

· ·

A Text-Based Regression Approach
to Predict Bug-Fix Time

Pasquale Ardimento, Nicola Boffoli and Costantino Mele

Abstract Predicting bug-fixing time can help project managers to select the
adequate resources in bug assignment activity. In this work, we tackle the problem
of predicting the bug-fixing time by a multiple regression analysis using as predictor
variables the textual information extracted from the bug reports. Our model selects
all and only the features useful for prediction, also using statistical procedures, such
as the Principal Component Analysis (PCA). To validate our model, we performed
an empirical investigation using the bug reports of four well-known open source
projects whose bugs are stored in Bugzilla installations, where Bugzilla is an online
open-source Bug Tracking System (BTS). For each project, we built a regression
model using the M5P model tree, Support Vector Machine (SVM) and Random
Forests algorithms. Experimental results show the model is effective, in fact, they
are slightly better than all the ones known in the literature. In the future, we will
use and compare other different regression approaches to select the best one for a
specific data set.

1 Introduction

In software maintenance, “a critical activity, which consumes the majority of the
effort spent within the lifetime of a software system” [1], a significant amount of time
is spent to investigate software bugs [2]. Generally, large-scale software projects use a
Bug Tracking System (BTS) to report and manage a software bug. BTS management
is relied on by team members, which can be developers and test engineers, and
which have to fix bugs in the source code files. Each bug report must be triaged.

P. Ardimento (B) N. Boffoli C. Mele
Department of Informatics, University of Bari Aldo Moro, Via Orabona 4, Bari, Italy
e-mail: pasquale.ardimento@uniba.it

N. Boffoli
e-mail: nicola.boffoli@uniba.it

C. Mele
e-mail: c.mele22@studenti.uniba.it

mailto:pasquale.ardimento@uniba.it
mailto:nicola.boffoli@uniba.it
mailto:c.mele22@studenti.uniba.it

64 P. Ardimento et al.

The triager, who usually is a senior developer, selects the appropriate developer
to fix the newly submitted bug. However, due to the large number of bug reports
submitted daily for large-scale software projects, accurate bug triage is normally
done manually. Furthermore, several studies demonstrate that bug-assignment is
error-prone, expensive and that many times it is necessary to reassign a bug to another
one (“bug tossing”). In recent years, several researchers analyzed bug-fixing time and
its prediction. For example, Panjer [3] proposed to use classification techniques such
as 0-R, 1-R, Decision Tree, Naive Bayes and Logistic Regression to predict the time
to fix a bug for Eclipse project obtaining an accuracy of 34.9%. In [4] Kim et al.
studied the life span of bugs in ArgoUML and PostgreSQL projects, and found that
bug-fixing time had a median of about 200 days. Giger et al. [5] used Decision Tree
to classify fast and slowly fixed bugs studying Eclipse, Mozilla, and Gnome projects.

The above-mentioned works, focused on bug-fixing time for open source projects,
show a real need to improve the prediction accuracy results. The contribution of this
paper is building a regression model, modifying the model already proposed in [6,
7], useful to predict the bug-fixing time, in order to solve this issue as a numerical
regression problem. For this purpose, we extracted information contained in the
Bugzilla bug reports relating to the Mozilla [8], FreeDesktop [9], NetBeans [10]
and Eclipse [11] projects, to create a database on which the machine learning (ML)
algorithms trains. The database chosen to host extrapolated data is MongoDB [12], a
non-relational database that can easily handle collections of JSON documents. The
environment used to create the data set and to perform the regression analysis is R
[13], an open source software for statistical analysis and ML. We evaluated our model
using M5P model tree, Random Forests and SVM algorithms comparing obtained

results with that one’s known in the literature.
Here below, Sect. 2 shows the background whereas Sect. 3 gives an overview of

the literature found on the subject. Section 4 describes the proposed model and the
results of the empirical investigation are presented in Sect. 5. Finally, Sect. 6 discusses
results and provides conclusions.

2 Background

Each bug reported in a BTS follows a life cycle: it starts when the bug is discovered
and ends when the bug is closed, after ensuring it has been fixed. Bug life cycle can
be slightly different depending on the BTS used. To select bugs useful for prediction
and, at the same time, to build a model independently from the BTS chosen, we
studied both general bug life cycle and Bugzilla bug life cycle.

We selected Bugzilla as BTS basically for two reasons: first, it has a wide public
installation base; on Bugzilla official page there is a list, whose last update is on
May 3rd, 2017, of 137 companies, organizations, and projects that run “public”
Bugzilla installations. Second, since version 5.0, Bugzilla installations offer a native
well documented REST API [14] as a preferred way to interface with Bugzilla from
external apps. Figure 1 shows life cycle of a bug in Bugzilla, as represented in the

A Text-Based Regression Approach to Predict Bug-Fix Time 65

Fig. 1 Life cycle of a bug in Bugzilla

Bugzilla official documentation release 5.0.4 at 2.4.4 section [15], while Fig. 2 shows
general bug life cycle.

General BTS as well as Bugzilla BTS allow users to report, track, describe, com-
ment on and classify bug reports. A bug report is characterized by several predefined
fields, such as the relevant product, version, operating system and self-reported inci-
dent severity, as well as free-form important text fields such as bug title, called
summary in Bugzilla, and description. Moreover, users and developers add com-
ments and submit attachments, which often take the form of patches, screenshots,
test cases or anything else binary or too large to fit into a comment. When initially
declared, a bug starts out in the unconfirmed pending state until a triager makes a
first evaluation to see if the bug report corresponds to a valid bug, and that the bug
is not already known, i.e., the submitted bug report is a duplicate of another bug
report already stored in the defect reporting system. Bug reports can pass through
several different stages before finally being resolved. Bug reports that are closed
receive one of the following status: duplicate, invalid, fixed, wontfix, or worksforme.

