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Abstract Predicting bug-fixing time can help project managers to select the 
adequate resources in bug assignment activity. In this work, we tackle the problem 
of predicting the bug-fixing time by a multiple regression analysis using as predictor 
variables the textual information extracted from the bug reports. Our model selects 
all and only the features useful for prediction, also using statistical procedures, such 
as the Principal Component Analysis (PCA). To validate our model, we performed 
an empirical investigation using the bug reports of four well-known open source 
projects whose bugs are stored in Bugzilla installations, where Bugzilla is an online 
open-source Bug Tracking System (BTS). For each project, we built a regression 
model using the M5P model tree, Support Vector Machine (SVM) and Random 
Forests algorithms. Experimental results show the model is effective, in fact, they 
are slightly better than all the ones known in the literature. In the future, we will 
use and compare other different regression approaches to select the best one for a 
specific data set. 

 
 
1 Introduction 

 
In software maintenance, “a critical activity, which consumes the majority of the 
effort spent within the lifetime of a software system” [1], a significant amount of time 
is spent to investigate software bugs [2]. Generally, large-scale software projects use a 
Bug Tracking System (BTS) to report and manage a software bug. BTS management 
is relied on by team members, which can be developers and test engineers, and 
which have to fix bugs in the source code files. Each bug report must be triaged. 
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The triager, who usually is a senior developer, selects the appropriate developer 
to fix the newly submitted bug. However, due to the large number of bug reports 
submitted daily for large-scale software projects, accurate bug triage is normally 
done manually. Furthermore, several studies demonstrate that bug-assignment is 
error-prone, expensive and that many times it is necessary to reassign a bug to another 
one (“bug tossing”). In recent years, several researchers analyzed bug-fixing time and 
its prediction. For example, Panjer [3] proposed to use classification techniques such 
as 0-R, 1-R, Decision Tree, Naive Bayes and Logistic Regression to predict the time 
to fix a bug for Eclipse project obtaining an accuracy of 34.9%. In [4] Kim et al. 
studied the life span of bugs in ArgoUML and PostgreSQL projects, and found that 
bug-fixing time had a median of about 200 days. Giger et al. [5] used Decision Tree 
to classify fast and slowly fixed bugs studying Eclipse, Mozilla, and Gnome projects. 

The above-mentioned works, focused on bug-fixing time for open source projects, 
show a real need to improve the prediction accuracy results. The contribution of this 
paper is building a regression model, modifying the model already proposed in [6, 
7], useful to predict the bug-fixing time, in order to solve this issue as a numerical 
regression problem. For this purpose, we extracted information contained in the 
Bugzilla bug reports relating to the Mozilla [8], FreeDesktop [9], NetBeans [10] 
and Eclipse [11] projects, to create a database on which the machine learning (ML) 
algorithms trains. The database chosen to host extrapolated data is MongoDB [12], a 
non-relational database that can easily handle collections of JSON documents. The 
environment used to create the data set and to perform the regression analysis is R 
[13], an open source software for statistical analysis and ML. We evaluated our model 
using M5P model tree, Random Forests and SVM algorithms comparing obtained 

results with that one’s known in the literature. 
Here below, Sect. 2 shows the background whereas Sect. 3 gives an overview of 

the literature found on the subject. Section 4 describes the proposed model and the 
results of the empirical investigation are presented in Sect. 5. Finally, Sect. 6 discusses 
results and provides conclusions. 

 
 
2 Background 

 
Each bug reported in a BTS follows a life cycle: it starts when the bug is discovered 
and ends when the bug is closed, after ensuring it has been fixed. Bug life cycle can 
be slightly different depending on the BTS used. To select bugs useful for prediction 
and, at the same time, to build a model independently from the BTS chosen, we 
studied both general bug life cycle and Bugzilla bug life cycle. 

We selected Bugzilla as BTS basically for two reasons: first, it has a wide public 
installation base; on Bugzilla official page there is a list, whose last update is on 
May 3rd, 2017, of 137 companies, organizations, and projects that run “public” 
Bugzilla installations. Second, since version 5.0, Bugzilla installations offer a native 
well documented REST API [14] as a preferred way to interface with Bugzilla from 
external apps. Figure 1 shows life cycle of a bug in Bugzilla, as represented in the 
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Fig. 1 Life cycle of a bug in Bugzilla 

 
 

Bugzilla official documentation release 5.0.4 at 2.4.4 section [15], while Fig. 2 shows 
general bug life cycle. 

