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Abstract 

The protein-polysaccharide combinations that lead to electrostatic complex and coacervates formation are the object of 
extensive research using both layer-by-layer and mixed emulsion approaches. The protein-polysaccharide conjugates 
demonstrated interesting physico-chemical properties as stabilizers and emulsifiers as well as texture modifiers in food 
products. Furthermore, they are potential optimal nutrient delivery systems. Their complex behavior due to several factors 
such as pH, ionic strength, concentration, heat, and mechanical treatments is the main reason behind the continuous 
growth of the research field. The review is reporting same recent advances on the topic, along with an overview on the 
possible interactions between protein and polysaccharide, from Maillard reaction to enzymatic crosslinking passing 
through coacervates. 
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1. Introduction

The organization of food constituents at multiple spatial scales and their interactions is the so-called food
structure [1]. The food structure is a function of the food ingredients and production process. The composition 
of the food and its structure determines the texture, the perceived attribute, and the mechanical properties [2]. 
A food go through several steps during consumption. The initial mechanical breakdown of the food structure 
starts with the mastication and mixing using the tongue. The second step is the lubrication, hydration, and 
dissolution due to the enzymatic action of the saliva, the small broken piece of food is then converted to bolus 
and swallowed through the esophagus into the stomach. Food industries are facing the problem to make foods 
healthier and at the same time not diminish sensory quality [3,4]. Moreover, nutrient delivery systems, 
microencapsulation and protection of active ingredients and as a consequence dispersant agents are to be taken 
into account during structural design [5*]. Manufactured foods commonly exist in the colloidal state as 
emulsions, foams, gels, and dispersions. The food colloidal science investigates the influence of ingredient 
composition and formulation conditions on structure, stability, and mechanical properties [6*]. The texture 
concern is mainly the flow behavior for dispersions, while breaking force, breaking strain, and the size 
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distribution of the newly formed particles are the main physical parameters that can be correlated to hardness, 
brittleness, crispness, crunchiness, and crumbliness for solid-like foods. The mouthfeel of food emulsions is 
strongly influenced by the type, concentration and interactions of the particles and macromolecules present. 
The perceived fattiness, creaminess and thickness of oil-in-water emulsions have been found to increase as the 
droplet concertation increases [7]. The creaminess was also found to depend on droplet size and to the 
emulsifier type might due to droplet flocculation and emulsion viscosity. During the consumption of some 
food emulsions, there is a cooling sensation associated with melting of emulsified fat in the mouth due to the 
endothermic enthalpy change associated with fat crystal melting [8,9].  

To obtain proper texture and to stabilize the food products several emulsifiers, solubilizes and dispersing 
agents are adopted. The focus of this review will be the protein-polysaccharide combinations in conjugates or 
complex structures and their multiple applications in food industries. The protein-polysaccharide 
combinations are particularly interesting since their ability to change product shelf life by varying food 
texture, i.e. rheological properties of food colloids [10,11,12**], for such reason they have been the object of 
intense research [13,14**,15–19]. There are several interesting reviews on the matter 
[2,5*,6*,12,15**,19,20*] along with a vast literature. This review should not be considered fully 
comprehensive, while the intent is to provide a general overview of the topic along with the most recent 
findings.  

Food proteins can avoid flocculation of emulsion droplets since they have a strong tendency to adsorb onto 
hydrophobic-hydrophilic interfaces and subsequently unfold (or partially unfold) forming relatively thin 
adsorbed surface layers (~2–6 nm) that generates electrostatic and steric stabilization [21]. The van der Waals 
attraction force between colloidal particles overcome the electrostatic repulsion, at the same time the protein 
charge is the main reason for which colloidal stability can be lost. At the isoelectric point (pI) the negative and 
positive charges are balanced, reducing repulsive electrostatic forces, and causing aggregation and 
precipitation [22,23]. Moreover, several studies on proteins demonstrated how pH, ionic strength, 
concentration, and heat treatment influence the pI [24,25].  