66 P. Ardimento et al.

Fig. 2 General life cycle of
a bug

These indicate why the report was closed; for example, worksforme and invalid both
indicate that quality assurance was unable to reproduce the issue described in the
report. Sometimes a bug report needs to be reopened and when it happens the normal
defect lifecycle starts with status reopened.

Reopened status represents the most important difference between the two life-
cycles because it is absent in Bugzilla. Anyway, differently from what shown in Fig. 1,
reproducing trusty the image shown in Bugzilla documentation, it is also possible to
add a reopened status in Bugzilla. This operation can be done simply adding a new
status option, technically selecting “add option for Adding a new status”, for the field
value of status. As consequence, we decided to select only Bugzilla installations on
where reopened status was added.

3 Related Work

According to our research, we focus on studies that propose models for predicting
the overall time required for fixing bugs via classification and regression techniques.

In 2007, Lucas D. Panjer [3] focused his research on the bug reports of Eclipse
project. He used machine learning algorithms as 0-R, 1-R, decision trees, Naive
Bayes and logistic regression and he reported that his model is able to correctly

A Text-Based Regression Approach to Predict Bug-Fix Time 67

predict 34.9% of the bugs. Despite the results obtained by the logistic regression, the
experimentation shows a lack in the classification phase, however the results obtained
are in line with those obtained from other experiments in the literature. In the same
year, Hooimeijer et al. [16] applied linear regression on 27.000 bug reports from the
Firefox project in an attempt to identify an optimal threshold value by which the bug
report may be classified as either “convenient” or “expensive”. Experiments have
shown that if there are many comments or if there are many attachments, it is very
likely that the bug is classified as “expensive”. The model was constructed using a
statistical approach, as the text categorization is computationally more burdensome
than a linear model, but using techniques based on text categorization could result
in a significant increase in performance compared to the model presented.

In 2009, Anbalagan et al. [17] performed their study on 72.482 bug reports from
Ubuntu. The experimentation showed that there is a strong linear relationship between
the time to fix a bug and the number of developers involved in the correction, linear
regression was used to estimate the coefficients of the predictive model. The results
of this study are not satisfactory, since it has emerged that the predictive model
achieved is able to predict the time to correct a bug, about with the same precision
of the models already existing in the literature and at the same cost.

In 2011, Bhattacharya et al. [18] have trained a multiple regression model consid-
ering the severity of the bug, the number of attachments, the dependencies between
the various bugs and the number of developers involved in the resolution process
as independent variables. The results denote a low predictive power of the model.
The results shown by these experiments should not surprise us, as previously the low
predictive power of the models existing in the literature has been highlighted.

In 2016, Puranik et at. [19] have developed a predictive model by selecting the
minimal set of best performing metrics used in the literature related to the bug
prediction problem. To carry out the experiments, a data set already proposed in [20]
was used. The model realized is based on multiple linear regression, considering as
variables the optimal metrics selected by the authors, such as the number of bugs
found up to that moment, the version number adopted at that time, the number of
lines of code and the entropy. The results of this experimentation were not provided;
however, the authors confirm that the proposed model behaves much better than the
other two models considered, especially when the metrics used in the evaluation are
calculated on the test set.

Finally, some researchers have applied Markov-based models. In 2018, Habayeb
et al. [2] employed a hidden Markov model for predicting bug fixing time based on
the temporal sequence of developer activities. This approach considers the temporal
sequences of developer activities rather than frequency of developer activities used
by previous approaches in [3, 5, 16]. They performed an experiment on Firefox
projects and compared her model with popular classification algorithms to show that
the model outperformed existing ones. In 2013 Zhang et al. [21] work on predicting
bug fixing time. They used open source data from three commercial software projects
from CA technologies and they apply a Markov-based model to predict the number
of bugs that can be fixed monthly. In 2018, Akbarinasaji et al. [22] replicated Zhang

68 P. Ardimento et al.

et al. [21] using open source data from Bugzilla Firefox. The results of this replication
study are similar to the original experiment and confirm the original proposed model.

Starting from the results obtained from the various studies it is possible to state that
the models based on the information retrieval, if used in a classification activity, are
more predictive than the statistical models, the same cannot be said for regression
analysis, because in the literature there is not a numerical regression model that
exploits the text information contained in the bug reports. The experiments highlight
that the selection of attributes contributes significantly to increase the predictive
power of the model, especially when used to define attributes characterized by a
stronger correlation with respect to the time of resolution of a bug. In some cases,
the information on sampling is omitted, the chosen sampling could therefore largely
influence the results obtained and there is no way to compare them appropriately.
In the context of classification, we can affirm that at present the logistic regression,
when compared with other algorithms, seems to obtain the best performances, very

often due to the simplicity of the training phase compared to other models.
This work, to the best of our knowledge, is the first one to tackle the problem of

predicting the bug-fixing time by a multiple regression analysis using as predictor
variables the textual information extracted from the bug reports. To this regard, we
used SVM, M5P model tree and Random Forests algorithms, all configured for
regression analysis. Moreover, this work is also the first one to use a dimensionality-
reduction method, a process until now never used even if, as stated by many authors,
necessary in accordance to the intrinsic nature of the aforementioned problem. In
our work, we used PCA as a dimensionality-reduction method.

4 Proposed Model

Our idea is to transform the prediction problem into a numerical regression problem,
in which we extract significant textual information from bug reports in order to predict
bug-fixing time.

