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treatments received 130% of the crop evapotranspiration (ETc) and the RDI treatments
received 80% of ETc during the kernel filling. Trunk diameter decreased in both RDI
treatments at the end of the experimental period, although this response was more
marked in the trees irrigated with saline RW. There were negative relationships
between shoot growth and leaf Na+ and Cl+ contents in the saline treated trees, in
which the accumulation of salts in leaves was associated with osmotic adjustment,
which was responsible for maintaining midday leaf turgor. Plant water status,
measured by the leaf and water potential, decreased in almond exposed to water
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of exposure to the stress. Saline and desalinated RW can be successfully used for
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Abstract 17 

Regulated deficit irrigation (RDI) strategy using reclaimed water (RW) is becoming a 18 

common procedure in some Mediterranean regions. Full and regulated deficit irrigation were 19 

combined with desalinated (ECw 1 dS m-1) and saline (ECw 3 dS m-1) reclaimed water to irrigate 20 

young potted almond trees over a 3-year period. The full irrigation treatments received 130% of 21 

the crop evapotranspiration (ETc) and the RDI treatments received 80% of ETc during the kernel 22 

filling. Trunk diameter decreased in both RDI treatments at the end of the experimental period, 23 

although this response was more marked in the trees irrigated with saline RW. There were 24 

negative relationships between shoot growth and leaf Na+ and Cl+ contents in the saline treated 25 

trees, in which the accumulation of salts in leaves was associated with osmotic adjustment, 26 

which was responsible for maintaining midday leaf turgor. Plant water status, measured by the 27 

leaf and water potential, decreased in almond exposed to water deficit or irrigated with saline 28 

RW, indicating a slight dehydration in these plants due to the difficulty in water uptake from the 29 

substrate. During the first two years, the decline in stomatal conductance and photosynthesis 30 

was more pronounced in trees submitted to RDI when irrigated with desalinated RW, although 31 

the cumulative effect of irrigating with saline RW for a longer period also decreased 32 

photosynthesis, especially in trees irrigated with saline RW combined with RDI strategy, 33 

verifying the relevance of duration of exposure to the stress. Saline and desalinated RW can be 34 

successfully used for irrigating almond trees, which might be of great economic and competitive 35 

significance for agriculture, but further research focused on a longer term should be carried out 36 

since detrimental effects might appear. Deficit irrigation combined with saline RW in P. dulcis is 37 

not recommended since it intensifies the negative effects of water and salt stress applied 38 

individually. 39 

 40 

 41 
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Abbreviations 45 
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evapotranspiration; FI; full irrigation, RDI; regulated deficit irrigation; S; saline reclaimed water; 50 

D; desalinated reclaimed water; RW; reclaimed water; ETc: crop evapotranspiration;  51 

 52 

1. Introduction.  53 

 54 

Water shortages are very frequent in many countries, and, together with the rising demand 55 

for industry, growth of human population, climate change and specifically the trend towards 56 

irrigated agriculture, have led to widespread problems of water scarcity, especially in 57 

Mediterranean countries (Romero-Trigueros et al., 2020). This situation imposes the need to 58 

optimize its use in all human activities (Fulcher et al., 2016, Álvarez et al., 2019). Among the 59 

different productive uses of water, agriculture is by far the main water user in most water scarce 60 

regions and, consequently, any potential improvement in the use of the available water 61 

resources may play a role toward achieving a more sustainable use of water (Fereres and 62 

Soriano, 2007; Alcon et al., 2013). Stakeholders involved in water resource management are 63 

looking for knowledge necessary to successfully irrigation management. To achieve this 64 

objective, several water conservation strategies have been recommended, for example by using 65 

precise tools for assessing crop water requirements (Mirás-Avalos et al., 2016), reclaimed water 66 

(Grant et al., 2012; Nicolás et al., 2018; Erel et al., 2019), drought and salt tolerant genotypes or 67 

rootstocks (Yadollahi et al., 2011; Jiménez et al., 2013; Álvarez et al., 2020), applying deficit 68 

irrigation strategies (Ruiz-Sánchez et al., 2010; Romero-Trigueros et al., 2019a; Sánchez-69 

Blanco et al., 2019) and providing information about the water use requirements of the trees 70 

depending on the phenological periods varying (Goldhamer and Beede, 2004). 71 

Almond (Prunus dulcis (Mill.) D.A. Webb) is a major tree nut species whose production and 72 

profitability are highly dependent on irrigation supply (Egea et al., 2010), especially in regions 73 

such as the Mediterranean basin characterized by low rainfall and high evaporative demand 74 

during the almond growing season. The physiological and morphological response of almond to 75 

different irrigation levels has been extensively investigated (Torrecillas et al., 1988, Shackel, 76 