General BTS as well as Bugzilla BTS allow users to report, track, describe, com- 
ment on and classify bug reports. A bug report is characterized by several predefined 
fields, such as the relevant product, version, operating system and self-reported inci- 
dent severity, as well as free-form important text fields such as bug title, called 
summary in Bugzilla, and description. Moreover, users and developers add com- 
ments and submit attachments, which often take the form of patches, screenshots, 
test cases or anything else binary or too large to fit into a comment. When initially 
declared, a bug starts out in the unconfirmed pending state until a triager makes a 
first evaluation to see if the bug report corresponds to a valid bug, and that the bug 
is not already known, i.e., the submitted bug report is a duplicate of another bug 
report already stored in the defect reporting system. Bug reports can pass through 
several different stages before finally being resolved. Bug reports that are closed 
receive one of the following status: duplicate, invalid, fixed, wontfix, or worksforme. 
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Fig. 2 General life cycle of 
a bug 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These indicate why the report was closed; for example, worksforme and invalid both 
indicate that quality assurance was unable to reproduce the issue described in the 
report. Sometimes a bug report needs to be reopened and when it happens the normal 
defect lifecycle starts with status reopened. 

Reopened status represents the most important difference between the two life- 
cycles because it is absent in Bugzilla. Anyway, differently from what shown in Fig. 1, 
reproducing trusty the image shown in Bugzilla documentation, it is also possible to 
add a reopened status in Bugzilla. This operation can be done simply adding a new 
status option, technically selecting “add option for Adding a new status”, for the field 
value of status. As consequence, we decided to select only Bugzilla installations on 
where reopened status was added. 

 
 
3 Related Work 

 
According to our research, we focus on studies that propose models for predicting 
the overall time required for fixing bugs via classification and regression techniques. 

In 2007, Lucas D. Panjer [3] focused his research on the bug reports of Eclipse 
project. He used machine learning algorithms as 0-R, 1-R, decision trees, Naive 
Bayes and logistic regression and he reported that his model is able to correctly 
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predict 34.9% of the bugs. Despite the results obtained by the logistic regression, the 
experimentation shows a lack in the classification phase, however the results obtained 
are in line with those obtained from other experiments in the literature. In the same 
year, Hooimeijer et al. [16] applied linear regression on 27.000 bug reports from the 
Firefox project in an attempt to identify an optimal threshold value by which the bug 
report may be classified as either “convenient” or “expensive”. Experiments have 
shown that if there are many comments or if there are many attachments, it is very 
likely that the bug is classified as “expensive”. The model was constructed using a 
statistical approach, as the text categorization is computationally more burdensome 
than a linear model, but using techniques based on text categorization could result 
in a significant increase in performance compared to the model presented. 

In 2009, Anbalagan et al. [17] performed their study on 72.482 bug reports from 
Ubuntu. The experimentation showed that there is a strong linear relationship between 
the time to fix a bug and the number of developers involved in the correction, linear 
regression was used to estimate the coefficients of the predictive model. The results 
of this study are not satisfactory, since it has emerged that the predictive model 
achieved is able to predict the time to correct a bug, about with the same precision 
of the models already existing in the literature and at the same cost. 

In 2011, Bhattacharya et al. [18] have trained a multiple regression model consid- 
ering the severity of the bug, the number of attachments, the dependencies between 
the various bugs and the number of developers involved in the resolution process 
as independent variables. The results denote a low predictive power of the model. 
The results shown by these experiments should not surprise us, as previously the low 
predictive power of the models existing in the literature has been highlighted. 

In 2016, Puranik et at. [19] have developed a predictive model by selecting the 
minimal set of best performing metrics used in the literature related to the bug 
prediction problem. To carry out the experiments, a data set already proposed in [20] 
was used. The model realized is based on multiple linear regression, considering as 
variables the optimal metrics selected by the authors, such as the number of bugs 
found up to that moment, the version number adopted at that time, the number of 
lines of code and the entropy. The results of this experimentation were not provided; 
however, the authors confirm that the proposed model behaves much better than the 
other two models considered, especially when the metrics used in the evaluation are 
calculated on the test set. 

Finally, some researchers have applied Markov-based models. In 2018, Habayeb 
et al. [2] employed a hidden Markov model for predicting bug fixing time based on 
the temporal sequence of developer activities. This approach considers the temporal 
sequences of developer activities rather than frequency of developer activities used 
by previous approaches in [3, 5, 16]. They performed an experiment on Firefox 
projects and compared her model with popular classification algorithms to show that 
the model outperformed existing ones. In 2013 Zhang et al. [21] work on predicting 
bug fixing time. They used open source data from three commercial software projects 
from CA technologies and they apply a Markov-based model to predict the number 
of bugs that can be fixed monthly. In 2018, Akbarinasaji et al. [22] replicated Zhang 
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et al. [21] using open source data from Bugzilla Firefox. The results of this replication 
study are similar to the original experiment and confirm the original proposed model. 