The prediction model proposed is shown schematically in Fig. 3. It mainly consists
of three phases, already proposed in [6, 7], that are Data Collection, Pre-processing,
and Learning and severity prediction. The main differences of the model proposed
in this work are the use of a dimensionality-reduction method and having dealt the
problem as a numerical regression problem not more as a classification problem.

4.1 Data Collection

Data Collection phase involves data gathering and data analysis for the bug-fix time
prediction from one or more Bug Tracking Systems. The model of this first phase
is shown in the left side of Fig. 3. Our design is largely application independent but,
anyway, for this work we decided to use the open source BTS Bugzilla.

A Text-Based Regression Approach to Predict Bug-Fix Time 69

Fig. 3 Conceptual design of bug-fix time prediction process

Bug report selection consists of data gathering and data selection of only those
historical bug reports from the BTS datastore whose Status field has been assigned
to VERIFIED and Resolution field has been assigned to FIXED. These ones are
the only useful for our regression analysis. For this purpose, we have used a web
application able to carry out a web scraping process of bug reports from the Bugzilla
platform. This process was made possible by exploiting some APIs made available
by Bugzilla, collecting bug reports of each project adopted in separate JSON file.
Our approach involves the use of the textual content of the bug reports extracted
as independent variable, hence we selected those fields deemed significant for the
prediction. Our choice includes the selection of the following fields:

Product (a real-world product, identified by a name and a description, having one
or more bugs).
Component (a given subsection of a Product, having one or more bugs).
Short_desc (a one-sentence summary of the problem).
First_priority (priority set by the user who created the report. Default values of
priority are from P1, highest, to P5, lowest).
First_severity (severity set by the user who created the report. This field indicates
how severe the problem is, from blocker when the application is unusable, to
trivial).
Reporter (the account name of the user who created the report).
Assigned_to (the account name/s of the developer/s to which the bug has been
assigned to by the triager, and responsible for fixing the bug).

•

•
•
•

•

•
•

70 P. Ardimento et al.

Priority (priority set by the triager or a project manager).
Severity (severity set either by the triager or a project manager).
First_comment (the first comment posted by the user who created the report, which
usually consists of a long description of the bug and its characteristics).
Comments (subsequent comments posted by the Reporter and/or developers
endowed with appropriate permissions, which can edit and change all bugs fields,
and comment these activities accordingly).
Fixing-time was not available, so we introduce an additional field called
Days_resolution, calculated as the time distance between the final time where
bug field Status was set to RESOLVED and the date where the bug report was
assigned for the first time. It is important to note that Days_resolution field is
calculated in calendar days and not in working days, where usually a working day
correspond to 8 h, because there is no accurate information about the actual time
spent by developers responsible for fixing bugs. For this reason, Days_resolution
field may be not very accurate and potentially affect the results.

We decided to discard some fields, because insignificant or unusable. The “Num-
ber of activities” field, for example, has been discarded because it is a numeric field,
so, for this reason, it would have been any way removed in the pre-processing phase.
Another field, the “CC list” field, containing the list of users interested in receiving
an email notification each time the report update, was discarded because often not
filled; fields “Status” and “Resolution” were not considered because already used
for the selection of bug reports, hence not statistically valid for the prediction. After
selecting the bug reports and extracting from them the relevant fields, we stored them
in a non-relational database, our choice was the MongoDB database. We have cho-
sen a non-relational database for the greater flexibility they offer for storing textual
documents. Then we used a R script to access to the MongoDB database to import
the bug reports as JSON objects in R environment. Due to hardware and software
limitations it was not possible to use the entire set of bug reports stored in the Mongo
DB database for the purpose of prediction. For this reason, we performed a random
sampling for each data set, considering a sample composed of at most 2000 instances.
We split the resultant data sets into training, test and validation set, given a fixed

split percentage. Data Collection involves also information filtering of those fields
that are not generally present at the time of the insertion of a new report. In this
activity, moreover, the Days_resolution field belonging to the bug reports is tem-
porarily eliminated and kept for the purpose of prediction, given that this field does
not require a pre-processing phase, being a numeric field. Initially we thought to
use information filtering, denoted as IF1 (Information Filtering n. 1), on the test set
and validation set, as already performed in [22], because them instances simulate
newly-opened and previously unseen bug reports, and this makes compulsory to
delete some of the previously extracted fields that were not actually available before
the bug was assigned. The deleted fields are: First_comment for instances belonging
to the training set; Priority, Severity and Comments for instances belonging to the

test and validation set.

•
•
•

•

•

A Text-Based Regression Approach to Predict Bug-Fix Time 71

We have also presented a further methodology of information filtering, denoted
as IF2 (Information Filtering n. 2), which provides for the uniform filtering of the
information present in the instances belonging to the training, test and validation set,
as we believe that a prediction based on textual content should be done using the
same information for model training and for predicting information related to the
bug-fixing time. In this case, the deleted fields are: Priority, Severity and Comments.

4.2 Pre-processing

The pre-processing phase, shown in Fig. 3, converts the original textual bug reports
data in a data-mining-ready structure, where the most significant text-features that
serve to build the regression model, are identified.

The model used to predict bug resolution time is based on the bug report repre-
sentation in terms of bag-of-words. In this representation, the order of occurrence
and the grammatical form of the words are not relevant while the presence or not
of a term and its occurrence are discriminant. To represent the bug reports in terms
of bag-of-words, it becomes necessary to do a text pre-processing: such activity
is common to many works of text categorization and natural language processing
and is well documented in the literature [23]. The goal is to define a vocabulary of
terms representative of the context to classify, eliminating information that brings no
benefit.

Text pre-processing tasks we used are the well-known ones such as: converting all
words to lowercase; removing punctuation; removing URLs; removing stop words;
text stemming, using Porter stemming algorithm, that is reducing each word to its
stem.