2007; Egea et al., 2010; Espadafor et al., 2017). One of the most promising techniques to 77 

maximize the water use in tree crops with little or no impact on crop yield and quality is 78 

regulated deficit irrigation (RDI), which is defined as an irrigation strategy that provides irrigation 79 

water below the full needs for specific development stages. Past research has revealed the 80 

interest of this irrigation technique, with special attention paid to fruit crops, including almonds, 81 
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where it has been successfully employed (Goldhamer and Viveros, 2000; Girona et al., 2005; 82 

Romero and Botía, 2006; Stewart et al., 2011). 83 

Due to the increasing pressure on fresh water resources, the use of saline waters and 84 

reclaimed water (RW) has become a reliable alternative for irrigation in agriculture (Acosta-85 

Motos et al., 2016; Romero-Trigueros et al., 2019b). This situation imposes the need to use 86 

non-conventional water resources (desalinated or reclaimed water) for irrigation. Saline RW has 87 

been successfully used in several fruit crops like citrus (Nicolás et al., 2016), olive (Erel et al., 88 

2019) and other species (Pedrero et al., 2018; Perulli et al., 2019). The main conclusions from 89 

these studies are that treated wastewater can be used as an additional water resource for tree 90 

irrigation in water-scarce Mediterranean environments. Little information is available on the 91 

effect of using saline or reclaimed water to irrigate almond trees, although they represent an 92 

important section of fruit trees production and such information be of great interest for designing 93 

and promoting water conservation strategies (Phogat et al., 2018). Notably, the studies related 94 

to salinity in almonds are specifically focused on the evaluation of salt tolerance in genotypes 95 

(Rouhi et al., 2007; Dejampour et al., 2012; Rajabpoor et al., 2014; Bahrami et al., 2015) and 96 

rootstocks (Doll et al., 2014; Momenpour et al., 2018). Research on the physiological 97 

performance of P. dulcis irrigated with RW is still lacking, as the previous studies about salinity 98 

tolerance of almonds have been conducted just on irrigation NaCl solutions and it is well known 99 

that the chemical properties of the water applied also affect the response of plant, being the 100 

kind of water a relevant aspect (Gómez-Bellot et al., 2013). In addition, increasing water 101 

resource problems in arid regions are even leading to growers to use the RW combined with 102 

deficit strategies (Mounzer et al., 2013). Many works have focused on water and salt stress 103 

applied individually, but very few have evaluated the physiological changes that take place 104 

when both stresses applied simultaneously, despite the fact of being known that the response 105 

by plants to combination of these two stresses may differ if water and salt stress applied 106 

individually or simultaneously (Brown et al., 2006; Sucre and Suárez, 2011; Glenn et al., 2012). 107 

In general, under saline or drought conditions, plants reduce their water uptake capacity, but 108 

using irrigation waters with high salt concentrations can also cause ion toxicities and nutritional 109 

imbalance, depending on the kind of salts in the irrigation water (Acosta-Motos et al., 2014). In 110 

this sense, RW may contain high concentrations of salts and, in consequence, their use in 111 

irrigation for long term may have negative effects on soils and plants (Ayers and Westcot, 112 

1985), particularly for those crops relatively sensitive to salinity, such as almonds (Phogat et al., 113 

2018). It is for these reasons that reducing salt concentration in these water resources, leading 114 

to desalinated RW, could be an interesting option to reduce problems associated with salinity, 115 

providing different solutions to agriculture of arid and semi-arid environments. 116 

However, studies regarding the physiological effects of the irrigation with RW on almond 117 

trees are lacking. The short-term response in term of growth and yield of almond trees to 118 

irrigation with desalinated and saline RW combined with RDI strategy during 1 year has been 119 

well described in a previous study (Vivaldi et al., 2019), but no information is available on its 120 

physiological response of several years of irrigation with these non-conventional water 121 
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resources. Due to that the response of plants to salinity depends not only on the water 122 

composition, but also on the time of exposure to salt stress (Nicolás et al., 2016), the present 123 

work was carried out over a three-year period in P. dulcis, using the same trees tested by 124 

