjects, such as, among others,24
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crystal dislocation [14,24], �uid mechanics [2, 4, 30]. The use of fractional calculus introduced several new1

mathematical challenges; an open problem in this �eld is �nding some e�ective tools for writing explicit so-2

lutions to fractional ordinary di�erential equations. This latter issue becomes even more challenging if the3

equation contains multiple fractional in time derivatives. In the literature other authors have investigated4

the existence of solutions to the Cauchy-type problem associated to some multi-terms fractional partial5

di�erential equations, in suitable functional spaces. For instance, the study of the following two-term time6

fractional di�usion-wave equation was already faced7

b1∂
δ1
t w + b2∂

δ2
t w − c2∆w = F (t, x, w), t > 0, x ∈ Rn, (20)

for b1, b2 ∈ R, δ1, δ2 > 0 and F ≡ 0 or F nonlinear, under given assumptions on the exponents δ1 and δ28

and on the function F . An extended review about this problem can be found for instance in [27,28], where9

the existence of upper viscosity solutions to (20) is discussed. Also the study of the Hs well-posedness10

for multi-point value problems for fractional partial di�erential equations like (1) was already treated, for11

instance, in [16]. Some results about the well-posedness and regularity of solutions to (20) and more general12

models in bounded domains are discussed for instance in [1,3, 6, 13,32]. The problem of �nding a suitable13

representation of solution is strictly related to solving fractional ordinary di�erential equations in the form14

∂δ1t w + λ∂δ2t w + µw = 0, (21)

for λ, µ ∈ R. An exact solution to the initial value problems associated to (21) can be expressed in terms15

of generalized Mittlag-Le�er type functions (see [19]). In some special case the analytical solutions to such16

equations can be derived by using the Laplace transform method (see, for instance [15]).17

In the study of our problem, we can rely on a representation formula for the solution to (1); in particular,18

we have an integral representations of the kernels which allows us to investigate suitable pointwise estimates,19

essential for applying tools from Fourier multipliers theory.20

Notation. For any s ∈ R and q ∈ (1,∞) we de�ne the Bessel potential space21

Hs,q =
{
f ∈ S ′ : ⟨ξ⟩sf̂ ∈ Lq

}
,

equipped with the norm ∥f∥Hs,q = ∥F−1(⟨ξ⟩s f̂)∥Lq . Here the symbol ⟨ξ⟩ denotes the quantity
√
1 + |ξ|2.22

Namely, Hs,q is the image of Lq via the application of the Bessel potential, with its induced norm. For23

integer values of s ≥ 1 and for any q ∈ (1,∞), Hs,q = W s,q, the classic Sobolev space of functions in Lm
24

with their derivatives up to order s. For all s ≥ 0, q ∈ (1,∞), and f ∈ Hs,q, we de�ne the homogeneous25

quantity ∥f∥Ḣs,q = ∥(−∆)
s
2 f∥Lq .26

In this paper, f ≲ g means that f ≤ Cg for some constant C > 0, and f ≈ g means that f ≲ g ≲ f .27

2. Proof of Lemma 1.128

In order to prove Lemma 1.1, we �rst need to obtain an appropriate expression for the kernels K0 and29

K1 in (6). Applying the Fourier transform to problem (1) we obtain the following Cauchy-type problem30

for a parameter dependent fractional di�erential equation31 {
∂tû+ |ξ|2−2β

∂βt û+ |ξ|2û = ĝ(t, ξ), t > 0,

û(0, ξ) = û0(ξ),
(22)

with ξ ∈ Rn. Since the left-hand side of the equation in (22) is scale-invariant, we make the change of32

variable r = t|ξ|2, setting y(t|ξ|2) = û(t, ξ), so that the equation becomes33

|ξ|2(y′ +Dβ
0+y + y) = ĝ(r|ξ|−2

, ξ).

Letting c0 = û0(ξ) and f(r) = |ξ|−2
ĝ(r|ξ|−2

, ξ) for any ξ ̸= 0, problem (22) gives us34 {
y′ + Dβ

0+y + y = f(r), r > 0,

y(0) = c0.
(23)

We are now in the position to apply the following result.35
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Lemma 2.1 (see Lemma 1 in [10]). Assume that y = y(r) solves the Cauchy-type problem (23). Then1

y(r) = c0G0(r) +

∫ r

0

G1(r − ρ)f(ρ) dρ,

where G0 and G1 have the following integral representations:2

G0(r) =
sin(βπ)

βπ

∫ ∞

0

e−xr xβ−1 φ(x) dx (24)

G1(r) =
sin(βπ)

βπ

∫ ∞

0

e−xr xβ φ(x) dx (25)

for any r ≥ 0, with3

φ(x) =
1

(1− x)2 + x2β + 2(1− x)xβ cos(βπ)
.

Taking f(r) = |ξ|−2
ĝ(r|ξ|−2

, ξ) as in (23), by the change of variable ρ = τ |ξ|2, we get4 ∫ r

0

G1(r − ρ)f(ρ) dρ = |ξ|−2
∫ r

0

G1(r − ρ)ĝ(ρ|ξ|−2
, ξ) dρ

=

∫ r|ξ|−2

0

G1(r − τ |ξ|2)ĝ(τ, ξ) dτ

=

∫ t

0

G1((t− τ)|ξ|2)ĝ(τ, ξ) dτ,

where in the last equality we replaced r = t|ξ|2. We conclude that formula (6) holds for problem (1) with5

K0 and K1 satisfying6

K̂0(t, ξ) = G0(t|ξ|2), and K̂1(t, ξ) = G1(t|ξ|2), (26)

where G0 and G1 are as in (24) and (25). In particular, we may write K̂0(t, ξ) and K̂1(t, ξ) in integral7

form.8

In order to prove Lemma 1.1, we �rst look for an asymptotic estimate for the integral in (24) and (25),9

as r → ∞. We employ the following version of Watson's lemma ( [31, p.133]) for nonsmooth functions,10

whose straightforward proof we provide for the ease of reading.11

Lemma 2.2. Let φ ∈ L1
loc([0,+∞)), with φ(x) e−Mx in L1, for some M ≥ 0. Assume that φ is continuous12

at 0, with φ(0) ̸= 0. Then13 ∫ ∞

0

e−xr xβ−1 φ(x) dx = Γ(β) r−β(φ(0) + o(1)), as r → ∞,

for any β > 0, where Γ is the Euler gamma function. The integral above is de�ned for any r ≥M .14

Proof. We preliminarily notice that the integral is de�ned for any r ≥ M , due to the fact that φ is15

continuous at 0 and β > 0, so that e−x(r−M) xβ−1 φ(x) is in L1.16

We �x ε > 0. Let δ > 0 be such that |φ(x)− φ(0)| < ε for any x ∈ (0, δ). We �rst notice that17 ∫ δ

0

e−xr xβ−1 dx = r−β

∫ δr

0

e−x xβ−1 dx = r−βΓ(β)− r−β

∫ ∞

δr

e−x xβ−1 dx = r−β Γ(β) +O(e−δr).