The following code shows some of the principal activities performed during text
pre-processing of the data corpus, using the R package “SnowballC” [26].

 Text pre-processing

remove extra white-spaces

corpus <- tm_map(corpus, stripWhitespace)

convert to lower-case
corpus <- tm_map(corpus, content_transformer(tolower))

remove numbers

corpus <- tm_map(corpus, removeNumbers)
remove isolated dashes ’-’

corpus <- tm_map(corpus, removePunctuation,

preserve_intra_word_dashes = TRUE)

remove stopword

my.stopwords <- c(stopwords("english"),
break","else", "function", "next", "repeat")

72 P. Ardimento et al.

corpus <- tm_map(corpus, my.removeWords, my.stopwords)

stemming
corpus <- tm_map(corpus, stemDocument, language = "english")

Then we converted the content into a bag of words and in the feature selec-
tion activity we eliminated information that brings no benefit, such as words whose
length is lower than 3 and higher than 20 characters. Finally, last activity aims to
build the document-term matrices, weighed through term-frequency (TF) and term
frequency—inverse document frequency (TF-IDF), whose terms will constitute the
feature space to perform the regression analysis. These matrices, commonly used in
natural language processing, contain the frequency of terms in documents. Rows cor-

respond to documents (e.g. bug reports) and columns correspond to terms and each
entry contains the frequency of the corresponding term in the respective document.

The following code shows how we performed feature selection and document-
term matrix creation using the R package “tm” [27].

 Feature term selection and document-term matrix creation

build the training document-term matrix of the training set,

setting the following global bounds:

- term length: between 3 and 25

- document frequency: >=5
dtmTraining <- DocumentTermMatrix(corpusTraining,

control = list(wordLengths = c(3, 25),

bounds = list(global = c(5, Inf))))

tf document-term matrix of the training set
tfTrainingMatrix <- t(as.matrix(dtmTraining))

This procedure is also valid to build the document-term matrices for test and
validation set.

4.3 Learning and Severity Prediction

The last phase of our proposed model, shown in the bottom right-side of Fig. 3 is
Learning and severity prediction. Our idea is to use the document-term matrices,
provided as output of the Pre-processing activity, to perform a multiple regression
analysis.

A Text-Based Regression Approach to Predict Bug-Fix Time 73

Dimensional reduction aims at reducing the number of terms involved in the
construction of the regression model, as a large number of features could introduce
noise in the prediction. Our choice involves the use of the Principal Component
Analysis (PCA), a standard tool in modern data analysis that analyze a data table in
which observations are described by several inter-correlated quantitative dependent
variables. PCA aims at extracting the important information from the data table, to
represent it as a set of new orthogonal variables called principal components, and to
display the pattern of similarity of the observations and of the variables as points in
maps, as described in [24]. PCA was performed using the prcomp function in R.

 PCA

PCA using Mozilla data set

PCA <- prcomp(data = Mozilla)

where data parameter refers to the data to be used. We have adopted PCA also because
this technique is completely non-parametric, this can be considered a positive feature
as the output is unique and independent of the user. We have decided to reduce the
number of dimensions of which the new data table, obtained by the application of the
PCA on the data set, is composed. For this purpose, we have represented principal
components and the correspondent variance expressed in a scree plot visualization.
In multivariate statistics, a scree plot is a line plot of the eigenvalues1 associated with
the principal components (eigenvectors of the covariance data matrix) in an analysis.
A scree plot is used to select the principal components to keep and it shows how much
variation each principal component captures from the data. The y-axis is eigenvalues,
which essentially stand for the amount of variation [25]. After an accurate analysis
of the visualizations produced, we decided to adopt a threshold equal to 0.01, that
is the 1% of the percentage of variance expressed by each principal component, as
they are considered the most significant for the prediction purposes (Fig. 4).

As an alternative to PCA, we used a feature selection algorithm, the Recursive
Feature Elimination (RFE), a recursive method that ranks features according to some
measure of their importance; the measure we use is based on a chi-squared test.

After the dimensional reduction, we completed the resulting data tables belonging
to the training and validation set, adding the Days_resolution field, extracted in
the Data Collection activity, that will be used as response variable; the remaining
variables will be used as independent variables.

Next activity provides for the training of the machine learning algorithms to be
used. Our choice includes M5P model tree, Random Forests and Support Vector

1Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix
equation) that are sometimes also known as characteristic roots, characteristic values, proper values,
or latent roots.

74 P. Ardimento et al.

Fig. 4 Scree plot of the explained variance of the first nine principal components for FreeDesktop
data set, threshold= 0.01

Machine (using polynomial and Gaussian kernels), configured for a regression anal-
ysis.

A tuning phase is necessary to estimate the optimal values to be associated with
the algorithm’s parameters for the prediction; for this purpose, we used the training
set to train the models and the validation set to estimate the optimal values related
to the models’ parameters. Parameters that we estimate are the number of decision
trees for the Random Forests model (values range from 500 to 1000, using 100 as an
increment), the polynomial degree for the SVM with polynomial kernel (values range
from 1 to 5, using 1 as an increment) and the γ coefficient for the SVM with Gaussian
kernel (values range from 2(−3) to 23, using 1 as an exponent increment). The M5P
model tree algorithm does not provide for the use of parameters to be estimated. The
criterion we have adopted, aimed at selecting the values to be associated with the
related parameters, is based on the minimization of the RMSE on the validation set.
Once predicted the parameters, we train the algorithms using the union of the training
and validation set and we estimate the days resolution of bug reports belonging to
the test set.