Vivaldi et al. (2019) but after two additional growing seasons (three seasons in total from 2017 125 

to 2019). 126 

The main objective of this research was to study the mid-term effects on young almond 127 

potted trees exposed to RW and different irrigation strategies, with special interest in plant 128 

growth, ion accumulation and tree water status, in order to identify the mechanisms that the 129 

plants develop to cope with these stresses. For this, a three-year experiment was designed to 130 

evaluate single and interaction effects of different levels of irrigation and salinity, in an attempt 131 

to check the sustainability of these irrigation strategies and to identify the most adequate in 132 

each context. The results can also be important contributions to scheduling irrigation strategies 133 

in water scarce regions, where low quality waters are often combined with deficit irrigation 134 

strategies, as well as making more sustainable almond crop production in regions with limited 135 

water resources. Our working hypothesis were: responses of almonds irrigated with reclaimed 136 

water would be different from those of trees irrigated with saline water with the same level of 137 

salinity; degree of salt stress tolerance would be correlated with the ability to control ion 138 

accumulation in leaves; and reclaimed water would confer a protective effect on water stress 139 

tolerance, as observed for other species. 140 

 141 

2. Material and methods 142 

 143 

2.1. Plant material and experimental conditions 144 

 145 

The study was performed during three consecutive seasons (2017-2019) in an experimental 146 

orchard cultivated with 3-years old (in 2017) almond trees (Prunus dulcis (Mill.) D.A. Webb, cv. 147 

“Genco”) grafted on a hybrid Rootpak 20® of Prunus besey x Prunus cerasifera L-H. Bailey and 148 

Ehrh. Plants were transplanted in January 2017 into 100L polyethylene pots (diameter 50 cm, 149 

height 65 cm) filled with soil. The soil texture was classified as loam (44.78% sand, 12.32% clay 150 

and 42.90%silt) (USDA textural soil classification). Plants were placed outdoors in a plot in the 151 

University of Bari experimental station located in the southeast of Italy (Bari, Apulia Region) 152 

(41º06’41’’N, 16º52’57’’E, 5 m above sea level). Pots were on the ground with a 1.85 x 2.10 m 153 

planting system in rows oriented N-NE to S-SW. 154 

The climate data were recorded by an automatic weather station located about 100 m from 155 

the experimental site. Air temperature, solar radiation, air relatively humidity, rainfall and wind 156 

speed 2.5 m above the soil surface were collected every 15 min. These data were used for 157 

calculating ET0 and crop water requirements. All treatments received the same amounts of 158 

fertilizer (N-P2O5-K2O), applied through the drip irrigation system. Pest control practices and 159 

pruning were those commonly used by growers in the area, and no weeds were allowed to 160 

develop in the pots. 161 
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 162 

2.2. Treatments 163 

 164 

Two irrigation water sources were used. Desalinated RW (D) was produced on the DESERT 165 

prototype and was a result of secondary treated wastewater coming from Bari wastewater 166 

treatment plant and treated with ultrafiltration, active carbon and reverse osmosis till reach ECw 167 

of 1 dS m-1 and saline RW (S) was a secondary wastewater mixed with the brine produced on 168 

the DESERT prototype till reaching an ECw of 3 dS m-1. DESERT (DEsalination and SEnsor 169 

Technology) is an innovative and low cost water desalination and sensor technology compact 170 

module for continuously monitoring water quality that has been developed in the framework of 171 

the DESERT European project (Water JPI, 2016) with participating partners from Italy, Spain 172 

and Belgium. 173 

For each water source, two irrigation treatments were established. The full irrigation (FI) 174 

treatments involved irrigation with D or S during the whole season at 130% ETc (D-FI and S-FI, 175 

respectively). The RDI treatments consisted of irrigation at 130% ETc, except during the kernel 176 

filling, for 35-40 days between late-June and early August, when it consisted of 80% of the ETc 177 

(D-RDI and S-RDI). Therefore, four irrigation treatments based on the water quality of the 178 

irrigation source and water quantity were performed. The irrigation treatments consisted of a 179 

desalinated full irrigation treatment (D-FI) irrigated through the growing season to fully satisfy 180 

crop water requirements using desalinated reclaimed water, a saline full irrigation treatment (S-181 