Similarly,18 ∫ ∞

δ

e−xr xβ−1 |φ(x)| dx =

∫ ∞

δ

e−x(r−M) xβ−1 ψ(x) dx = O(e−δr),

where we put ψ(x) = |φ(x)| e−Mx, which we assumed to be in L1. Therefore, we proved that19 ∣∣∣ ∫ ∞

0

e−xr xβ−1 φ(x) dx− φ(0) Γ(β) r−β
∣∣∣ ≤ εΓ(β) r−β +O(e−δr),

and this concludes the proof.20
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It is clear that G0 and G1 in (24) and (25) verify the assumptions of Lemma 2.2 with M = 0, since φ1

is continuous and in L1, due to2

φ(x) ≤ 1

(1− cos(βπ))((1− x)2 + x2β)
,

and φ(0) = 1. Therefore, G0(r) and G1(r) are bounded and3

Gj(r) = r−β−j Γ(β + j)
sin(βπ)

βπ
, as r → ∞, j = 0, 1.

In particular,4

G0(r) ≈ ⟨r⟩−β , (27)

G1(r) ≈ ⟨r⟩−1−β . (28)

We can now prove Lemma 1.1.5

Proof. [Proof of Lemma 1.1] By the homogeneity of K̂0 and K̂1, it is su�cient to prove (8) and (9) for6

t = 1.7

For γ = 0 the proof follows by Lemma 2.2, see (27), (28). In order to prove the result for |γ| ≥ 1 we8

notice that9

G
(k)
j (r) =

sin(βπ)

βπ

∫ ∞

0

e−xrxβ+k+j−1φ(x) dx, j = 0, 1,

for all k ∈ N. Thus, by applying again Lemma 2.2 we get10

rkG
(k)
j (r) = r−β−j Γ(β + k + j)

sin(βπ)

βπ
, as r → ∞, j = 0, 1.

In particular,11

rk|G(k)
j (r)| ≲ ⟨r⟩−β−j , j = 0, 1,

and then,12

|∂γξ K̂0(1, ξ)| ≲
|γ|∑

k=⌈|γ|/2⌉

G
(k)
j (|ξ|2)|ξ|2k−|γ| ≲ ⟨ξ⟩−2β−2j |ξ|−|γ|

.

This concludes the proof.13

2.1. Multiplier estimates. Thanks to Lemma 1.1, we may apply Mikhlin-Hörmander multiplier theorem.14

De�nition 2.3. For any 1 ≤ p ≤ q ≤ ∞ we denote by Mq
p the space of the Fourier transforms T̂ of15

tempered distributions T which satis�es16

∥T ∗ f∥Lq ≲ ∥f∥Lp ,

for all f in the Schwartz space S(Rn). The space Mq
p is endowed with the �multiplier norm�17

∥T̂∥Mq
p
:= sup

{
∥F−1(T̂F(f))∥q : f ∈ S(Rn), ∥f∥p = 1

}
.

In particular, we set Mp :=Mp
p . The elements in Mq

p are called multipliers of type (p, q).18

The multiplier norm is invariant by translation and has the following behavior with respect to dilations:19

∥m(t·)∥Mq
p
= t−n( 1

p−
1
q ) ∥m∥Mq

p
. (29)

Thanks to representation (26) we can use the homogeneity of the kernels G0 and G1; then, for any20

1 ≤ p ≤ q ≤ ∞ and σ ∈ R, we get21

∥K̂i(t, ·)|ξ|σ∥Mq
p
= t−

n
2 (

1
p−

1
q )−

σ
2 ∥K̂i(1, ·)|ξ|σ∥Mq

p
, i = 0, 1, (30)

for any t ≥ 0. The Mikhlin-Hörmander theorem in its simplest form states that if22

|∂γξm(ξ)| ≤ C |ξ|−|γ|
, |γ| ≤ 1 + [n/2],

then m ∈Mp for any p ∈ (1,∞).23
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As an immediate consequence of Lemma 1.1 and identity (30), by applying Mikhlin-Hörmander theorem,1

we get the following result.2

Corollary 2.4. Let p ∈ (1,∞) and b1, b2 ≥ 0. Then3

∥K̂0(t, ·)|ξ|b1⟨ξ⟩b2∥Mp
≤ Ct−

b1
2 (1 + t−

b2
2 ), if b1 + b2 ≤ 2β, (31)

∥K̂1(t, ·)|ξ|b1⟨ξ⟩b2∥Mp ≤ Ct−
b1
2 (1 + t−

b2
2 ), if b1 + b2 ≤ 2β + 2, (32)

for some constant C > 0.4

Proof. Since Mp multiplier norms are invariant by dilation and K̂j(t, ξ) = K̂j(1, ξ
√
t), we get5

∥K̂j(t, ·)|ξ|b∥Mp
= t−

b
2 ∥K̂j(1, ·)|ξ|b∥Mp

. (33)

However, ⟨ξ⟩b2 is not homogeneous, so to use (33), we �rst estimate6

∥K̂j(t, ·)|ξ|b1⟨ξ⟩b2∥Mp ≤ C
(
∥K̂j(t, ·)|ξ|b1∥Mp + ∥K̂j(t, ·)|ξ|b1+b2∥Mp

)
,

where we used that7

m(ξ) =
⟨ξ⟩b2

1 + |ξ|b2

is in Mp for any p ∈ (1,∞) (for instance, by Mikhlin-Hörmander theorem). Therefore, we obtain8

∥K̂j(t, ·)|ξ|b1⟨ξ⟩b2∥Mp ≤ C t−
b1
2

(
∥K̂j(1, ·)|ξ|b1∥Mp + t−

b2
2 ∥K̂j(1, ·)|ξ|b1+b2∥Mp

)
,

and the proof follows by Mikhlin-Hörmander theorem.9

In order to obtain estimates in theMq
p norm, with 1 < p < q <∞, one may combine Mikhlin-Hörmander10

theorem with Hardy-Littlewood-Sobolev theorem.11

De�nition 2.5. Let σ ∈ (0, n/2). We de�ne the Riesz potential of order 2σ as12

I2σf(x) = F−1
(
|ξ|−2σ

f̂(ξ)
)
(x) ≡ Cn,σ

∫
Rn

f(y)

|x− y|n−2σ
dy.

The Hardy-Littlewood-Sobolev theorem states that if f ∈ Lp for some p ∈ (1, n/2σ), then I2σf ∈ Lp∗
13

where14

1

p
− 1

p∗
=

2σ

n
, and ∥I2σf∥Lp∗ ≲ ∥f∥Lp . (34)

2.2. Additional remarks on the kernels K0 and K1. In the following, we compare the kernels of our15

two-terms problem with the kernels of the fractional di�usion problem.16

Remark 2.1. Let w = w(t, x) be the solution to the linear Cauchy-type problem17 {
(−∆)1−β∂βt w −∆w = g(t, x) t > 0, x ∈ Rn,

w(0, x) = w0(x).
(35)

and K†
0 , K

†
1 the corresponding kernels. As in [7] it is easy to show that K̂†

0(t, ξ) = Eβ,1(−|ξ|2βtβ), where
Eβ,1 is the Mittag-Le�er function of indexes β and 1 (see [18]). Thus, the kernel K̂†