Starting from the results obtained from the various studies it is possible to state that 
the models based on the information retrieval, if used in a classification activity, are 
more predictive than the statistical models, the same cannot be said for regression 
analysis, because in the literature there is not a numerical regression model that 
exploits the text information contained in the bug reports. The experiments highlight 
that the selection of attributes contributes significantly to increase the predictive 
power of the model, especially when used to define attributes characterized by a 
stronger correlation with respect to the time of resolution of a bug. In some cases, 
the information on sampling is omitted, the chosen sampling could therefore largely 
influence the results obtained and there is no way to compare them appropriately. 
In the context of classification, we can affirm that at present the logistic regression, 
when compared with other algorithms, seems to obtain the best performances, very 

often due to the simplicity of the training phase compared to other models. 
This work, to the best of our knowledge, is the first one to tackle the problem of 

predicting the bug-fixing time by a multiple regression analysis using as predictor 
variables the textual information extracted from the bug reports. To this regard, we 
used SVM, M5P model tree and Random Forests algorithms, all configured for 
regression analysis. Moreover, this work is also the first one to use a dimensionality- 
reduction method, a process until now never used even if, as stated by many authors, 
necessary in accordance to the intrinsic nature of the aforementioned problem. In 
our work, we used PCA as a dimensionality-reduction method. 

 
 
4 Proposed Model 

 
Our idea is to transform the prediction problem into a numerical regression problem, 
in which we extract significant textual information from bug reports in order to predict 
bug-fixing time. 

The prediction model proposed is shown schematically in Fig. 3. It mainly consists 
of three phases, already proposed in [6, 7], that are Data Collection, Pre-processing, 
and Learning and severity prediction. The main differences of the model proposed 
in this work are the use of a dimensionality-reduction method and having dealt the 
problem as a numerical regression problem not more as a classification problem. 

 
 
4.1 Data Collection 

 
Data Collection phase involves data gathering and data analysis for the bug-fix time 
prediction from one or more Bug Tracking Systems. The model of this first phase 
is shown in the left side of Fig. 3. Our design is largely application independent but, 
anyway, for this work we decided to use the open source BTS Bugzilla. 



 

A Text-Based Regression Approach to Predict Bug-Fix Time 69 
 

 
Fig. 3 Conceptual design of bug-fix time prediction process 

 
 

Bug report selection consists of data gathering and data selection of only those 
historical bug reports from the BTS datastore whose Status field has been assigned 
to VERIFIED and Resolution field has been assigned to FIXED. These ones are 
the only useful for our regression analysis. For this purpose, we have used a web 
application able to carry out a web scraping process of bug reports from the Bugzilla 
platform. This process was made possible by exploiting some APIs made available 
by Bugzilla, collecting bug reports of each project adopted in separate JSON file. 
Our approach involves the use of the textual content of the bug reports extracted 
as independent variable, hence we selected those fields deemed significant for the 
prediction. Our choice includes the selection of the following fields: 

Product (a real-world product, identified by a name and a description, having one 
or more bugs). 
Component (a given subsection of a Product, having one or more bugs). 
Short_desc (a one-sentence summary of the problem). 
First_priority (priority set by the user who created the report. Default values of 
priority are from P1, highest, to P5, lowest). 
First_severity (severity set by the user who created the report. This field indicates 
how severe the problem is, from blocker when the application is unusable, to 
trivial). 
Reporter (the account name of the user who created the report). 
Assigned_to (the account name/s of the developer/s to which the bug has been 
assigned to by the triager, and responsible for fixing the bug). 

• 

• 
• 
• 

• 

• 
• 
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Priority (priority set by the triager or a project manager). 
Severity (severity set either by the triager or a project manager). 
First_comment (the first comment posted by the user who created the report, which 
usually consists of a long description of the bug and its characteristics). 
Comments (subsequent comments posted by the Reporter and/or developers 
endowed with appropriate permissions, which can edit and change all bugs fields, 
and comment these activities accordingly). 
Fixing-time was not available, so we introduce an additional field called 
Days_resolution, calculated as the time distance between the final time where 
bug field Status was set to RESOLVED and the date where the bug report was 
assigned for the first time. It is important to note that Days_resolution field is 
calculated in calendar days and not in working days, where usually a working day 
correspond to 8 h, because there is no accurate information about the actual time 
spent by developers responsible for fixing bugs. For this reason, Days_resolution 
field may be not very accurate and potentially affect the results. 

We decided to discard some fields, because insignificant or unusable. The “Num- 
ber of activities” field, for example, has been discarded because it is a numeric field, 
so, for this reason, it would have been any way removed in the pre-processing phase. 
Another field, the “CC list” field, containing the list of users interested in receiving 
an email notification each time the report update, was discarded because often not 
filled; fields “Status” and “Resolution” were not considered because already used 
for the selection of bug reports, hence not statistically valid for the prediction. After 
selecting the bug reports and extracting from them the relevant fields, we stored them 
in a non-relational database, our choice was the MongoDB database. We have cho- 
sen a non-relational database for the greater flexibility they offer for storing textual 
documents. Then we used a R script to access to the MongoDB database to import 
the bug reports as JSON objects in R environment. Due to hardware and software 
limitations it was not possible to use the entire set of bug reports stored in the Mongo 
DB database for the purpose of prediction. For this reason, we performed a random 
sampling for each data set, considering a sample composed of at most 2000 instances. 
We split the resultant data sets into training, test and validation set, given a fixed 