FI) using saline reclaimed water, and two regulated deficit irrigation treatments: desalinated 182 

regulated deficit irrigation (D-RDI) plants were irrigated using desalinated RW, and saline 183 

regulated deficit irrigation (S-RDI) plants were irrigated using saline RW. 184 

The irrigation doses were scheduled on the basis of the daily crop evapotranspiration (ETc), 185 

estimated as described by Vivaldi et al. (2019). The water was supplied by drip irrigation with 186 

three pressure compensated drippers per tree, each with a flow rate of 2 L h-1. Trees were 187 

irrigated daily during the three-year experiment. The irrigation was controlled automatically by a 188 

head unit programmer and the amount of water applied for each irrigation treatment were 189 

measured with in-line flowmeters placed in each treatment. A total of 40 trees made up this 190 

assay (10 per treatment). Each irrigation treatment had five replicates, distributed in a 191 

completely randomized design. Each replicate consisted of two trees. 192 

 193 

2.3. Water quality 194 

 195 

The inorganic solute content, pH and ECw of each irrigation water source were assessed 196 

monthly during the irrigation season in 2017, 2018 and 2019. The samples were collected in 197 

glass bottles, transported in an ice chest to the laboratory, and stored at 5ºC before processed 198 

for chemical and physical analyses. The concentrations of Na+, K+, Ca+2, B+3 and Mg+ were 199 

determined by inductively coupled plasma optical emission spectrometer (ICP-ICAP 6500 DUO 200 

Thermo, England). Anions (Cl-, NO3-, PO4
3-, SO4

2-) were analysed by ion chromatography with a 201 
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liquid chromatograph (Metrohm, Switzerland). ECw was determined using a PC-2700 meter 202 

(Eutech Instruments, Singapore), and pH was measured with a pH-meter Crison-507 (Crison 203 

Instruments S.A., Barcelona, Spain). 204 

 205 

2.4. Plant growth and water status measurements 206 

 207 

At the beginning and at the end of each growing season, trunk diameter was measured in 208 

five trees per treatment with a sliding caliper, 0.20 m above the soil surface. Shoot length values 209 

were collected during growing period in 2018, by measuring the length of two shoots for each 210 

tree and four trees per treatment, and the relative growth rate (RGR) was calculated as the rate 211 

of increase of length per unit of initial shoot length. At the end of growing period in 2018, twenty 212 

leaves per tree in four trees per treatment were washed with distilled water and dried at 80ºC, 213 

before stored at room temperature for inorganic solute analyses. The concentration of Cl- was 214 

analyzed by chloride analyzer (Chloride Analyser Model 926, Sherwood Scientific Ltd.) in the 215 

aqueous extracts obtained when mixing 100 mg of dry vegetable powder with 40 mL of water 216 

before shaking for 30 min and filtering. The concentrations of Na+ were determined in a 217 

digestion extract with HNO3:HCl04 (2:1, v/v) by inductively coupled plasma mass spectrometry 218 

(ICP-ICAP 6500 DUO Thermo, England). 219 

Seasonal changes in leaf water potential (l), stem water potential (s), leaf osmotic 220 

potential (o), leaf turgor potential (t), leaf osmotic potential at full turgor (100s), stomatal 221 

conductance (gs), net photosynthesis rate (Pn) and transpiration (E) were determined in five 222 

trees per treatment in mature leaves at midday. l was estimated according to the method 223 

described by Scholander et al. (1965), using a pressure chamber (Model 3000; Soil Moisture 224 

Equipment Co, Santa Barbara, CA, USA), for which leaves were placed in the chamber within 225 

20 s of collection and pressurized at a rate of 0.02 MPa s-1 (Turner, 1988). s was measured in 226 

non-transpiring leaves that had been bagged with both a plastic sheet and aluminum foil for at 227 

least 2 h before measurement in order to prevent leaf transpiration: in this way leaf water 228 

potential equaled stem water potential (Begg and Turner, 1970). In six representatives dates 229 

during the experimental period, leaves from the l measurements were frozen in liquid nitrogen 230 

(-196ºC) and stored at -30ºC. After thawing, the osmotic potential (o) was measured in the 231 

extracted sap using a WESCOR 5520 vapour pressure osmometer (Wescor Inc., Logan, UT, 232 

USA), according to Gucci et al. (1991). t was estimated as the difference between leaf water 233 

potential (l) and leaf osmotic potential (o). Throughout the experimental period, leaf osmotic 234 

potential at full turgor (100s) was estimated as indicated above for o, using excised leaves with 235 

their petioles placed in distilled water overnight to reach full saturation. l and 100s were only 236 

measured during 2018 and 2019. Leaf stomatal conductance (gs), net photosynthesis rate (Pn) 237 

and leaf transpiration rate (E) were determined in attached leaves using a gas exchange system 238 