The following code provides instructions for M5P model tree training and pre-
diction, using the R package “RWeka” [28].

M5P model tree training and prediction

Random Forest training and prediction

SVM with polynomial kernel training and prediction

A Text-Based Regression Approach to Predict Bug-Fix Time 75

#M5P model tree training

m5p <- M5P(formula = days_resolution ˜ ., data = training)
M5P model tree prediction

prediction <- predict(model = m5p, newdata = test)

where formula parameter in M5P() refers to a symbolic description of the model to
be fitted, model parameter in predict() refers to the model to be used to carry out the
prediction and newdata parameter refers to the data to be used to predict the response
variable.

The following code provides instructions for Random Forest training and predic-
tion, using the R package “randomForest” [29].

Random Forest training

rf <- randomForest(days_resolution ˜ .,
data = training, ntree = value)

Random Forest prediction

prediction <- predict(model = rf, newdata = test)

where, in this case, ntree parameter in randomForest() refers to the number of
decision trees to be used for model training; this value, as discussed above, was
estimated in the tuning phase.

The following code provides, instead, instruction for SVM with polynomial kernel
training and prediction, using the R package “e1071” [30].

SVM polynomial kernel training

svr <- svm(days_resolution ˜ ., data = training,

type = "eps-regression", kernel = "polynomial", degree = value)

SVM prediction
prediction <- predict(model = svr, newdata = test)

76 P. Ardimento et al.

where type parameter in svm() refers to the type of task for which the SVM is to
be used (classification or regression), kernel parameter refers to the type of kernel
to use (allowed values are linear, polynomial, radial and sigmoid), degree parameter
refers to the polynomial degree to be used (exclusively for a polynomial kernel); this
value, as discussed above, was estimated in the tuning phase.

Finally, the following code provides instruction for SVM with Gaussian kernel
training and prediction, using the R package “e1071”.

 SVM with Gaussian kernel training and prediction

SVM Gaussian kernel training

svr <- svm(days_resolution ˜ ., data = training,

type = "eps-regression", kernel = "radial", gamma = value)
SVM prediction

prediction <- predict(model = svr, newdata = test)

where gamma parameter (to be used exclusively for a Gaussian kernel), as discussed
above, was estimated in the tuning phase. As further study we split the predicted
values into Fast and Slow bins to perform a binary classification of bug reports.
Metrics used for this experiment are described in Sect. 5.2.

5 Experiment

In this section, we provide the set-up of the experiment. First, we introduce the
filtering step for bug reports, second, we present the metrics used, third, we show
results obtained through the experiments.

5.1 Projects Selected

We extracted bug reports information from Bugzilla repositories of the following
open source projects: Mozilla, FreeDesktop, NetBeans and Eclipse. Data were auto-
matically extracted from the on-line front-end provided by Bugzilla installation,
using ad-hoc web scraping routine written in PHP. Textual reports extracted were
pre-processed and analyzed using the R software system [13].

Table 1 shows the total number of textual bug reports extracted for each project
(F1), having Status field assigned to VERIFIED and Resolution field assigned to
FIXED. In F2 we reported the number of discarded bug reports because corrupted
and unrecoverable records, or missing XML report, or dimension being too large.

A Text-Based Regression Approach to Predict Bug-Fix Time 77

Table 1 Bug reports and projects selected
 F1 F2 F3 F4 F5 F6 Observation

Period
Mozilla 120490 498 2000 1400 399 201 [Sept.1994–

Nov.2016]
FreeDesktop 3461 2 2000 1400 399 201 [Jan.2003–

Oct.2016]
NetBeans 42636 9 2000 1400 399 201 [June1999–

Oct.2016]
Eclipse 45021 2 2000 1400 399 201 [Oct.2001–

Nov.2016]

Table 2 Bug-fix time discretization
Label Quantiles Mozilla FreeDesktop NetBeans Eclipse
Fast 0–0.75 0–50 0–72 0–48 0–41
Slow 0.76–1 51–2611 73–1961 49–2475 42–3795

We randomly selected, 2000 bug reports for each project (F3), and then we split
them into training, test and validation sets, considering the 70% of the sample size
as training set (F4), the 20% as test set (F5) and the remaining 10% as validation set
(F6). Last column, Observation period, shows the data observation period for each
project.

Once the prediction of the response variable related to the bug-fixing time was
made, we decided to solve the same problem as a binary classification task: for this
purpose, we have categorized predicted fixing-time and observed fixing-time of bug
reports belonging to the test set into Fast or Slow classes, using the third quartile q0.75
of the empirical distribution of bug-fixing time. We considered Slow as the positive
class, because of its larger impact in terms of cost/effectiveness. Table 2 shows the
results of binning.

It may be noted that the time taken to correct a bug shows large variations, with
most of the bugs that are fixed in a relatively short time. Finally, in [32] the full
collected dataset is available in JSON format.

5.2 Metrics Used

The reference metric used to evaluate the results provided by the regression analysis is
the root-mean-square error (RMSE), which measure the differences between values
predicted by a model and the values observed:

=

=

=

=

 i
=0
n

78 P. Ardimento et al.

,.n

(Predictedi − Actuali)2

One of the most popular performance measures in a binary classification problem
is accuracy, which is defined by the ratio of the number of correct predictions and
the total number of instances in the test sample. The accuracy denotes the proportion
of bugs correctly predicted:

Accuracy (T P + T N)
(TP + FP + TN + FN)

(2)

where TP (true positive) and FP (false positive) represents, respectively, the number
of positive instances correctly predicted, and the number of negative instances incor-
rectly predicted as positive. The precision denotes the proportion of bugs correctly
predicted for the positive class:

Precision
TP

TP + FP

(3)

Recall denotes the proportion of all the real positive bugs predicted for the positive
class:

Recall
TP

TP + FN

(4)

5.3 Results

In the this section, we show the result set of the best configurations adopted in the
experiments.