split percentage. Data Collection involves also information filtering of those fields 
that are not generally present at the time of the insertion of a new report. In this 
activity, moreover, the Days_resolution field belonging to the bug reports is tem- 
porarily eliminated and kept for the purpose of prediction, given that this field does 
not require a pre-processing phase, being a numeric field. Initially we thought to 
use information filtering, denoted as IF1 (Information Filtering n. 1), on the test set 
and validation set, as already performed in [22], because them instances simulate 
newly-opened and previously unseen bug reports, and this makes compulsory to 
delete some of the previously extracted fields that were not actually available before 
the bug was assigned. The deleted fields are: First_comment for instances belonging 
to the training set; Priority, Severity and Comments for instances belonging to the 

test and validation set. 

• 
• 
• 

• 

• 
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We have also presented a further methodology of information filtering, denoted 
as IF2 (Information Filtering n. 2), which provides for the uniform filtering of the 
information present in the instances belonging to the training, test and validation set, 
as we believe that a prediction based on textual content should be done using the 
same information for model training and for predicting information related to the 
bug-fixing time. In this case, the deleted fields are: Priority, Severity and Comments. 

 
 
4.2 Pre-processing 

 
The pre-processing phase, shown in Fig. 3, converts the original textual bug reports 
data in a data-mining-ready structure, where the most significant text-features that 
serve to build the regression model, are identified. 

The model used to predict bug resolution time is based on the bug report repre- 
sentation in terms of bag-of-words. In this representation, the order of occurrence 
and the grammatical form of the words are not relevant while the presence or not 
of a term and its occurrence are discriminant. To represent the bug reports in terms 
of bag-of-words, it becomes necessary to do a text pre-processing: such activity 
is common to many works of text categorization and natural language processing 
and is well documented in the literature [23]. The goal is to define a vocabulary of 
terms representative of the context to classify, eliminating information that brings no 
benefit. 

Text pre-processing tasks we used are the well-known ones such as: converting all 
words to lowercase; removing punctuation; removing URLs; removing stop words; 
text stemming, using Porter stemming algorithm, that is reducing each word to its 
stem. 

The following code shows some of the principal activities performed during text 
pre-processing of the data corpus, using the R package “SnowballC” [26]. 

 

  Text pre-processing  
 
 

# remove extra white-spaces 

corpus <- tm_map(corpus, stripWhitespace) 

# convert to lower-case 
corpus <- tm_map(corpus, content_transformer(tolower)) 

# remove numbers 

corpus <- tm_map(corpus, removeNumbers) 
# remove isolated dashes ’-’ 

corpus <- tm_map(corpus, removePunctuation, 

preserve_intra_word_dashes = TRUE) 

# remove stopword 

my.stopwords <- c(stopwords("english"), 
break","else", "function", "next", "repeat") 
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corpus <- tm_map(corpus, my.removeWords, my.stopwords) 

# stemming 
corpus <- tm_map(corpus, stemDocument, language = "english") 

 
 

 

Then we converted the content into a bag of words and in the feature selec- 
tion activity we eliminated information that brings no benefit, such as words whose 
length is lower than 3 and higher than 20 characters. Finally, last activity aims to 
build the document-term matrices, weighed through term-frequency (TF) and term 
frequency—inverse document frequency (TF-IDF), whose terms will constitute the 
feature space to perform the regression analysis. These matrices, commonly used in 
natural language processing, contain the frequency of terms in documents. Rows cor- 

respond to documents (e.g. bug reports) and columns correspond to terms and each 
entry contains the frequency of the corresponding term in the respective document. 

The following code shows how we performed feature selection and document- 
term matrix creation using the R package “tm” [27]. 

 

  Feature term selection and document-term matrix creation  
 
 

# build the training document-term matrix of the training set, 

# setting the following global bounds: 

# - term length: between 3 and 25 

# - document frequency: >=5 
dtmTraining <- DocumentTermMatrix(corpusTraining, 

control = list(wordLengths = c(3, 25), 

bounds = list(global = c(5, Inf)))) 

# tf document-term matrix of the training set 
tfTrainingMatrix <- t(as.matrix(dtmTraining)) 

 
 

This procedure is also valid to build the document-term matrices for test and 
validation set. 