The protein and polysaccharide combinations allow designing an amphiphilic conjugate to be strongly 
anchored to the oil–water interface via the protein’s hydrophobic regions, leading to a viscoelastic layer, with 
the non-adsorbing polysaccharide (copolymer) region to provide enhanced steric stabilization [14**] that can 
lead to gelling behavior.  

There are two main kinds of interactions between polysaccharides and proteins: covalent or non-covalent 
bonds. The covalent bond is obtained through a Maillard-type reaction that it is leading to protein-
polysaccharide conjugates with elevated heat stability. However, the reaction conditions, such as pH and 
temperature, should be properly settled to obtain the desired reaction. The next paragraph will address the 
reaction condition needed to a successful reaction. The driving forces for the non-covalent bonds are 
electrostatic, hydrophobic, H-bonding and Van der Waals interactions, such forces can generate coacervates 
that are useful tools to change food texture and encapsulate active compounds. One relevant topic of this 
review is the combination of the Maillard reaction with the electrostatically driven aggregates such as 
coacervates.  

2. Maillard reaction: covalent bonds

A limited number of polysaccharide attaches to protein due to the steric hindrance of the macromolecule,
usually only a couple of molecules attach to folded proteins such as ovalbumin and lysozyme, while several 
polysaccharides attach to unfolded proteins like casein [26]. The key factor for such reaction is related mainly 
to the presence of lysine that undergoes a Maillard type reaction with the reducing sugar of polysaccharides, 
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under suitably low water activity and heat treatment over an incubation period of at least few hours [27]. One 
considerable limitation consists of deteriorates protein functionality if most of the lysyl residues are masked 
by the saccharide, as was observed in the conjugates of proteins with monosaccharides and oligosaccharides. 
However, the Maillard-protein-polysaccharide conjugates showed excellent emulsifying properties respect to 
conventional commercial emulsifiers, antimicrobial activity, and heat stability. Therefore, the conjugates are 
adopted for industrial applications [28]. It is relevant to report some safety issues highlight in a critical review 
by de Oliveira et al. [20*], where the essential point is that the Maillard reaction must be conducted properly 
to avoid the generation of harmful compounds [28,29]. The conjugates formed via the Maillard reaction 
consist of various glycoforms and are produced in combination with a large number of secondary products 
directly related to the reaction conditions (pH, temperature, humidity, etc…) [29,30].  

Li and Etzel [31**] studying whey protein isolate and dextran underline that glycates dissociate by 
hydrolysis, returning to free un-glycated protein and polysaccharide due to the reversibility of the Schiff base 
linkage [32]. They determinate rate constants and equilibrium constants for glycate hydrolysis, temperature 
was obviously increasing the hydrolysis speed, as expected. The common processing temperature in thermal 
processing of foods is around 85 °C and such value could cause significant glycate hydrolysis. The authors 
suggested a food-grade reducing agent such as sodium borohydride and ascorbic acid after the formation of 
the glycated. Their approach consists of the conversion of the Schiff base into a stable secondary amine. 
Moreover, if the Schiff base reduction is done during glycate formation by the wet-heating method, the 
reaction will be driven towards the glycate. Kutzli et al. [33] investigated the glycation of pea protein isolate 
with maltodextrin through the first stage of the Maillard reaction after the physical structuring of the reactants 
by needleless electrospinning. Their results indicate that glycation of the pea protein with maltodextrin in 
electrospun fibers is able to improve techno-functional properties. However, they reported an increase in the 
browning index of the fibers with increasing heating time and temperature due to the formation of a Schiff 
base that can decompose after acidic hydrolysis to Amadori products. Their findings are supporting the current 
opinion related to the pI shift; they reported a shift from pH 4.05 ± 0.13 to pH 3.02 ± 0.16 for fibers heated at 
65 °C/24 h and at 70 °C/24 h, respectively. The heating process was leading to conjugates with higher 
solubility compared to the unheated fibers over the pH range from 2 to 7.   