0 has the same scaling

properties of K̂0, that is K̂
†
0(t, ξ) = K̂†

0(t|ξ|
2
, 1). As a consequence, if we consider the di�erence of the two

kernels K0(t, ·) and K†
0(t, ·) we do not gain any additional decay for t → ∞; namely, for β > 1/4 in low

space dimension n < 4β we have

∥|ξ|s(K̂0(t, ·)− K̂†
0(t, ·))∥M2

1
= t−

n
4 − s

2 ∥K0(1, ·)−K†
0(1, ·)∥Ḣs ≈ t−

n
4 − s

2 ≈ ∥|ξ|sK0(t, ·)∥M2
1
,

for any s ∈ [0, 2β − n/2), since the di�erence K0(1, ·)−K†
0(1, ·) is not trivial. In the previous line we used

the property M2
1 = M∞

2 = (L2)′ = L2. It is easy to show that if g = 0, u0 ∈ L1 ∩ L2 and the moment
condition

M =

∫
Rn

u0(x) dx ̸= 0,



10 M. D'ABBICCO AND G. GIRARDI

holds, following as in [10, Theorem 2], the asymptotic pro�les of the solution to (2), and to (35) with1

w0 = u0, are described by MK0(t, x) and MK†
0(t, x), respectively, in the sense that2

∥(K0(t, ·) ∗ u0)−MK0(t, ·)∥L2 = o(t−
n
4 ), ∥(K†

0(t, ·) ∗ u0)−MK†
0(t, ·)∥L2 = o(t−

n
4 ).

As a consequence, we obtain that3

lim
t→∞

t
n
4 ∥u(t, ·)− w(t, ·)∥L2 = lim

t→∞
t
n
4 ∥(K0(t, ·) ∗ u0)− (K†

0(t, ·) ∗ u0)∥L2

= |M | tn
4 ∥K̂0(t, ·)− K̂†

0(t, ·)∥L2

= |M | ∥K̂0(1, ·)− K̂†
0(1, ·)∥L2 ̸= 0.

Thus, u does not behave asymptotically like w. This fact supports the idea that the presence of the integer4

order derivative ∂tu in the Cauchy-type problem (1) does not produce the same e�ects as in the fractional5

damped heat equation (18).6

Remark 2.2. We stress that the di�erence in the smoothing properties of the two kernels K0 and K1 can7

be motivated looking at the smoothing e�ects for the Cauchy-type problem (35): it is easy to derive the8

identities K†
0 = H0 and K†

1 = I2(1−β)H1, where H0 and H1 are the kernels of the following subdi�usive9

problem10 {
∂βt v + (−∆)βv = I2(1−β)g(t, x)

v(0, x) = w0(x),
(36)

which is obtained by problem (35) applying the Riesz potential I2(1−β) of order 2(1 − β) to both sides of11

the equation. In particular, for any p ∈ (1,∞) we have that |ξ|αK̂†
0 = |ξ|αĤ0 ∈ Mp for any α ∈ [0, 2β];12

whereas, being |ξ|αĤ1 ∈ Mp for all α ∈ [04β], we derive |ξ|αK̂†
1 ∈ Mp for any α ∈ [0, 2 + 2β]. The study13

of problem (36) may be tackled more in details following the approach used in [7].14

3. Proofs of Proposition 1.2 and Theorem 1.515

We may now employ Corollary 2.4 to prove the desired estimates for the solution to (1).16

We �rst consider the homogeneous problem (2).17

Proposition 3.1. Let n ≥ 1 and s ∈ R. Assume that u0 ∈ Hs,m for some m ∈ (1,∞). Then the solution18

u ∈ C([0,∞), Hs,m) to (2) veri�es the estimate19

∥u(t, ·)∥Hs,m ≤ C ∥u0∥Hs,m , (37)

for some C > 0 independent of u0 and t. Moreover, if s > 0 then we have the decay estimate20

∥u(t, ·)∥Ḣs,m ≤ C t−min{ s
2 ,β} ∥u0∥Hs,m , (38)

for any t ≥ 1.21

Proof. Applying (31) with b1 = b2 = 0, we immediately derive (37) by22

∥u(t, ·)∥Hs,m ≤ ∥K̂0(t, ·)∥Mm ∥u0∥Hs,m ≤ C ∥u0∥Hs,m .

Let s > 0 and t ≥ 1. Applying (31) with b2 = 0, and setting b1 = s if s ≤ 2β, or b1 = 2β otherwise, we get23

∥u(t, ·)∥Ḣs,m ≤ ∥|ξ|sK̂0(t, ·)∥Mm
∥u0∥Lm ≤ C t−

s
2 ∥u0∥Lm , if s ≤ 2β,

∥u(t, ·)∥Ḣs,m ≤ ∥|ξ|2βK̂0(t, ·)∥Mm
∥|ξ|s−2β

u0∥Lm ≤ C t−β∥u0∥Hs−2β,m , if s > 2β.

The proof of (38) follows. The proof of the continuity is standard.24

To deal with the solution to (1) we shall now also consider the integral containing K1 in (6) and prove25

Lemmas 1.3 and 1.4.26
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Proof of Lemma 1.3. We �rst prove (10). Due to t − τ ≤ 1, using (32) with b1 = 0 and b2 = 2b, we1

estimate2

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Hs,m ≤ ∥⟨ξ⟩2bK̂1(t− τ, ·)∥Mm∥g(τ, ·)∥Hs−2b,m

≤ C(t− τ)−b∥g(τ, ·)∥Hs−2b,m ,

for any b ∈ [0, 1). The assumption b < 1 guarantees that (t − τ)−b is integrable over [t − 1, t]. Moreover,3

2b < 2 < 2 + 2β. This proves (10).4

To prove (11), we use (32) with b1 = 0 and b2 = 2 + 2β, so that5

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Hs,m ≤ ∥⟨ξ⟩2+2βK̂1(t− τ, ·)∥Mm
∥g(τ, ·)∥Hs−2−2β,m

≤ C ∥g(τ, ·)∥Hs−2b,m ,

since t− τ ≥ 1. This proves (11). □6

The proof of Proposition 1.2 follows combining Proposition 3.1 and Lemma 1.3.7

Proof of Proposition 1.2. By Hölder inequality, we estimate8 ∫ t

(t−1)+

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ ≤

{
C t−b ∥g∥Lr([t−1,t],Hs−2b,m) if t ≥ 1,

C t1−
1
r−b ∥g∥Lr([0,t],Hs−2b,m) if t ∈ (0, 1).

Moreover, for t > 1, we just estimate9 ∫ t−1

0

∥g(τ, ·)∥Hs−2−2β,m dτ ≤ ∥g∥L1([0,t−1],Hs−2−2β,m).

The proof of the continuity is a standard consequence of the fact that g ∈ Lr
loc(R+, H

s−2b,m); indeed, for10

a sequence th in R+ we get:11

th → t⇒
∫ t

th

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ ≤ C |t1− 1
r−b − t

1− 1
r−b

h | ∥g∥Lr([th,t],Hs−2b,m) → 0,

if b ∈ (0, 1), and12

th → t⇒
∫ t

th

∥g(τ, ·)∥Hs,m dτ ≤ C ∥g∥L1([th,t],Hs,m) → 0,

if b = 0, due to the absolute continuity of the Lebesgue measure. If th > t, we just replace [th, t] by [t, th].13

□14

Now we �x s > 0 and we prove Lemma 1.4.15

Proof of Lemma 1.4. First, let s+ a ≤ 2 + 2β. By using (32) with b1 = s+ a and b2 = 2 + 2β − s− a,16

we may estimate17

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m ≤ ∥⟨ξ⟩2β+2−s−a|ξ|s+a
K̂1(t− τ, ·)∥Mm

∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm

≤ C(t− τ)−
s+a
2 ∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm .

We stress that the fact that s+a is the power of |ξ| and not of ⟨ξ⟩ is crucial to produce the decay (t−τ)− s+a
2 ,18

since t− τ ≥ 1. Finally, we may estimate19

∥F−1(|ξ|−a⟨ξ⟩s−2β−2+aĝ(τ, ·))∥Lm = ∥Iaf∥Lm ≤ C∥f∥Lq = C∥g(τ, ·)∥Hs−2β−2+a,q ,

where Iaf = F−1(|ξ|−a
f) is the Riesz potential of f = F−1(⟨ξ⟩s−2β−2+aĝ(τ, ·)), thanks to Hardy-20

Littlewood-Sobolev theorem, see (34). This proves (14) when s+ a ≤ 2 + 2β.21

In the case s > 2 + 2β, using (32) with b1 = 2 + 2β and b2 = 0, we may estimate22

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m ≤ ∥|ξ|2+2β
K̂1(t− τ, ·)∥Mm

∥F−1(|ξ|s−2−2β
ĝ(τ, ·))∥Lm

≤ C(t− τ)−1−β∥g(τ, ·))∥Ḣs−2−2β,m .

This concludes the proof of (12). □23
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Remark 3.1. Following the proof of (12), we see that ∥g(τ, ·)∥Hs−2β−2+a,q may be replaced by the homoge-1

neous quantity ∥g(τ, ·)∥Ḣs−2β−2,m when s > 2 + 2β. Similarly, if s > 2b, we may estimate2

∥K1(t− τ, ·) ∗(x) g(τ, ·)∥Ḣs,m ≤ ∥|ξ|2bK̂1(t− τ, ·)∥Mm
∥g(τ, ·)∥Ḣs−2b,m

≤ C(t− τ)−b∥g(τ, ·)∥Ḣs−2b,m ,

and using this when dealing with ∥u(t, ·)∥Ḣs,m , instead of relying on (10).3

Theorem 1.5 may then be modi�ed accordingly, using the homogeneous quantity ∥g(τ, ·)∥Ḣs−2b,m in (15),4

when s > 2b, and the homogeneous quantity ∥g(τ, ·)∥Ḣs−2β−2,m in (16), when s > 2 + 2β.5

The proof of Theorem 1.5 verbatim follows combining Propositions 3.1 and 1.2 with (10) and (14).6

Proof of Theorem 1.5. For any t ≥ 1, using (6), we obtain7

∥u(t, ·)∥Ḣs,m ≤ C t−min{ s
2 ,β} ∥u0∥Hs,m + C

∫ t

t−1

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ

+ C

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ

≤ C1 (1 + t)−min{ s
2 ,β}

(
∥u0∥Hs,m +A+B

)
.

For t ≤ 1, using (6), we obtain8

∥u(t, ·)∥Ḣs,m ≤ C ∥u0∥Hs,m + C

∫ t

0

(t− τ)−b∥g(τ, ·)∥Hs−2b,m dτ

≤ C1

(
∥u0∥Hs,m +A

)
.

This concludes the proof. □9

Remark 3.2. We stress that many other estimates for the solution to (1) may be proved using (10), (11)10

and (14), which are consequences of Lemma 1.1. For instance, one may be interested into have a bounded11

solution to (1), in the sense that ∥u(t, ·)∥Hs,m is bounded with respect to t. In this case, the assumption12

of Theorem 1.5 may be relaxed. Assuming that13

A0 = sup
t≥0

∫ t

(t−1)+

(t− τ)−b ∥g(s, ·)∥Hs−2b,m dτ, (39)

and14

B0 = sup
t≥1

∫ t−1

0

(t− τ)−
s+a
2 ∥g(τ, ·)∥Hs−2−2β+a,q dτ, (40)

are �nite, the following estimate immediately follows by (10) and (11):15

∥u(t, ·)∥Hs,m ≤ C(∥u0∥Hs,m +A0 +B0), (41)

for any t ≥ 1, where C > 0 is independent of t, u0, A0 and B0.16

3.1. Proof of the integral estimates in Examples 1.2 and 1.3. The estimates provided in Exam-17

ples (1.2) and (1.3) are consequences of variants of a well-known result for integrals related to the application18

of Duhamel's principle (an earlier version of this estimate goes back to [25]). For the ease of reading, we19

provide statements and proofs.20

Lemma 3.2. Let a1, a2 ∈ [0, 1). Then the following estimate holds21 ∫ t

0

(t− τ)−a1τ−a2 dτ ≤ C t1−a1−a2 ,

for any t ≥ 1, where the constant C = C(a1, a2) > 0 is independent of t ≥ 1.22
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Proof. It is convenient to split the integral into1

I1 =

∫ t
2

0

(t− τ)−a1τ−a2 dτ,

I2 =

∫ t

t
2

(t− τ)−a1τ−a2 dτ.

The �rst integral may be estimated as2

I1 ≤ 2a1 t−a1

∫ t
2

0

τ−a2 dτ =
2a1+a2−1

1− a2
t1−a1−a2 ,

and by a change of variable we also �nd3

I2 =

∫ t
2

0

(t− τ)−a2τ−a1 dτ ≤ 2a1+a2−1

1− a1
t1−a1−a2 .

This concludes the proof.4

The function τ−a2 shall be replaced by (1 + τ)−a2 to avoid the singularity at τ = 0, when a2 ≥ 1. In5

particular, we have the following.6

Lemma 3.3. Let a1 ∈ [0, 1) and a2 > 1. Then the following estimate holds7 ∫ t

0

(t− τ)−a1(1 + τ)−a2 dτ ≤ C t−a1 ,

for any t ≥ 1, where the constant C = C(a1, a2) > 0 is independent of t ≥ 1.8

Proof. As in the proof of Lemma 3.2, we split the integral into9

I1 =

∫ t
2

0

(t− τ)−a1(1 + τ)−a2 dτ,

I2 =

∫ t

t
2

(t− τ)−a1(1 + τ)−a2 dτ.

The integral I1 may now be estimated as10

I1 ≤ 2a1 t−a1

∫ t
2

0

(1 + τ)−a2 dτ =
2a1

a2 − 1
t−a1

(
1− (2/(t+ 2))a2−1

)
≤ 2a1

a2 − 1
t−a1 .

To estimate the integral I2 we proceed as in the proof of Lemma 3.2, and we get11

I2 ≤ 2a2 (t+ 2)−a2

∫ t
2

0

τ−a1 dτ =
2a1+a2−1

1− a1
(t+ 2)−a2t1−a1 ≤ 2a2

1− a1
t−a1 .