 
 
4.3 Learning and Severity Prediction 

 
The last phase of our proposed model, shown in the bottom right-side of Fig. 3 is 
Learning and severity prediction. Our idea is to use the document-term matrices, 
provided as output of the Pre-processing activity, to perform a multiple regression 
analysis. 
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Dimensional reduction aims at reducing the number of terms involved in the 
construction of the regression model, as a large number of features could introduce 
noise in the prediction. Our choice involves the use of the Principal Component 
Analysis (PCA), a standard tool in modern data analysis that analyze a data table in 
which observations are described by several inter-correlated quantitative dependent 
variables. PCA aims at extracting the important information from the data table, to 
represent it as a set of new orthogonal variables called principal components, and to 
display the pattern of similarity of the observations and of the variables as points in 
maps, as described in [24]. PCA was performed using the prcomp function in R. 

  PCA  

# PCA using Mozilla data set 

PCA <- prcomp(data = Mozilla) 

 
 

where data parameter refers to the data to be used. We have adopted PCA also because 
this technique is completely non-parametric, this can be considered a positive feature 
as the output is unique and independent of the user. We have decided to reduce the 
number of dimensions of which the new data table, obtained by the application of the 
PCA on the data set, is composed. For this purpose, we have represented principal 
components and the correspondent variance expressed in a scree plot visualization. 
In multivariate statistics, a scree plot is a line plot of the eigenvalues1 associated with 
the principal components (eigenvectors of the covariance data matrix) in an analysis. 
A scree plot is used to select the principal components to keep and it shows how much 
variation each principal component captures from the data. The y-axis is eigenvalues, 
which essentially stand for the amount of variation [25]. After an accurate analysis 
of the visualizations produced, we decided to adopt a threshold equal to 0.01, that 
is the 1% of the percentage of variance expressed by each principal component, as 
they are considered the most significant for the prediction purposes (Fig. 4). 

As an alternative to PCA, we used a feature selection algorithm, the Recursive 
Feature Elimination (RFE), a recursive method that ranks features according to some 
measure of their importance; the measure we use is based on a chi-squared test. 

After the dimensional reduction, we completed the resulting data tables belonging 
to the training and validation set, adding the Days_resolution field, extracted in 
the Data Collection activity, that will be used as response variable; the remaining 
variables will be used as independent variables. 

Next activity provides for the training of the machine learning algorithms to be 
used. Our choice includes M5P model tree, Random Forests and Support Vector 

 
1Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix 
equation) that are sometimes also known as characteristic roots, characteristic values, proper values, 
or latent roots. 
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Fig. 4 Scree plot of the explained variance of the first nine principal components for FreeDesktop 
data set, threshold= 0.01 

 
Machine (using polynomial and Gaussian kernels), configured for a regression anal- 
ysis. 

A tuning phase is necessary to estimate the optimal values to be associated with 
the algorithm’s parameters for the prediction; for this purpose, we used the training 
set to train the models and the validation set to estimate the optimal values related 
to the models’ parameters. Parameters that we estimate are the number of decision 
trees for the Random Forests model (values range from 500 to 1000, using 100 as an 
increment), the polynomial degree for the SVM with polynomial kernel (values range 
from 1 to 5, using 1 as an increment) and the γ coefficient for the SVM with Gaussian 
kernel (values range from 2(−3) to 23, using 1 as an exponent increment). The M5P 
model tree algorithm does not provide for the use of parameters to be estimated. The 
criterion we have adopted, aimed at selecting the values to be associated with the 
related parameters, is based on the minimization of the RMSE on the validation set. 
Once predicted the parameters, we train the algorithms using the union of the training 
and validation set and we estimate the days resolution of bug reports belonging to 
the test set. 

The following code provides instructions for M5P model tree training and pre- 
diction, using the R package “RWeka” [28]. 



 

M5P model tree training and prediction 

Random Forest training and prediction 

SVM with polynomial kernel training and prediction 
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#M5P model tree training 

m5p <- M5P(formula = days_resolution ˜ ., data = training) 
# M5P model tree prediction 

prediction <- predict(model = m5p, newdata = test) 
 
 

 

where formula parameter in M5P( ) refers to a symbolic description of the model to 
be fitted, model parameter in predict( ) refers to the model to be used to carry out the 
prediction and newdata parameter refers to the data to be used to predict the response 
variable. 

The following code provides instructions for Random Forest training and predic- 
tion, using the R package “randomForest” [29]. 

 

 
# Random Forest training 

rf <- randomForest(days_resolution ˜ ., 
data = training, ntree = value) 

# Random Forest prediction 

prediction <- predict(model = rf, newdata = test) 
 
 

 

where, in this case, ntree parameter in randomForest( ) refers to the number of 
decision trees to be used for model training; this value, as discussed above, was 
estimated in the tuning phase. 

The following code provides, instead, instruction for SVM with polynomial kernel 
training and prediction, using the R package “e1071” [30]. 