Zha et al. [34*] focused their work on the properties and functionalities of conjugates formed between pea 
protein isolate and gum Arabic respect to the incubation time (0, 1, 3, and 5 day). The corn oil-in-water 
emulsions stabilized by the Maillard-protein-polysaccharide conjugates with 1 day incubation had greater 
stability against environmental stresses than those prepared by protein or protein-gum Arabic mixture. At 
longer incubation time (5 days) the extensive reaction can reduce the emulsification property of conjugates. 
The conjugates, formed through the controlled Maillard reaction, were also able to inhibit the formation of 
volatile compounds and prevent emulsion oxidation. The formation of the Amadori compounds monitored by 
UV-Vis absorbance at 304 and 420 nm was observed already during 1 day incubation, while the browning was 
observed to increase with the incubation time. Zha et al. demonstrated that controlled Maillard reaction with 
hydrophilic polysaccharides can modulate the solubility and functionality of poor water soluble plant proteins. 
On the contrary in Zhong et al. [35*] an incubation time of 5 days was chosen at pH 8, to form more 
conjugates [28] even though that implies the formation of Amadori compounds in higher extent [36]. 
However, they reported a relatively low change in the browning index; in fact, after 5 days it was the double 
respect to the first day. Zhong et al. focused on a conjugate made with oat protein isolate and Pleurotus 
ostreatus β-glucan via Maillard reaction under controlled dry-heating conditions. The dry conditions were 
most likely affecting to some extent the formation of Amadori compounds. In their analysis of the amino acid 
composition, cysteine and lysine were identified as the dominant Maillard reaction sites. After covalent 
binding with P. ostreatus β-glucan, the incompact surface structure and decreased surface hydrophobicity of 
oat protein isolate caused its increased solubility and emulsibility. The introduction of P. ostreatus β-glucan 



4 

enhanced the thermal stability of oat protein isolate due to its extended secondary structure induced by the 
Maillard reaction. The macromolecular P. ostreatus β-glucan in conjugate forms long-range steric repulsion 
between the surfaces of emulsion droplets. In addition, it promotes the formation of a stable membrane around 
the oil droplets, which was helpful to increase the emulsifying activity of oat protein isolate [37–39]. Under 
the controlled condition, Maillard reaction was an effective way to improve the application potentials of oat 
protein isolate in food processing. At the structural level that the secondary structure of conjugates was altered 
by decreasing the contents of α-helix and β-sheet and increasing the contents of β-turn and random coil. The 
surface structure of conjugates was loose and porous. 

3. Non-covalent bounds

Proteins can be positively or negatively charged, depending on the pH. Carboxylate polysaccharides get
negatively charged at a pH range higher than its pKa. These electrical charges on the backbone of protein or 
polysaccharide chains are responsible for electrostatic interactions [40,41]. Moreover, hydrogen bonding and 
hydrophobic interaction play also a role in the stability of the protein-polysaccharide aggregates [42].  

The protein-polysaccharide can exist in a single-phase system, i.e. the associative phase separation, for 
interacting biopolymers, leads to soluble complex (coacervation) or the segregative phase separation, for 
non-interacting biopolymers, leads to uniformly distributed components throughout the medium. They can 
also exist in insoluble precipitated for interacting biopolymers or the segregative phase separation can lead to 
distinct phases (2-phase system) [43**]. 

There are essentially two ways to adopt protein-polysaccharide combination to stabilize emulsions: the so-
called layer-by-layer approach consists in the addition of charged polysaccharide to a primary protein 
stabilized emulsion; the other approach is sometimes termed as mixed emulsions that involve the addition of 

protein-polysaccharide complexes in aqueous solution and subsequently homogenization. 