This concludes the proof.12

4. Application to a nonlinear problem13

In order to look for the existence of global-in-time solution to (4), we �rst provide a nonexistence result.14

Namely, according to the integrability of the initial datum u0, we �nd that no global-in-time solution to (4)15

exist, even in a weak sense, if the power nonlinearity in (4) is too small.16

Theorem 4.1. Let u0 ∈ Lm for some m ∈ (1,∞) which satis�es17

u0(x) ≥ ε0(1 + |x|)− n
m (ln(e+ |x|))−1, (42)

for some ε0 ∈ (0, 1). Then, if there exists a global-in-time weak solution to (4) with f = |u|p, then18

p ≥ 1 + 2m/n.19

On the other hand, if u0 ∈ L1 satis�es20 ∫
Rn

u0(x) dx > 0, (43)
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and problem (4), with f = |u|p, admits a global-in-time weak solution, then p > 1+2/n if β ∈ (0, 2/(n+2)],1

or p ≥ 1 + 2/n if β ∈ (2/(n+ 2), 1).2

We postpone the proof of Theorem 4.1 to �5.3

The fact that global-in-time solutions may exist for critical nonlinearities p = 1 + 2m/n, when initial4

datum is in Lm with m > 1, is expected and con�rmed by the forthcoming Theorem 4.2, which provides5

some existence result in this critical case, under additional assumptions on the space dimension n and6

on β. In the case of L1 initial datum, the existence of global-in-time solutions is excluded by Theorem 4.2,7

but only in the case β ∈ (0, 2/(n + 2)]. The existence of global-in-time solutions for supercritical powers8

is guaranteed again by Theorem 4.2 (see Remark 4.1). In the case β ∈ (2/(n+ 2), 1), we are not aware if9

the case of critical power nonlinearity belongs to the existence or to the nonexistence range.10

Theorem 4.2. Let m ∈ (1,∞) and �x a space dimension n < 2m, and a regularity s ∈ (n/m, 2).11

Let p ≥ 1 + 2m/n if 1 + 2m/n ≥ 1/β, and p > 1/β otherwise. Then, there exists ε0 > 0 such that if12

u0 ∈ Hs,m, with ∥u0∥Hs,m ≤ ε0, (44)

there is a uniquely determined solution u ∈ C([0,∞), Hs,m) to (4) with f = |u|p. Moreover, the solution u13

satis�es the following decay estimates:14

∥u(t, ·)∥Ḣκ,m ≤ C (1 + t)−min{κ
2 ,β}∥u0∥Hs,m , κ ∈ [0, s], (45)

where C > 0 is independent of t > 0.15

Remark 4.1. As a corollary of Theorem 4.2, if the initial datum is in Hs,1 for a su�ciently large s, then16

Theorem 4.2 may be applied for any m ∈ (1,∞) in space dimension n = 1, 2, so that the global-in-time17

small data solutions exist if p > max{1 + 2/n, 1/β} in space dimension n = 1, 2.18

We stress that we do not expect that the existence exponent max{1 + 2m/n, 1/β} in Theorem 4.2 is19

critical when 1+2m/n < 1/β. More precisely, we expect that for any m ∈ (1,∞) it is possible to prove the20

existence of global-in-time solutions with small datum in Hs,m for p > p̃(n,m, β) with p̃(n,m, β) < 1/β if21

1 +
2m

n
<

1

β
.

However, proving a general result would be rather technical, so we only discuss a simple scenario in22

Proposition 4.3.23

This very peculiar e�ect shows that working with L1 regularity of the datum or, more in general, Lm
24

regularity, with m close to 1, is not the best possible choice to �nd global-in-time small data solutions.25

This is due to the asymmetry in the Duhamel's principle for fractional equations, that is, K1 has better26

smoothing properties than K0 (see also Remark 2.2).27

Proof of Theorem 4.2. We consider the evolution space X = C([0,∞), Hs,m) and the norm28

∥u∥X = sup
t≥0

sup
κ∈[0,s]

(1 + t)min{κ
2 ,β}∥u(t, ·)∥Ḣκ,m .

Applying the fractional Sobolev embedding or Gagliardo-Nirenberg inequality (see, for instance, [17]) we29

conclude that if u ∈ X then30

∥u(τ, ·)∥Lr ≲ (1 + τ)−min{n
2 (

1
m− 1

r ),β}∥u∥X , (46)

for any r ∈ [m,∞), since31

Hκ,m ↪→ Lr, ∥h∥Lr ≤ C ∥h∥Ḣκ,m , κ = n

(
1

m
− 1

r

)
,

and n/m < s. Let us de�ne the operator32

N : u ∈ X(T ) 7→ Nu(t, x) = K0(t, ·) ∗(x) u0 + Fu(t, x), Fu =

∫ t

0

K1(t− τ, ·) ∗(x) f(u(τ, ·)) dτ. (47)
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Applying Proposition 3.1, we �nd that1

∥K0 ∗(x) u0∥X ≤ C1 ∥u0∥Hs,m ,

for some C1 > 0. We will prove that2

∥Fu− Fv∥X ≤ C2 ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
, (48)

for some C2 > 0. We now want to prove thatN is a contraction on a closed ball BR = {u ∈ X : ∥u∥X ≤ R},3

provided that R is su�ciently small. Let us �x R = 2C1 ∥u0∥Hs,m . Estimate (48) proves that F is a4

contraction with constant L < 1/2 on BR if R is a su�ciently small, namely, 2C2R
p−1 < 1/2. This5

provides the smallness condition on ∥u0∥Hs,m = R/(2C1). Now N maps BR onto BR and is a contraction,6

as well. Therefore there exists a unique �xed point, that is, a unique weak solution u, in X. Moreover,7

u ∈ BR, that is, ∥u∥X ≤ R = 2C1 ∥u0∥Hs,m , and this implies estimates (45).8

It remains to prove (48). For any u and v in X(T ) we de�ne9

g(τ, x) = f(u(τ, x))− f(v(τ, x)).

As a consequence of (46) and (5) we obtain10

∥g(τ, ·)∥Lm ≤ ∥(u− v)(τ, ·)∥Lmp

(
∥u(τ, ·)∥p−1

Lmp + ∥v(τ, ·)∥p−1
Lmp

)
≲ (1 + τ)−pmin{ n

2m (1− 1
p ),β}∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Similarly,11

∥g(τ, ·)∥Lq ≤ ∥(u− v)(τ, ·)∥Lqp

(
∥u(τ, ·)∥p−1

Lqp + ∥v(τ, ·)∥p−1
Lqp

)
≲ (1 + τ)−pmin{n

2 (
1
m− 1

qp ),β}∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

= (1 + τ)−min{ n
2m (p−1)− a

2 ,pβ}∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

provided that a = n(1/q − 1/m) is su�ciently small, that is, q is su�ciently close to m, in particular,12

qp ≥ m. We may now apply Theorem 1.5.13

We distinguish two cases. We �rst assume that pc = 1 + 2m/n veri�es pc ≥ 1/β. It is clear that14

min
{ n

2m
(p− 1), pβ

}
≥ min

{ n

2m
(pc − 1), pcβ

}
= min {1, pcβ} = 1,

due to the assumption pc ≥ 1/β. Similarly,15

min
{ n

2m
(p− 1)− a

2
, pβ
}
≥ 1− a

2
.