 

 
# SVM polynomial kernel training 

svr <- svm(days_resolution ˜ ., data = training, 

type = "eps-regression", kernel = "polynomial", degree = value) 

# SVM prediction 
prediction <- predict(model = svr, newdata = test) 
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where type parameter in svm( ) refers to the type of task for which the SVM is to 
be used (classification or regression), kernel parameter refers to the type of kernel 
to use (allowed values are linear, polynomial, radial and sigmoid), degree parameter 
refers to the polynomial degree to be used (exclusively for a polynomial kernel); this 
value, as discussed above, was estimated in the tuning phase. 

Finally, the following code provides instruction for SVM with Gaussian kernel 
training and prediction, using the R package “e1071”. 

 

  SVM with Gaussian kernel training and prediction  
 
 

# SVM Gaussian kernel training 

svr <- svm(days_resolution ˜ ., data = training, 

type = "eps-regression", kernel = "radial", gamma = value) 
# SVM prediction 

prediction <- predict(model = svr, newdata = test) 
 
 

 

where gamma parameter (to be used exclusively for a Gaussian kernel), as discussed 
above, was estimated in the tuning phase. As further study we split the predicted 
values into Fast and Slow bins to perform a binary classification of bug reports. 
Metrics used for this experiment are described in Sect. 5.2. 

 
 
5 Experiment 

 
In this section, we provide the set-up of the experiment. First, we introduce the 
filtering step for bug reports, second, we present the metrics used, third, we show 
results obtained through the experiments. 

 
 
5.1 Projects Selected 

 
We extracted bug reports information from Bugzilla repositories of the following 
open source projects: Mozilla, FreeDesktop, NetBeans and Eclipse. Data were auto- 
matically extracted from the on-line front-end provided by Bugzilla installation, 
using ad-hoc web scraping routine written in PHP. Textual reports extracted were 
pre-processed and analyzed using the R software system [13]. 

Table 1 shows the total number of textual bug reports extracted for each project 
(F1), having Status field assigned to VERIFIED and Resolution field assigned to 
FIXED. In F2 we reported the number of discarded bug reports because corrupted 
and unrecoverable records, or missing XML report, or dimension being too large. 
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Table 1 Bug reports and projects selected 
 F1 F2 F3 F4 F5 F6 Observation 

Period 
Mozilla 120490 498 2000 1400 399 201 [Sept.1994– 

Nov.2016] 
FreeDesktop 3461 2 2000 1400 399 201 [Jan.2003– 

Oct.2016] 
NetBeans 42636 9 2000 1400 399 201 [June1999– 

Oct.2016] 
Eclipse 45021 2 2000 1400 399 201 [Oct.2001– 

Nov.2016] 
 
 

Table 2 Bug-fix time discretization 
Label Quantiles Mozilla FreeDesktop NetBeans Eclipse 
Fast 0–0.75 0–50 0–72 0–48 0–41 
Slow 0.76–1 51–2611 73–1961 49–2475 42–3795 

 
 
 

We randomly selected, 2000 bug reports for each project (F3), and then we split 
them into training, test and validation sets, considering the 70% of the sample size 
as training set (F4), the 20% as test set (F5) and the remaining 10% as validation set 
(F6). Last column, Observation period, shows the data observation period for each 
project. 

Once the prediction of the response variable related to the bug-fixing time was 
made, we decided to solve the same problem as a binary classification task: for this 
purpose, we have categorized predicted fixing-time and observed fixing-time of bug 
reports belonging to the test set into Fast or Slow classes, using the third quartile q0.75 
of the empirical distribution of bug-fixing time. We considered Slow as the positive 
class, because of its larger impact in terms of cost/effectiveness. Table 2 shows the 
results of binning. 

It may be noted that the time taken to correct a bug shows large variations, with 
most of the bugs that are fixed in a relatively short time. Finally, in [32] the full 
collected dataset is available in JSON format. 

 
 
5.2 Metrics Used 

 
The reference metric used to evaluate the results provided by the regression analysis is 
the root-mean-square error (RMSE), which measure the differences between values 
predicted by a model and the values observed: 
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One of the most popular performance measures in a binary classification problem 
is accuracy, which is defined by the ratio of the number of correct predictions and 
the total number of instances in the test sample. The accuracy denotes the proportion 
of bugs correctly predicted: 

 

Accuracy   (T P + T N)  
(TP + FP + TN + FN) 

 
(2) 

 

where TP (true positive) and FP (false positive) represents, respectively, the number 
of positive instances correctly predicted, and the number of negative instances incor- 
rectly predicted as positive. The precision denotes the proportion of bugs correctly 
predicted for the positive class: 

 

Precision 
TP 

 
TP + FP  

 
(3) 

Recall denotes the proportion of all the real positive bugs predicted for the positive 
class: 

Recall 
TP 

 
TP + FN  

(4) 

 
 

5.3 Results 
 

In the this section, we show the result set of the best configurations adopted in the 
experiments. 