Figure 1. Schematic overview of protein and protein-polysaccharide stabilization of oil droplets in an 
oil/water emulsion. The mixed emulsions can lead to several kind of gel network (not represented). The 
extended protein could be in the random coil or partially folded state.  

3.1. Coacervates 

Food proteins with an isoelectric point around 5 can form complex coacervates with anionic 
polysaccharides such as pectin (pI around 3.5) in the intermediate-pH region, where the two macromolecules 
carry opposite net charges: pH above the pI of the polysaccharide but below that of the protein. Usually, 
simple coacervation is referred to a single biopolymer in the system, while when the interactions occur 
between two biopolymers the process is known as complex coacervation [44]. A common example of 
electrostatic complex formation in the food industry is that based on the interactions of globular positively 
charged proteins and oppositely charged ionic polysaccharides. It is worth mentioning that there are many 
examples in the literature where both polymeric polyions are proteins [45,46]. More information on protein–
protein coacervates is reported in recent review articles [43**,47]. Interestingly, like-charged coacervates 
have been reported even between two positively charged polyelectrolytes by overcoming longer-range 
electrostatic repulsion [48]. In general, coacervates are reversible entities that form and segregate as the 
solution and/or environmental conditions are modified [49–51]. 

Lan et al. [52] investigated the complex coacervation between the pea protein isolate and the sugar beet 
pectin, a spontaneous exothermic process, mainly due to the electrostatic interaction and the hydrogen 
bonding between nonspecific amino groups of the pea protein isolate and carboxylic groups of the sugar beet 
pectin. They demonstrated that a state diagram could explicitly identify the three characteristic pH values 
(pHφ1, pHopt, and pHφ2) of the complex coacervation. pHφ1 shifts from 3 to 5.5 along with structural changes 
as the pea protein isolate and sugar beet pectin mixing ratio increases from 1:1 to 20:1. When electro-
neutrality is achieved, around the pHopt, stronger and denser structure with greater storage modulus is formed. 
On the other hand, when the pH is near the pHφ2 the coacervates show smooth inner pore surfaces with 
homogeneous large pore size distribution. These kind of structural changes lead to different mechanical 
behavior, Chang et al. [53] investigated the rheological and microstructural properties of the canola protein 
isolate−chitosan coacervates at several mixing ratios and pHs. The elastic modulus, Gʹ, was found to be 
higher than the viscous modulus, G″, for all the investigated mixing ratio and pHs, with the highest value of 
Gʹ at a mixing ratio 16:1 and pH 6.0 due to the high strength of electrostatic interaction and thick-walled, 
sponge-like, less porous microstructure. The canola protein isolate−chitosan complex coacervate phase 
formed at mixing ratio of 16:1 and pH 6.0 exhibited glassy consistency at low temperatures and rubbery 
consistency above its glass-transition temperature. For all the investigated systems, a predictable, shear-
thinning behavior was also reported.  

Wu et al. [54*] demonstrated that soybean protein isolate with the cationic polysaccharide chitosan or with 
carboxymethyl cellulose (anionic polysaccharide) can form stable coacervates when heating their mixtures at 
critical pHs. The complex particle formation was polysaccharide-type independent, while the particle size, 
polydispersity index, pH sensitivity, and ionic strength sensitivity were polysaccharide-type dependent. They 
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also reported that when the soluble complex was heated at a specific temperature, it was not returning to the 
original state after cooling down.  

The formation of stable coacervates is strictly related to the external condition such as pH, furthermore, 
they might not be stable to temperature changes.  