Table 3 shows, respectively, the result set for the projects Mozilla, FreeDesktop,
NetBeans and Eclipse for the regression analysis experiment. The results showed
that M5P model tree allows to minimize the RMSE on the relative test sets for the
projects Mozilla, FreeDesktop and NetBeans. This means that currently M5P model
tree allows us to estimate days resolution of bug reports belonging to that projects
more accurately than the other models adopted. Regarding the Eclipse project, the
model that has obtained the best performances, in terms of RMSE, is the SVM
with Gaussian kernel, using parameter γ 4.00. We can notice in most cases that
the document-term matrix dimensional reduction allows to obtain satisfactory per-
formance compared to when it is not used, in particular the Principal Component
Analysis (PCA) seems to be the most effective procedure. The use of the main prin-
cipal components that preserve most of the variance expressed by the data set, has
contributed to obtaining more accurate estimates of days resolution. The Information
Filtering procedure IF1 has allowed to obtain better results in terms of accuracy of
numerical values compared to the use of the IF2, moreover the TF metric for the

RMSE = (1)

A Text-Based Regression Approach to Predict Bug-Fix Time 79

Table 3 Regression results
Project Inf. Filt. Model Parameters Reduction Metrics RMSE
Mozilla IF1 M5r N.A. PCA TF 146.70
FreeDesktop IF1 M5r N.A. PCA TF 123.33
NetBeans IF2 M5r N.A. N.A. TF 152.02
Eclipse IF1 SVM γ = 4.00 PCA TF 147.13

Table 4 Classification results for SVM with polynomial kernel
Project Inf.

Filt.
Parameters Reduction Metrics Accuracy Precision Recall

Mozilla IF1 degree = 1 PCA TF-IDF 0.75 1.00 0.02
FreeDesktop IF1 degree = 4 RFE TF 0.75 0.67 0.02
NetBeans IF2 degree = 1 PCA TF-IDF 0.78 1.00 0.01
Eclipse IF1 degree = 2 RFE TF 0.74 0.52 0.12

document-term matrices is certainly the metric that allows to obtain better perfor-
mances in our regression experiment, being the one used in the result set.

Table 4 shows the result set of the same projects for the binary classification
experiment, in which we have classified bug reports in Fast or Slow classes, depending
on the estimated bug-fixing time during the previous experiment. Such table shows
only the result set for the SVM with polynomial kernel model as it allows to obtain
a higher accuracy score, metric that we consider most relevant in a classification
task, on all the selected projects. Despite the good accuracy of the model (which
ranges from 0.74 for Eclipse project to 0.78 for NetBeans project), we can notice a
low recall, denoting that it failed to correctly predict most of Slow bugs, those bugs
that require greater resources (in terms of time and human effort) for the resolution
of the same. The use of the third quartile q0.75 on the bug-fixing time discretization
might have specialized models to predict Fast bugs. As we can see in the result set
provided in Table 4 and in all the remaining ones here not included due to space
reasons but available in [31], the accuracy score of models increases with a lower
recall. The document-term matrix dimensional reduction seems to improve accuracy
performance in our binary classification experiment; PCA allows to obtain a higher
accuracy score when TF-IDF metric for document-term matrices is used, the same
cannot be said for RFE algorithm, as it allows to obtain a higher accuracy score
when TF metric is used. Moreover, also in this experiment, Information Filtering
procedure IF1 is the methodology used in the reported result set, which confirm that
currently this procedure is the most effective for estimating bug-fixing time related
to bug reports, for both experiments carried out.

80 P. Ardimento et al.

6 Discussion and Conclusion

In this work, we tackled the problem of predicting the bug-fixing time as a result of
a numerical regression problem using as predictor variables the textual information
extracted from the bug reports. The data set was built with the bug reports stored in
Bugzilla installations of four large open source projects like Mozilla, FreeDesktop,
NetBeans and Eclipse; after the data set has been pre-processed, document-terms
matrices have been generated; variables have been reduced using specific dimen-
sional reduction techniques, considering only the most significant for the prediction
purposes; they were used to train M5P model tree, Random Forest and Support Vector
Machine models. Numerical estimates of bug-fixing time, provided by the regression
analysis experiment, have been discretized into Fast and Slow classes, to perform a
binary classification experiment of bug reports.

The obtained results show that dimensional reduction procedures, used to reduce
the feature space to be included in our regression analysis, significantly affect the
results. The regression experiment results are better in all the four projects involved
using TF matrix, whose RMSE values ranging from 152.02 for NetBeans project, to
123.33 for FreeDesktop project. Model that provided the most accurate estimated in
terms of bug resolution time was the M5P model tree. In binary classification exper-
iment, it may be noted the unbalance of the labels in bug-fixing time discretization
has allowed to achieve a high accuracy score, whose values ranging from 0.74 for
Eclipse project, to 0.78 for NetBeans project; however, to these results correspond a
low recall, ranging from 0.01 for NetBeans project to 0.12 for Eclipse project, which
suggests that configurations characterized by a high accuracy score are not able to
correctly classify bug reports belonging to the Slow class, those bugs characterized
by a high-resolution time. However, it is possible to observe in the remaining result
set some configurations with a discrete recall score, going to affect negatively to the
general accuracy of the predictors. Model that provided the highest accuracy score of
bug reports correctly classified was the SVM, using a polynomial kernel. Moreover,
also in this experiment, dimensional reduction procedures significantly affect the
results.