Due to the assumption κ ≤ s < 2, letting b = s/2 ∈ (0, 1), we get16

∥g(t, ·)∥Hκ−2b,m ≤ ∥g(t, ·)∥Hs−2b,m = ∥g(t, ·)∥Lm ≤ (1 + t)−1∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

and (1 + t)−1 ≤ (1 + t)−min{κ
2 ,β}. Therefore, we may estimate the quantity A in (15) (see Example 1.1)17

by18

A ≤ 4

2− s
∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

We also assume that a > 0 is su�ciently small to get s+ a < 2 as well. Therefore,19

∥g(t, ·)∥Hκ−2−2β+a,q ≤ ∥g(t, ·)∥Hs−2−2β+a,q ≤ ∥g(t, ·)∥Lq ≤ t−(1−
a
2 )∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s. Applying Theorem 1.5 (see Example 1.2), we get the desired estimate20

∥Fu(t, ·)− Fv(t, ·)∥Ḣκ,m ≤ C(1 + t)−min{κ
2 ,β}∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s.21

Now let pc < 1/β. In this case, we �x a = 0. Now for any p > 1/β,22

min
{ n

2m
(p− 1), pβ

}
= d(p) > 1,
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since p > pc as well. Therefore,1

∥g(t, ·)∥Hκ−2−2β,m ≤ ∥g(t, ·)∥Hκ−2b,m ≤ ∥g(t, ·)∥Lm ≤ t−d(p)∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

for any κ ≤ s and for b = 1 − s/2. Applying Theorem 1.5 (see Examples 1.1 and 1.3), we get again the2

desired decay estimate.3

This concludes the proof. □4

4.1. A variant of Theorem 4.2 in space dimension n = 1, 2. It is easy to see that the range in which5

the existence exponent is 1 + 2m/n may be enlarged taking smaller q. In the following result, we discuss6

the case of low space dimension n = 1, 2, in which it is possible to choose q close to 1 as one desires.7

Proposition 4.3. Let n = 1, 2, and m ∈ (1,∞). Fix s = 2. Assume that8

β pc > 1− n

2

(
1− 1

m

)
. (49)

Then for all p ≥ pc there exists ε0 > 0 such that if (44) holds and f(u) satis�es (5), for any δ ∈ (0, 2−n/m)9

there is a uniquely determined solution u to (4) which belongs to C([0,∞), H2−δ,m).10

Proof of Proposition 4.3. We follow the proof of Theorem 4.2, but now we take q very close to 1. This11

is possible because, on the one hand for any δ ∈ (0, 2− n/m) it holds12

Hκ,m ↪→ Lqp, for all 2− δ > κ = n

(
1

m
− 1

qp

)
and13

κ+ a =
n

q

(
1− 1

p

)
< 2

for any q ∈ (1,m); on the other hand, since (49) holds and p ≥ pc we can �x q ∈ (1,m) su�ciently small14

such that15

βp ≥ 1− a

2
.

Now, noticing also that qp ≥ m, since 2m/n ≥ m we may apply (46) to r = qpc. As a consequence we16

obtain17

∥g(t, ·)∥Lq ≲ (1 + t)−1+ a
2 ∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Moreover, as in the proof of Theorem 4.2 we get18

∥g(t, ·)∥Lm ≲ (1 + t)−pβ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
;

thus, since pβ > min{κ/2, β}, letting b = 1−δ/2 we may estimate the quantity A in (15) (see Example 1.1)19

by20

A ≤ 4

δ
∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
.

Applying Theorem 1.5 (see Example 1.2 to estimate the quantity B in (16)), we conclude the proof. □21
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4.2. Application of the decay estimates to another nonlinear problem. The smoothing e�ect of1

K1 also allows us to investigate global-in-time existence results for semilinear problems with nonlinear2

terms which are di�erent by the classical |u|p, e.g. f(u,∇u) = ∇(u|u|p−1) with p > 1; for brevity, we3

discuss only the case of space dimension n = 1, �xing β ≥ 1/2 in (4).4

Theorem 4.4. Let m ∈ (1,∞); �x the space dimension n = 1, β ∈ [1/2, 1), and the regularity s = 1.5

Let p ≥ 1 +m. Then, there exists ε0 > 0 such that if6

u0 ∈ H1,m, with ∥u0∥H1,m ≤ ε0, (50)

there is a uniquely determined solution u ∈ C([0,∞), H1,m) to (4) with f = ∇|u|p. Moreover, the solution7

u satis�es the following estimates:8

∥u(t, ·)∥Ḣκ,m ≤ C (1 + t)−
κ
2 ∥u0∥H1,m , κ ∈ [0, 1],

where C > 0 is independent of t > 0.9

Proof. To prove Theorem 4.4, we consider the evolution space10

X = C([0,∞), H1,m),

and the norm11

∥u∥X = sup
t≥0

sup
κ∈[0,1]

(1 + t)
κ
2 ∥u(t, ·)∥Ḣκ,m .

Applying the fractional Sobolev embedding or Gagliardo-Nirenberg inequality we conclude that12

∥u(τ, ·)∥Lr ≲ (1 + τ)−
1
2 (

1
m− 1

r )∥u∥X , (51)

for any u ∈ X and r ≥ m, since13

Hκ,m ↪→ Lr, ∥h∥Lr ≤ C ∥h∥Ḣκ,m , κ =
1

m
− 1

r
< 1.

Moreover, applying Proposition 3.1, being β ≥ 1/2, we get that14

∥K0 ∗(x) u0∥X ≤ C1 ∥u0∥H1,m ,

for some C1 > 0. As in the proof of Theorem 4.2 we consider the operator N : X → X de�ned as in (47)15

and we prove that for any u, v ∈ X estimate (48) is satis�ed for some C2 > 0; as a consequence, we will16

get the existence of a unique weak solution u to (4) in X, provided that ∥u0∥H1,m is su�ciently small. For17

any u and v in X we de�ne18

g(τ, x) = ∇(u(τ, x)|u(τ, x)|p−1)−∇(v(τ, x)|v(τ, x)|p−1),

with p ≥ p̃c := 1 +m. By (51), since it holds

|∇(u|u|p−1)−∇(v|v|p−1)| ≤ |∇(u− v)|(|u|p−1 + |v|p−1) + |∇v||u− v|(|u|p−2 − |v|p−2),

we may �x b = κ/2 and estimate19

∥g(t, ·)∥Hκ−2b,m = ∥g(t, ·)∥Lm ≤ ∥u− v∥Ḣ1,m

(
∥u∥p−1

L∞ + ∥v∥p−1
L∞

)
+ ∥v∥Ḣ1,m∥u− v∥L∞

(
∥u∥p−2

L∞ + ∥v∥p−2
L∞

)
≤ (1 + t)−

1
2−

p−1
2m ∥u− v∥X

(
∥u∥p−1

X + ∥v∥p−1
X

)
, (52)

for any κ ∈ [0, 1]; moreover, for any q ∈ (1,m) we have20

∥g(t, ·)∥Hκ−2β−2+a,q ≤ ∥g(t, ·)∥Lq ≤ ∥u− v∥Ḣ1,m

(
∥u∥p−1

Lr(p−1) + ∥u∥p−1
Lr(p−1)

)
+ ∥v∥Ḣ1,m∥u− v∥L∞

(
∥u∥p−2

Lr(p−1) + ∥u∥p−2
Lr(p−1)

)
≤ (1 + t)−

1
2−

1
2 (

p−1
m − 1

r )∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
,

where r ∈ [q,∞) satis�es 1/q = 1/m+ 1/r and a, de�ned as in (13), is less than 1.21
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In particular, as a consequence of (52), we may estimate the quantity A in (15) (see Example 1.1) by1

A ≤ 4 ∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
.