Huang et al. [55*], on the same system, offered an interesting bridge between the Maillard reaction and the 
electrostatically driven coacervates. Their study was focusing on the occurrence of Maillard reaction during 
coacervation at 50 °C, 70 °C, or 90 °C for 12 h in the presence of maltose. In their finding as the extent of 
Maillard reaction increased, the –NH2 groups of chitosan (initially positively charged) were consumed by the 
reaction with maltose increasing the negative charge. The coacervates exhibited decreased aggregation and 
higher stability due to the steric repulsion and only partially due to the repulsive interactions generated by the 
negative charge on the surface. The coacervates size was growing with temperature increasing up to ~5 γm at 
90 °C, as well as the zeta-potential up to ~ -16 mV. However, coacervates have usually a higher absolute 
value of zeta potential [52,54]. Huang et al. did not take into consideration that 90 °C could cause significant 
glycate hydrolysis as reported by Li and Etzel [31**], even though they report indirect observations such as 
furosine and color tests, partially proving the final stage of the Maillard reaction. Huang et al. reported that 
the investigated coacervation temperatures improved the microencapsulation efficiency of Vitamin E and 
microencapsulation yield.  

3.2. Layer-by-layer  

An interesting way to promote polysaccharides adsorption at the interface is to use their possible electric 
charge to attract them to an already deposited layer of opposite charge on the surface. The idea owes its 
origins to the so-called layer-by-layer deposition process [56], to form multi-layers on macroscopic surfaces. 
In each stage of the process, the previous solution is washed. Then a new solution, containing polymers of 
opposite charge respect to the previous layer, is introduced. Stacks of alternate layers can be obtained 
repeating this process many times. McClements et al. deposit a layer of a negatively charged polysaccharide 
on top of an already adsorbed protein film at low pH, below the pI of the protein [57,58]. The protein film is 
positively charged below the pI and thus attracts the anionic polysaccharide. 

However, the ‘layer-by-layer’ approach has some disadvantages; in fact, emulsion droplet tends to bridge 
flocculation and depletion flocculation. Bridging flocculation occurs when the polysaccharide concentration is 
low since the droplet collisions are faster than the rate of polysaccharide saturation of the protein-coated 
droplet surfaces. On the other hand, depletion flocculation occurs at higher polysaccharide concentration 
when a critical value of unadsorbed polysaccharide is exceeded. Due to these disadvantages, mixed emulsions 
are preferred in practical applications.  

Wang, et al. [59] deeply investigated the effect of pH on soy protein isolated-soy hull polysaccharides 
complex system. The protein adsorbs on the surface of the polysaccharide through electrostatic attraction. The 
particle size, penetration rate, reorganization rate and dilatational viscoelasticity of the protein-polysaccharide 
conjugate were reported to increase, while diffusion rate and interfacial pressure decreased with the increasing 
of pH value from 2 to 4. The amounts of soy hull polysaccharides adsorbed at the oil-water interface reached 
the maximum at pH 5, while the minimum at pH 6. The zeta-potential was found to be more negative in the 
pH range between 6 and 8, the authors suggested competitive adsorption between the protein and the 
polysaccharide. On the other hand, at pH 9 the negative charge on the surface was found to decrease. Their 
results can be related to the complex behavior of the pI respect to the pH. 

Owens et al. [60**] investigated the menhaden oil-in-water emulsion stability containing whey protein 
isolate and xanthan-locust bean gum as a function of the pH. It is not highlighted in their discussion, but the 
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experimental procedure is a layer-by-layer approach. The emulsions had large particle sizes, viscosity, droplet 
aggregation, and creaming index, resulting in poor physical stability at pH 3 and 5, while at pH 7, the protein-
polysaccharide emulsion was stable due to electrostatic repulsions. The whey protein isolate and xanthan-
locust bean gum mixtures were capable to form stable emulsions at pH 3 and pH 7. Bringing flocculation 
appeared below and around the protein isoelectric point. At pH 7, emulsions containing xanthan-locust bean 
gum mixtures as secondary emulsifiers were more stable than emulsions with xanthan or locust bean gum 
alone. The enhanced viscosity that resulted from the polysaccharide mixture interaction may have increased 
the oxidative stability of the protein-coated droplets at pH 7 by further increasing the electrostatic repulsion 
between the droplets. 