We can notice a slight improvement in evaluation measures in this work, compared
with the best ones existing in similar works in the literature, where bug-fixing time
has been solved as a binary classification problem: in work [6], using a sample of
bug reports extracted from the Eclipse project, three classifiers have been trained to
classify bug reports into Fast or Slow classes. Classifier that achieved the best perfor-
mances in terms of evaluation measures was a Multivariate Bernoulli (MB) model,
using a Laplace λ smoothing parameter equal to 2. This configuration achieved an
accuracy score of 0.73, a precision of 0.60 and a recall of 0.04. In our work, using
an innovative approach not yet tested in the bug-fixing time problem, SVM with
polynomial kernel we have trained on the Eclipse data set reported an improvement
in both accuracy and recall scores with respect to the mentioned work. Although
the accuracy score has remained almost unchanged, we can notice an improvement
in the recall, which suggests that our model is able to correctly classify more bug

A Text-Based Regression Approach to Predict Bug-Fix Time 81

reports belonging to the Slow class, those reports that have a larger impact in terms
of resources spent to fix bugs.

Our proposed model, compared to the main approaches used in the literature, is
able to provide numerical estimates about bug-fixing time, which constitutes one
of the main advantages of our proposed approach. In Bug triage process accurate
estimates on bug resolution time are fundamental for saving resources, in terms of
both time and cost. However, days resolution estimates provided by our model are
not yet accurate to the point of providing support for the bug triager, mainly due
to the lack of some relevant information with-in bug reports. Number of developers
involved in the bug-fixing process is an information not mentioned in bug reports
extracted from Bugzilla; such information could help us in a better understanding
of the amount of resources allocated for its resolution, moreover also fixing time in
terms of working days is a missing information, for this reason it was necessary to
estimate it in calendar days.

As future work, our model can also be refined, analyzing, for example, the content
of the attachments in the reports, in order to enrich the feature space. Filtering outliers,
that is bugs characterized by a long fixing time with respect to the average, could
be a further improvement, particularly about errors due to a bad estimation of the
values related to the bug-fixing time. Moreover, this process might help us to improve
the recall score, as in a binary classification experiment these values are generally
associated to the Slow class.

In conclusion, the prediction of the bug-fix time is a hot topic of software engi-
neering and the results of this work, slightly better than those obtained from similar
works in the literature, suggest that new and innovative ways should be explored to
create a solution, reliable and highly precise, usable with extreme effectiveness in a
real context.

6.1 Threats to Validity

To judge the quality of our work it is very important to consider the following threats
to the validity of the study:

Bug-fixing time. The actual time spent by developers as well as the distribution
in terms of hours per day to fix a bug are information not publicly declared on
Bugzilla. For this reason, we assumed a uniform distribution of developers work
to calculate the effort spent in calendar days. These assumptions do not consider
the real efforts spent by developers involved in bug-fixing.
Data set sampling. Due to hardware and software limitations, data sampling was
necessary. This approach could undermine the validity of the results, as it defines
a sample that may not be representative with respect to bug reports extracted from
Bugzilla.
The set of experimental projects. We conducted our experiments on four data
sets extracted from Mozilla, FreeDesktop, NetBeans and Eclipse Bugzilla BTS,
respectively. These projects are not representative of the population of all open
source software.

•

•

•

82 P. Ardimento et al.

Non-open source projects. We are not sure the proposed model can also be used
effectively for non-open source projects, such as proprietary projects. This is
because in proprietary projects a specific group is typically responsible for fix-
ing given bugs based on corresponding features, so the current model may not
apply to these kinds of projects.
Outliers management. Samples extracted from collections are prone to contain
bug-fix time outliers. This information can influence model training, therefore the
prediction of the values related to the response variable. Removing outliers can
improve the quality of the data and may have a positive impact on the model
performance.
Field selection. We are not sure that all the fields used to build the data set are
significant, according to the bug-fixing time, so the proposed model may not be
totally accurate. We decided not only to select those fields suggested by literature
[3, 5] but also adding what are, in our opinion, useful to predict bug-fixing time.
Reopening of a closed bug. The possibility that the same bug report can be
reopened later is not considered. This event is treated as a new insertion of a
report; this could invalidate, potentially, the calculation of each bug used for the
data set.

Acknowledgements The research is partially supported by the POR Puglia FESR-FSE 2014-
2020 - Asse prioritario 1 - Ricerca, sviluppo tecnologico, innovazione - Sub Azione 1.4.b bando
innolabs - sostegno alla creazione di soluzioni innovative finalizzate a specifici problemi di rilevanza
sociale - Research project KOMETA (Knowledge Community for Efficient Training through Virtual
Technologies), funded by Regione Puglia.

References

1. Ardimento, P., Bianchi, A, Visaggio, G..: Maintenance-Oriented Selection of Software Com-

ponents. In: Proceedings of the 8th Euromicro Working Conference on Software Maintenance
and Reengineering (CSMR’04), Washington, DC, USA. IEEE Computer Society (2004)

2. Habayeb, M., Murtaza, S.S., Miranskyy, A., Bener, A.B.: On the use of hidden Markov model
to predict the time to fix bugs. IEEE Trans. Softw. Eng. 44, 1224–1244 (2018)

3. Panjer, L.D.: Predicting eclipse bug lifetimes. In: Proceedings of the 4th International Workshop
on mining software repositories, p. 29 (2007)

4. Kim, S., Whitehead, Jr., E.J.: How long did it take to fix bugs? In: Proceedings of the 2006
International Workshop on Mining Software Repositories, pp. 173–174 (2006)

5. Giger, E., Pinzger, M., Gall, H.: Predicting the fix time of bugs. In: Proceedings of the 2nd
International Workshop on Recommendation Systems for Software Engineering, pp. 52–56
(2010)