On the other hand, noticing that2

1

2
+

1

2

(p− 1

m
− 1

r

)
≥ 1− a

2
,

for any p ≥ p̃c, we may estimate the quantity B in (16) (see Example 1.2) and apply Theorem 1.5. The3

proof of the desired result follows if the initial datum u0 satis�es condition (50).4

5. Proof of Theorem 4.15

Let us consider the Cauchy-type problem6 {
∂tu+ ∂βt (−∆)1−βu−∆u = |u|p

u(0, x) = u0(x),
(53)

with p > 1 and u0 satisfying condition (42) or (43). For any α > 0 the left-sided and, respectively,7

right-sided Riemann-Liouville fractional integral of order α of a given function f de�ned on [a, b] are given8

by9 (
Jα
a+f

)
(t) =

1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

and, respectively,10 (
Jα
b−f

)
(t) =

1

Γ(α)

∫ b

t

f(s)

(s− t)1−α
ds,

for any t ∈ [a, b]. Moreover, for any α ∈ (0, 1) we de�ne the left-sided and, respectively, right-sided11

Riemann-Liouville fractional derivatives of order α as12 (RL
Da+f

)
(t) = ∂t

(
J1−α
a+ f

)
(t),

and13 (RL
Db−f

)
(t) = −∂t

(
J1−α
b− f

)
(t).

In the following we employ a modi�ed test function method to prove the desired results; in order to14

treat the nonlocal operators we replace compactly supported test functions by suitable test functions with15

polynomial decay. We �rst give a de�nition of global-in-time weak solution.16

De�nition 5.1. Let us �x q = n + 2 − 2β; we de�ne the space C∞
q (Rn) as the subspace of in�nitely17

di�erentiable functions φ such that ⟨x⟩qφ is bounded and the function ⟨x⟩q(−∆)σφ is bounded for σ = 1−β18

and σ = 1.19

The following statement guarantees that the space C∞
q (Rn) is not empty (see Corollary 3.1 in [9]).20

Proposition 5.2. Let f(x) = ⟨x⟩−ω, for ω > n, and let σ > 0. We set s = σ − ⌊σ⌋. Then

∀x ∈ Rn : |(−∆)σf(x)| ≤ C⟨x⟩−ωσ ,

where ωσ = ω + 2σ if σ is an integer, or ωσ = n+ 2s otherwise, and the constant C veri�es the following
bound from below:

C = C(n, σ, ω) ≥ (−∆)σf(0) = 22σ
Γ(σ + n/2)

Γ(n/2)

Γ(σ + ω/2)

Γ(ω/2)
.

Remark 5.1. The space C∞
q is a vector space; as a consequence of Proposition 5.2 it is not empty, being

the function φ(x) = ⟨x⟩−ω in C∞
q for any ω ≥ q. Moreover, due to q > n, we get the inclusion

C∞
q ⊂ L∞(Rn, ⟨x⟩q dx) ⊂ L1.
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De�nition 5.3. We say that u ∈ Lp
loc

(R+, L
p(Rn, ⟨x⟩−qdx)) is a global-in-time weak solution if for any1

test function ψ ∈ C1
c ([0,∞)) and φ ∈ C∞

q (Rn), it holds2 ∫
Rn

∫ ∞

0

|u(t, x)|pψ(t)φ(x) dt dx

=

∫
Rn

∫ ∞

0

u(t, x)
(
− ψ′(t)φ(x) +RL Dβ

∞−ψ(t)(−∆)1−βφ(x)− ψ(t)∆φ(x)
)
dt dx

− ψ(0)

∫
Rn

u0(x)φ(x) dx−
(
J1−β
∞− ψ

)
(0)

∫
Rn

u0(x)(−∆)1−βφ(x) dx.

This de�nition of global-in-time weak solution is motivated by the following result about fractional3

integration by parts which allows to prove that any classical solution of problem (53) is also a weak4

solution in the sense of De�nition 5.3.5

Lemma 5.4. (Lemma 2.7 in [18]) Let b > 0, f ∈ Lp1([0, b]), f ∈ Lp2([0, b]), and either p1, p2 ≥ 1 such6

that 1/p1 + 1/p2 < 1 + γ, or p1, p2 > 1 and 1/p1 + 1/p2 = 1 + γ. Then, we have the following:7 ∫ b

0

(Jγ
0+f)(t)g(t) dt =

∫ b

0

f(t)(Jγ
b−g)(t) dt.

Proof of Theorem 4.1. Let u be a global-in-time nontrivial weak solution to (53), in the sense of8

De�nition 5.3. We introduce ψ ∈ C1([0,∞)), a non-increasing function, such that suppψ ⊂ [0, 1] and9

ψ(t) =

{
1 if t ∈ [0, 1/2),

c0(1− t)ℓ+1 if t ∈ [1− ε, 1),

for some c0 > 0, ℓ > 1/(p− 1) and ε > 0 arbitrarily small. On the other hand, we �x φ ∈ C∞
q de�ned as

φ(x) = ⟨x⟩−n−2(1−β). For any R ≥ 1 and η > 0 we de�ne

ψR(t) = ψ(R−ηt), φR(x) = φ(R−1x).

According to De�nition 5.3 we have that10

IR :=

∫ ∞

0

∫
Rn

|u(t, x)|pψR(t)φR(x) dx dt

=

∫
Rn

∫ ∞

0

u(t, x)
(
− ψ′

R(t)φR(x) +
RL Dβ

∞−ψR(t)(−∆)1−βφR(x)− ψR(t)∆φR(x)
)
dt dx

− ψR(0)

∫
Rn

u0(x)φR(x) dx−
(
J1−β
∞− ψR

)
(0)

∫
Rn

u0(x)(−∆)1−βφR(x) dx.

We preliminary notice that11

ψ′
R(t) = R−ηψ′(R−ηt), RLDβ

∞−ψR(t) = R−βη
(RL

Dβ
∞−ψ

)
(R−ηt),

(J1−β
∞− ψR)(t) = Rη(1−β)(J1−β

∞− ψ)(R
−ηt),

and12

(−∆)1−βφR(x) = R−2(1−β)(−∆)1−βφ(R−1x), (−∆)φR(x) = R−2(−∆)φ(R−1x).

We set
k0 := (J1−β

∞− ψ)(0) ∈ R+;

thus, we conclude13

IR = −R−η

∫
Rn

∫ ∞

0

u(t, x)ψ′(R−ηt)φ(R−1x) dt dx−R−2

∫
Rn

∫ ∞

0

u(t, x)ψ(R−ηt)∆φ(R−1x) dt dx

+R−βη−2(1−β)

∫
Rn

∫ ∞

0

u(t, x)(RLDβ
∞−ψ)(R

−ηt)(−∆)1−βφ(R−1x) dt dx

−
∫
Rn

u0(x)φ(R
−1x) dx− k0R

(η−2)(1−β)

∫
Rn

u0(x)(−∆)1−βφ(R−1x) dx. (54)
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By Hölder inequality, we derive1

R−η

∫
Rn

∫ ∞

0

|u(t, x)||ψ′(R−ηt)|φ(R−1x) dt dx

≤ CI
1
p

RR
−η

(∫
Rn

∫ ∞

0

|ψ′(R−ηt)|p
′
ψ(R−ηt)−

p′
p φ(R−1x) dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−η ≤ IR

3p
+
C

p′
Rn+η−ηp′

, (55)