3.3. Mixed emulsions 

Wang et al. [61*] made a systematic comparison between the hetero-aggregated emulsion, the layer-by-
layer and directly mixing techniques. The authors reported that the viscosity of the emulsions stabilized with 
whey protein isolate and flaxseed gum was in the order of hetero-aggregated emulsion > layer-by-layer 
emulsion > directly mixing emulsion. Furthermore, they confirmed that emulsion stability is higher for hetero-
aggregated emulsion respect to those of layer-by-layer and directly mixing emulsions. They reported that the 
three-dimensional network structure of hetero-aggregate, observed by cryo-TEM, was the main reason for 
maintaining high stability and shear rheological properties. However, the three-dimensional structures were 
sensible to shear flow, while the structures prepared by layer-by-layer and directly mixing, with higher 
elasticity, were affected in much less extent to the shear flow.  

Zhao, et al. [62] investigated calcium sulfate-induced soy protein isolate gels in combination with 0.1, 0.3 
and 0.5 % w/v konjac gum, gellan gum, and curdlan gum. In their experimental procedure, a freshly prepared 
10% w/v CaSO4 solution was added to the protein-polysaccharide dispersions and stirred. The formation of 
the gels was obtained by the quenching procedure. The protein-polysaccharide gels revealed higher values of 
elastic, Gʹ, and viscous, Gʹʹ, moduli, respect to the protein gel and consequently a better resistance to fracture 
stress. The network structures of gels were strengthened by the incorporation of the polysaccharides, in 
particular, the authors reported that curdlan gum exhibited the most significant effects followed by gellan gum 
and konjac gum. However, the pH effect respect for the different polysaccharides was not considered. The 
authors also reported a lower gelation temperature of the protein-polysaccharide gels to respect to the protein 
gel, explaining such evidence with the reinforced protein-protein interactions.  

3.4. Stabilizing Pickering emulsions 

A Pickering emulsion is an emulsion that is stabilized by solid particles that adsorb onto the interface 
between the two phases [63]. There is a vast amount of research on Pickering emulsions [64–68]. However, it 
is still a challenge to produce edible particles with the appropriate size (~10–60 nm) and surface chemistry. 
One of the main challenges is to find the proper stabilizer. Pickering emulsions can be stabilized by 
polysaccharide-based particles [64,65,69,70] that can provide strong steric stabilization, but lack as 
emulsifiers. Protein-based particles have been also adopted to stabilize the Pickering emulsions [71–74], even 
though a structural dissociation can be noticed when adsorbed at the interface. The protein-polysaccharide 
conjunction can provide both good emulsification performance and strong steric stabilization as demonstrated 
by recent works [55*,75–79].  
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Doost et al. [80] adopted soluble coacervates particles made of whey protein isolate and the soluble 
fraction of almond gum with ratio 3:2 total concentration 0.4 %w/v and pH 4.5 to induce Pickering 
stabilization of thymol. Static light scattering and microscopy investigation proved the formation of thymol 
oil-in-water emulsions by adsorption of nano-complexes on the surface of the droplets. The flocculation 
observed by using the protein at pH 4.5 as a stabilizer was not observed by using the protein-polysaccharide 
combination at the same pH.  

Yang et al. [81] reported a Pickering emulsion stabilization through Okara protein-polysaccharide 
nanoparticles. The authors used Okara as row material, which is a byproduct of soybean products [82]. Okara 
contains several insoluble polysaccharides, while the protein composition is comparable to that of soy protein 
isolate [82,83]. The nanoparticles were fabricated by the ultra-sonication from insoluble soy polysaccharides. 
The nanoparticles were stable over the pH range 2.0–12.0. The particle concentration of 0.25 wt% was 
already effective on the stabilization, higher concentrations led to a progressive strengthening of their gel 
network, as well as a progressive decrease in their droplet size. However, increasing pH the rheological 
results reported by the authors show a clearly decrease of both elastic and viscous moduli, along with an 
increase of the particle size consequently changing the volume fraction affecting mechanical properties. All 
the stabilized gels exhibited excellent stability against prolonged storage and heating, as well as the unique 
reversibility of freeze-thawing-destabilization/re-emulsification. 