6. Ardimento, P., Bilancia, M., Monopoli, S.: Bug-fix, predicting, time: using standard versus
topic-based text categorization techniques. In: Calders, T., Ceci, M., Malerba, D. (eds.) Dis-
covery Science, DS 2016. Lecture Notes in Computer Science, vol. 9956. Springer, Cham
(2016)

7. Ardimento, P., Dinapoli, A.: Knowledge extraction from on-line open source bug tracking
systems to predict bug-fixing time. In: Proceedings of the 7th International Conference on Web
Intelligence, Mining and Semantics (WIMS’17), New York, NY, USA, Article 7, p. 9. ACM
(2017)

•

•

•

•

A Text-Based Regression Approach to Predict Bug-Fix Time 83

8. Bugzilla installation for Mozilla. https://bugzilla.mozilla.org/. Accessed 19 July 2019
9. Bugzilla installation for FreeDesktop.org. https://bugs.freedesktop.org/. Accessed 19 July 2019

10. Bugzilla installation for NetBeans. https://netbeans.org/bugzilla/. Accessed 19 July 2019
11. Bugzilla installation for Eclipse. https://bugs.eclipse.org/bugs/. Accessed 19 July 2019
12. MongoDB, a cross-platform document-oriented database program. https://www.mongodb.

com/. Accessed 19 July 2019
13. R Core Team. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/. Accessed 19 July
2019

14. Bugzilla documentation. REST API Bugzilla. https://bugzilla.readthedocs.io/en/5.0/api/index.
html. Accessed 19 July 2019

15. Life cycle of a bug. https://bugzilla.readthedocs.io/en/5.0/using/editing.html. Accessed 19 July
2019

16. Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, pp. 34–43 (2007)

17. Anbalagan, P., Vouk, M.: On predicting the time taken to correct bug reports in open source
projects. In: Proceedings of 2009 IEEE International Conference on Software Maintenance,
pp. 523–526 (2009)

18. Bhattacharya, P., Neamtiu, I.: Bug-fix time prediction models: can we do better? In: Proceedings
of the 8th Working Conference on Mining Software Repositories, pp. 207–210 (2011)

19. Puranik, S., Deshpande, P., Chandrasekaran, K.: A novel machine learning approach for bug
prediction. Procedia Comput. Sci. 93, 924–930 (2016)

20. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches.
In: 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pp. 31–41
(2010)

21. Zhang, H., Gong, L., Versteeg, S.: Predicting bug-fixing time: an empirical study of com-
mercial software projects. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 1042–1051 (2013)

22. Akbarinasaji, S., Caglayan, B., Bener, A.: Predicting bug-fixing time: a replication study using
an open source software project. J. Syst. Softw. 136, 173–186 (2018)

23. Marks, L., Zou, Y., Hassan, A.E.: Studying the fix-time for bugs in large open source projects. In:
Proceedings of the 7th International Conference on Predictive Models in Software Engineering,
p. 11 (2011)

24. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.
2, 433–459 (2010)

25. Kanyongo, G.Y.: Determining the correct number of components to extract from a principal
components analysis: a Monte Carlo study of the accuracy of the scree plot. J. Mod. Appl. Stat.
Methods 4(1), article 13 (2005)

26. Bouchet-Valat, M.: SnowballC: Snowball stemmers based on the C ‘libstemmer’ UTF-8 library.
R package version 0.6.0. (2019). https://CRAN.R-project.org/package=SnowballC. Accessed
19 July 2019

27. Feinerer, I., Hornik, K.: tm: text mining package. R package version 0.7-6 (2018). https://
CRAN.R-project.org/package=tm. Accessed 19 July 2019

28. Hornik, K., Buchta, C., Zeileis, A.: Open-source machine learning: R meets Weka. Comput.
Stat. 24(2), 225–232 (2009). https://doi.org/10.1007/s00180-008-0119-7

29. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22
(2002)

30. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F: e1071: Misc functions of
the department of statistics, probability theory group (Formerly: E1071), TU Wien. R package
version 1.7-1. (2019). https://CRAN.R-project.org/package=e1071. Accessed 19 July 2019

31. The full result set of empirical experimentation. https://www.dropbox.com/s/
s50o66pez76si7q/projectsResults.pdf?dl=0. Accessed 19 July 2019

32. The collected dataset is available, in JSON format, online under this link. https://drive.google.
com/open?id=1gZP2yFYJ41xA6Vf_PQOKJrmJjNhaCFKa. Accessed 19 July 2019

https://bugzilla.mozilla.org/
https://bugs.freedesktop.org/
https://netbeans.org/bugzilla/
https://bugs.eclipse.org/bugs/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.r-project.org/
https://bugzilla.readthedocs.io/en/5.0/api/index.html
https://bugzilla.readthedocs.io/en/5.0/api/index.html
https://bugzilla.readthedocs.io/en/5.0/using/editing.html
https://cran.r-project.org/package%3DSnowballC
https://cran.r-project.org/package%3Dtm
https://cran.r-project.org/package%3Dtm
https://doi.org/10.1007/s00180-008-0119-7
https://cran.r-project.org/package%3De1071
https://www.dropbox.com/s/s50o66pez76si7q/projectsResults.pdf?dl=0
https://www.dropbox.com/s/s50o66pez76si7q/projectsResults.pdf?dl=0
https://drive.google.com/open?id=1gZP2yFYJ41xA6Vf_PQOKJrmJjNhaCFKa
https://drive.google.com/open?id=1gZP2yFYJ41xA6Vf_PQOKJrmJjNhaCFKa