2

R−2

∫
Rn

∫ ∞

0

|u(t, x)|ψ(R−ηt)|∆φ(R−1x)| dt dx

≤ CI
1
p

RR
−2

(∫
Rn

∫ ∞

0

ψ(R−ηt)|∆φ(R−1x)|p
′
φ(R−1x)−

p′
p dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−2 ≤ IR

3p
+
C

p′
Rn+η−2p′

, (56)

and3

R−βη−2(1−β)

∫
Rn

∫ ∞

0

|u(t, x)||(RLDβ
∞−ψ)(R

−ηt)||(−∆)1−βφ(R−1x)| dt dx

≤ CI
1
p

RR
−βη−2(1−β)

(∫
Rn

∫ ∞

0

|(RLDβ
∞−ψ)(R

−ηt)|p′ |(−∆)1−βφ(R−1x)|p′

ψ(R−ηt)
p′
p φ(R−1x)

p′
p

dt dx

) 1
p′

≤ CI
1
p

RR
(n+η)/p′−βη−2(1−β) ≤ IR

3p
+
C

p′
Rn+η−(βη+2(1−β))p′

, (57)

provided that4

(ψ′)ψ− 1
p ≤ C, |(RLDβ

∞−ψ)|ψ
− 1

p ≤ C, (58)

for some constant C > 0, and5

|(−∆)1−βφ|φ− 1
p ∈ Lp′

, |∆φ|φ− 1
p ∈ Lp′

, φ ∈ L1. (59)

Indeed, being supp (ψ), supp (ψ′), and supp
(RL

Dβ
∞−ψ

)
included in [0, 1], estimates (58) and (59) are6

su�cient to guarantee the boundness of the integral terms in (55), (56) and (57).7

Being ψ ∈ C1([0, 1]) it follows that for any γ ∈ [0, 1] the test function ψ′ belongs to the weighted space8

Cγ([0, 1]), i.e. t
γψ′ belongs to C([0, 1]); as a consequence RLDβ

1−ψ =C Dβ
1−ψ = J1−β

1− ψ′ is continuous in9

[0, 1] (see Lemma 28(a) in [18]); then, both ψ′ and RLDβ
1−ψ =RL Dβ

∞−ψ are uniformly bounded in [0, 1];10

moreover, there exists cε > 0 such that ψ(t) > cε uniformly in [0, 1− ε]; thus, condition (58) trivially holds11

in [0, 1− ε]. Else, in the interval (1− ε, 1) we have12

|ψ′(t)ψ(t)−
1
p | ≲ (1− t)ℓ−

ℓ+1
p ,

and, by property 2.1 in [18],13 ∣∣∣(RL

Dβ
∞−ψ

)
(t)ψ(t)−

1
p

∣∣∣ = C(1− t)ℓ+1−β− ℓ+1
p ,

for some constant C > 0 independent of t ∈ [0, 1]; thus, choosing ℓ ≥ 1/(p − 1) condition (58) is satis�ed14

also for t ∈ [1− ε, 1], for a suitable C > 0. Furthermore, by Proposition 5.2 we know15

|(−∆)1−βφ|φ− 1
p ≤ φ

1
p′ = ⟨x⟩−

n+2−2β
p′ ∈ Lp′

,

and16

|∆φ|φ− 1
p ≲ ⟨x⟩−

n+4−2β
p′ ∈ Lp′

;

�nally, by Remark 5.1 we know φ ∈ L1.17
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Morover, if u0 ∈ Lm with m ∈ (1,∞) and condition (42) holds, for any R > 1 we have1 ∫
Rn

u0(x)φR(x) dx ≥
∫
|x|≤R

u0(x) dx

≥ Cε0

∫
|x|≤R

(1 + |x|)− n
m (ln(e+ |x|))−1 dx ≥ Cε0R

n(1− 1
m )(ln(e+R))−1, (60)

where the constant C > 0 does not depend on R; moreover, applying the Hölder inequality we can estimate2

−R(η−2)(1−β)

∫
Rn

u0(x)(−∆)1−βφ(R−1x) dx ≤ R(η−2)(1−β)∥u0∥Lm

(∫
Rn

⟨R−1x⟩−(n+2(1−β))m′
dx

) 1
m′

≤ Rn(1− 1
m )+(η−2)(1−β)∥u0∥Lm , (61)

being m′ the the conjugate exponent of m, i.e. 1/m+ 1/m′ = 1.3

If p < 1 + 2m/n there exists δ > 0 su�ciently small such that p < 1 + (2− δ)m/n; let us �x η = 2− δ.4

Collecting together estimates (55), (56), (57), (60) and (61), by (54) we obtain5

IR ≲ Rn(1− 1
m ) ln(e+R)−1

((
R

n
m−(2−δ)(p′−1) + k0R

−δ(1−β)∥u0∥Lm

)
ln(e+R)− ε0

)
;

the contradiction follows taking R→ ∞.6

If m = 1, taking η = 2 we get7

IR +

∫
Rn

u0(x)φ(R
−1x) dx

+ k0

∫
Rn

u0(x)(−∆)1−βφ(R−1x) dx ≲ Rn+2−2p′
;

since u0 ∈ L1 we have8

lim
R→∞

∫
Rn

u0(x)
(
φ(R−1x) + k0(−∆)1−βφ(R−1x)

)
dx

=
(
1 + k0(−∆)1−βφ(0)

) ∫
Rn

u0(x) dx = K̄ > 0,

as a consequence of assumption (43); in particular, (−∆)1−βφ(0) > 0 can be explicitly evaluated (see9

Proposition 5.2). Thus, on the one hand, applying the monotone convergence theorem for any p < 1+2/n10

we get11

0 = lim
R→∞

Rn+2−2p′
≳ lim

R→∞
IR + K̄ =

∫ ∞

0

∫
Rn

|u(t, x)|p dx dt+ K̄,

which is impossible since K̄ > 0.12

On the other hand, for p = pc we get13

lim
R→∞

IR =

∫ ∞

0

∫
Rn

|u(t, x)|pc dx dt ≤ C,

for some constant C > 0 independent of R, that is u ∈ Lpc([0,∞)× Rn).14

Now, we repeat the same reasoning used in subcritical case, �xing η = 2 and replacing the test function φR15

by the test function φRK = ⟨R−1K−1x⟩−n−2(1−β), for a given constant K >> 1. Being supp (ψ′) ⊂ [1/2, 1]16

we �nd17

IR +

∫
Rn

u0(x)φ(R
−1K−1x) dx

+ k0

∫
Rn

u0(x)(−∆)1−βφ(R−1K−1x) dx

≲ Ĩ
1
pc

R K
2n

n+2 + I
1
pc

R K− 4
n+2 + I

1
pc

R K− 4
n+2+2β ,
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where

ĨR :=

∫ ∞

0

∫
Rn

|u(t, x)|pψ̃R(t)φR(x) dx dt, ψ̃R(t) =

{
0 if t ∈ [0, R/2),

ψR(t) otherwise.

In particular, being u ∈ Lp([0,∞)× Rn) it holds ĨR → 0 as R → ∞. If both R and K tend to in�nity we1

get2

0 < ∥u∥Lp([0,∞)×Rn) +
(
1 + k0(−∆)1−βφ(0)

) ∫
Rn

u0(x) dx < ∥u∥Lp([0,∞)×Rn) lim
K→∞

(
K− 4

n+2 +K− 4
n+2+2β

)
.

If β < 2/(n+ 2) we get a contradiction. □3
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