Table 3 shows, respectively, the result set for the projects Mozilla, FreeDesktop, 
NetBeans and Eclipse for the regression analysis experiment. The results showed 
that M5P model tree allows to minimize the RMSE on the relative test sets for the 
projects Mozilla, FreeDesktop and NetBeans. This means that currently M5P model 
tree allows us to estimate days resolution of bug reports belonging to that projects 
more accurately than the other models adopted. Regarding the Eclipse project, the 
model that has obtained the best performances, in terms of RMSE, is the SVM 
with Gaussian kernel, using parameter γ   4.00. We can notice in most cases that 
the document-term matrix dimensional reduction allows to obtain satisfactory per- 
formance compared to when it is not used, in particular the Principal Component 
Analysis (PCA) seems to be the most effective procedure. The use of the main prin- 
cipal components that preserve most of the variance expressed by the data set, has 
contributed to obtaining more accurate estimates of days resolution. The Information 
Filtering procedure IF1 has allowed to obtain better results in terms of accuracy of 
numerical values compared to the use of the IF2, moreover the TF metric for the 

RMSE = (1) 
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Table 3 Regression results 
Project Inf. Filt. Model Parameters Reduction Metrics RMSE 
Mozilla IF1 M5r N.A. PCA TF 146.70 
FreeDesktop IF1 M5r N.A. PCA TF 123.33 
NetBeans IF2 M5r N.A. N.A. TF 152.02 
Eclipse IF1 SVM γ = 4.00 PCA TF 147.13 

 
 

Table 4 Classification results for SVM with polynomial kernel 
Project Inf. 

Filt. 
Parameters Reduction Metrics Accuracy Precision Recall 

Mozilla IF1 degree = 1 PCA TF-IDF 0.75 1.00 0.02 
FreeDesktop IF1 degree = 4 RFE TF 0.75 0.67 0.02 
NetBeans IF2 degree = 1 PCA TF-IDF 0.78 1.00 0.01 
Eclipse IF1 degree = 2 RFE TF 0.74 0.52 0.12 

 
 
 

document-term matrices is certainly the metric that allows to obtain better perfor- 
mances in our regression experiment, being the one used in the result set. 

Table 4 shows the result set of the same projects for the binary classification 
experiment, in which we have classified bug reports in Fast or Slow classes, depending 
on the estimated bug-fixing time during the previous experiment. Such table shows 
only the result set for the SVM with polynomial kernel model as it allows to obtain 
a higher accuracy score, metric that we consider most relevant in a classification 
task, on all the selected projects. Despite the good accuracy of the model (which 
ranges from 0.74 for Eclipse project to 0.78 for NetBeans project), we can notice a 
low recall, denoting that it failed to correctly predict most of Slow bugs, those bugs 
that require greater resources (in terms of time and human effort) for the resolution 
of the same. The use of the third quartile q0.75 on the bug-fixing time discretization 
might have specialized models to predict Fast bugs. As we can see in the result set 
provided in Table 4 and in all the remaining ones here not included due to space 
reasons but available in [31], the accuracy score of models increases with a lower 
recall. The document-term matrix dimensional reduction seems to improve accuracy 
performance in our binary classification experiment; PCA allows to obtain a higher 
accuracy score when TF-IDF metric for document-term matrices is used, the same 
cannot be said for RFE algorithm, as it allows to obtain a higher accuracy score 
when TF metric is used. Moreover, also in this experiment, Information Filtering 
procedure IF1 is the methodology used in the reported result set, which confirm that 
currently this procedure is the most effective for estimating bug-fixing time related 
to bug reports, for both experiments carried out. 
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6 Discussion and Conclusion 

 
In this work, we tackled the problem of predicting the bug-fixing time as a result of 
a numerical regression problem using as predictor variables the textual information 
extracted from the bug reports. The data set was built with the bug reports stored in 
Bugzilla installations of four large open source projects like Mozilla, FreeDesktop, 
NetBeans and Eclipse; after the data set has been pre-processed, document-terms 
matrices have been generated; variables have been reduced using specific dimen- 
sional reduction techniques, considering only the most significant for the prediction 
purposes; they were used to train M5P model tree, Random Forest and Support Vector 
Machine models. Numerical estimates of bug-fixing time, provided by the regression 
analysis experiment, have been discretized into Fast and Slow classes, to perform a 
binary classification experiment of bug reports. 

The obtained results show that dimensional reduction procedures, used to reduce 
the feature space to be included in our regression analysis, significantly affect the 
results. The regression experiment results are better in all the four projects involved 
using TF matrix, whose RMSE values ranging from 152.02 for NetBeans project, to 
123.33 for FreeDesktop project. Model that provided the most accurate estimated in 
terms of bug resolution time was the M5P model tree. In binary classification exper- 
iment, it may be noted the unbalance of the labels in bug-fixing time discretization 
has allowed to achieve a high accuracy score, whose values ranging from 0.74 for 
Eclipse project, to 0.78 for NetBeans project; however, to these results correspond a 
low recall, ranging from 0.01 for NetBeans project to 0.12 for Eclipse project, which 
suggests that configurations characterized by a high accuracy score are not able to 
correctly classify bug reports belonging to the Slow class, those bugs characterized 
by a high-resolution time. However, it is possible to observe in the remaining result 
set some configurations with a discrete recall score, going to affect negatively to the 
general accuracy of the predictors. Model that provided the highest accuracy score of 
bug reports correctly classified was the SVM, using a polynomial kernel. Moreover, 
also in this experiment, dimensional reduction procedures significantly affect the 
results. 