4. Enzymatic crosslinking

Crosslinking is defined as “the process of forming tridimensional networks”, where polymer chains may be
linked by covalent or noncovalent bonds. Crosslinking reduces the mobility of the polymer structure and 
usually enhances its mechanical and barrier properties [84], reducing both its water solubility [85,86] and 
swelling [87]. Crosslinking reactions are commonly applied to proteins than to polysaccharides since proteins 
have more functional groups [87]. There are several ways to obtain crosslinking for more details see Azeredo 
and Waldron [88*], here we reported a recent work on enzymatic crosslinking between protein and 
polysaccharide since the enzymatic crosslinking is specific and requires mild reaction conditions. Chen et al. 
[89*] adopted soy protein isolate and sugar beet pectin to fabricate the so-called double network gels (mixed 
emulsion approach) via thermal treatment and laccase-catalysis. The obtained network is leading to a gel with 
higher holding water capacity respect to the polysaccharide gel alone. The interpenetrating networks gradually 
formed with the increase of the protein concentration as seen by qualitative rheological measurements; the gel 
is more elastic at 8% protein and 2% laccase. The role of laccase was associated to catalyze oxygen to oxidize 
ferulic acid (in the polysaccharide) and tyrosine (in the protein) [90,91]. Chen et al. demonstrated successfully 
that enzymatic crosslinking could be adopted to stabilize emulsions. However, the encapsulation and release 
of active compounds should be evaluated, even though the gel hardness could be adjusted by changing protein 
or enzyme concentration.  

5. Conclusions and future perspectives

Even though the food industry still largely uses proteins as emulsion stabilizers and food-grade
nanoparticles, this review has examined recent progress on protein-polysaccharide combination to achieve 
advanced emulsification performance and strong steric and in some cases electrostatic stabilization properties. 
The complex combinations allow designing an amphiphilic conjugate strongly anchored to the oil–water 
interface via the protein’s hydrophobic regions, while the non-adsorbing polysaccharide region to provide 
enhanced steric stabilization. However, experimental conditions such as pH, ionic strength, concentration, 
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heat and mechanical treatments should be carefully settled respect to the isoelectric point of the protein and 
the pKa of the polysaccharide for both conjugates obtained via physical or chemical bonding. It is relevant to 
avoid Amadori compounds in the case of Maillard conjugates between protein and polysaccharides. While it 
is relevant to set the appropriate pH for the electrostatic interaction between the protein and the 
polysaccharide.  

There two interesting perspectives related to the protein-polysaccharide topic: i) nutrients encapsulation 
and controlled delivery; ii) a combination of multiple techniques to obtained more stable and efficient 
complex aggregates. 

There is a significant interest in the food industries to protect bioactive molecules against release in the 
stomach or intestine [92]. At the same time, the formation and structure of protein-polysaccharide complexes 
has been widely investigated as well as their functional properties. Several studies are focusing on the 
encapsulation and delivery of nutrients by using protein-polysaccharide particles due to their enhanced 
mechanical properties and stability [93–95].  

The recent studies working on the coacervates stabilization through Maillard reaction [55*] and protein-
polysaccharide gel stabilization thought enzymatic crosslinking [89*] are interesting approaches. In particular, 
these stabilized structures could be adopted as stable encapsulating agents for nutrients or other components 
such as colorants, giving at the same time a pleasant texture during consumption. However, developments are 
needed. The Maillard reaction conditions to stabilize coacervates should be improved to avoid glycate 
hydrolysis and Amadori compounds like suggested by Li and Etzel [31**]. The elastic properties of the 
enzymatic cross-linked network should also be optimized for the encapsulation and the subsequent delivery of 
active compounds.  
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