We can notice a slight improvement in evaluation measures in this work, compared 
with the best ones existing in similar works in the literature, where bug-fixing time 
has been solved as a binary classification problem: in work [6], using a sample of 
bug reports extracted from the Eclipse project, three classifiers have been trained to 
classify bug reports into Fast or Slow classes. Classifier that achieved the best perfor- 
mances in terms of evaluation measures was a Multivariate Bernoulli (MB) model, 
using a Laplace λ smoothing parameter equal to 2. This configuration achieved an 
accuracy score of 0.73, a precision of 0.60 and a recall of 0.04. In our work, using 
an innovative approach not yet tested in the bug-fixing time problem, SVM with 
polynomial kernel we have trained on the Eclipse data set reported an improvement 
in both accuracy and recall scores with respect to the mentioned work. Although 
the accuracy score has remained almost unchanged, we can notice an improvement 
in the recall, which suggests that our model is able to correctly classify more bug 
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reports belonging to the Slow class, those reports that have a larger impact in terms 
of resources spent to fix bugs. 

Our proposed model, compared to the main approaches used in the literature, is 
able to provide numerical estimates about bug-fixing time, which constitutes one 
of the main advantages of our proposed approach. In Bug triage process accurate 
estimates on bug resolution time are fundamental for saving resources, in terms of 
both time and cost. However, days resolution estimates provided by our model are 
not yet accurate to the point of providing support for the bug triager, mainly due 
to the lack of some relevant information with-in bug reports. Number of developers 
involved in the bug-fixing process is an information not mentioned in bug reports 
extracted from Bugzilla; such information could help us in a better understanding 
of the amount of resources allocated for its resolution, moreover also fixing time in 
terms of working days is a missing information, for this reason it was necessary to 
estimate it in calendar days. 

As future work, our model can also be refined, analyzing, for example, the content 
of the attachments in the reports, in order to enrich the feature space. Filtering outliers, 
that is bugs characterized by a long fixing time with respect to the average, could 
be a further improvement, particularly about errors due to a bad estimation of the 
values related to the bug-fixing time. Moreover, this process might help us to improve 
the recall score, as in a binary classification experiment these values are generally 
associated to the Slow class. 

In conclusion, the prediction of the bug-fix time is a hot topic of software engi- 
neering and the results of this work, slightly better than those obtained from similar 
works in the literature, suggest that new and innovative ways should be explored to 
create a solution, reliable and highly precise, usable with extreme effectiveness in a 
real context. 

 

6.1 Threats to Validity 
 

To judge the quality of our work it is very important to consider the following threats 
to the validity of the study: 

Bug-fixing time. The actual time spent by developers as well as the distribution 
in terms of hours per day to fix a bug are information not publicly declared on 
Bugzilla. For this reason, we assumed a uniform distribution of developers work 
to calculate the effort spent in calendar days. These assumptions do not consider 
the real efforts spent by developers involved in bug-fixing. 
Data set sampling. Due to hardware and software limitations, data sampling was 
necessary. This approach could undermine the validity of the results, as it defines 
a sample that may not be representative with respect to bug reports extracted from 
Bugzilla. 
The set of experimental projects. We conducted our experiments on four data 
sets extracted from Mozilla, FreeDesktop, NetBeans and Eclipse Bugzilla BTS, 
respectively. These projects are not representative of the population of all open 
source software. 

• 

• 

• 
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Non-open source projects. We are not sure the proposed model can also be used 
effectively for non-open source projects, such as proprietary projects. This is 
because in proprietary projects a specific group is typically responsible for fix- 
ing given bugs based on corresponding features, so the current model may not 
apply to these kinds of projects. 
Outliers management. Samples extracted from collections are prone to contain 
bug-fix time outliers. This information can influence model training, therefore the 
prediction of the values related to the response variable. Removing outliers can 
improve the quality of the data and may have a positive impact on the model 
performance. 
Field selection. We are not sure that all the fields used to build the data set are 
significant, according to the bug-fixing time, so the proposed model may not be 
totally accurate. We decided not only to select those fields suggested by literature 
[3, 5] but also adding what are, in our opinion, useful to predict bug-fixing time. 
Reopening of a closed bug. The possibility that the same bug report can be 
reopened later is not considered. This event is treated as a new insertion of a 
report; this could invalidate, potentially, the calculation of each bug used for the 
data set. 
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