(LI-6400, LI-COR Inc., Lincoln, NE, USA), while the Pn/gs ratio was used as an estimation of the 239 

intrinsic water use efficiency. 240 

 241 
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2.5. Statistical analyses of data 242 

 243 

The data were analyses by one-way ANOVA using Statgraphics Plus for Windows 5.1 244 

software. Ratio and percentage data were subjected to an arcsine square-transformation before 245 

statistical analysis to ensure homogeneity of variance. Treatments means were separated by 246 

Duncan´s Multiple Range Test (P<0.05). Pearson´s correlation analysis was used to test for 247 

relationship between leaf ion concentrations and RGR of shoot length. 248 

 249 

3. Results  250 

 251 

3.1. Irrigation, water quality and volume applied 252 

 253 

Significant differences on the water quality were found between the two irrigation sources 254 

during the whole experiment (Table 1). Saline reclaimed water (S) had high salinity, with ECw 255 

values (≈3 dS m-1) higher than those measured in the desalinated reclaimed water (D) (≈1-1.1 256 

dS m-1). S also increased the concentrations of some nutrients such as NO3
-, PO4

3-, SO4
2-, K+, 257 

Mg+ and Ca+2 with respect to D, whereas the concentration of B+3 remained invariable. The high 258 

Na+ concentration observed in S, also increased the water sodium adsorption ratio (SARw) level 259 

from a mean value close to 4.6 [meq/L]0.5 observed in the D source to about 6.7 [meq/L]0.5 in the 260 

S source. It is also noteworthy that concentrations of phytotoxic elements such as Na+ and Cl- 261 

concentrations were clearly different in each irrigation water source. D had lower Na+ and Cl- 262 

concentration as a result of desalination process, reaching on the average, values of Na+ (165 263 

mg L-1) and Cl- (211 mg L-1), as compared to the S (328 for Na+ and 416 mg L-1 for Cl-).  264 

The mean annual ET0 and rainfall for the three experimental seasons were 1291 and 586 265 

mm (Fig. 1) The amounts of irrigation water applied in 2017, 2018 and 2019 in the full irrigation 266 

treatments were 368, 246 and 221 mm, while in the RDI treatments were 305, 201 and 184 mm 267 

respectively, which meant reductions of about 20% each year in the RDI treatments (Fig. 1).  268 

 269 

3.2 Plant growth and leaf mineral concentrations 270 

 271 

Regulated deficit irrigation and reclaimed water affected the growth and size of the almond 272 

trees and a significant decrease in trunk diameter and shoot length compared with D-FI trees 273 

was measured during the experimental period. However, the specific response depended on 274 

the treatment and parameter in question. Throughout the experiment, trunk diameter was 275 

similar in all treatments, but began to be inhibited three years after application of the RDI (Table 276 

2). At the end of the experimental period, trunk diameter was significantly inhibited by both RDI 277 

compared to full irrigation trees, the smallest plants (4.2 cm), being those subjected to RDI 278 

combined with saline RW. As regard RGR as a function of shoot length, no differences between 279 

the D-FI and D-RDI treatments were observed, but lower rates were found in the trees irrigated 280 

with saline RW (Fig. 2). While no accumulation of Na+ and Cl- was found in the leaves of trees 281 
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submitted to D-RDI treatment compared with D-FI treatment, the contents of both ions 282 

increased in the leaves of the trees irrigated with saline RW (Fig. 2). In all treatments, the Cl- 283 

content in the leaves was markedly higher than the corresponding of Na+ content (between 12 284 

and 30 fold higher), despite that the concentrations of both ions in the irrigation water were 285 

similar (7.0 and 5.5 mmol L-1 in D; 11.7 and 10.6 mmol L-1 in S, for Na+ and Cl- respectively). 286 

This means that P dulcis plants are able to restrict Na+ accumulation in leaves to a greater 287 

extent than Cl-. Thus, the trees increased their leaf Cl- content sharply, reaching a value of 2.4% 288 

in S-RDI plants. The highest Cl- value was measured in leaves of S-RDI plants, while the 289 

highest Na+ value was in S-FI, which means that the retention and transport of both ions was 290 

different. Significant relationships between RGR and leaf Na+ and Cl- content were observed in 291 

the almond trees in 2018 at the end of the deficit irrigation period (Fig. 2). 292 

 293 

3.3. Plant water relations and osmotic adjustment 294 

 295 

The seasonal evolution of stem water potential (s) and leaf water potential (l) during the 296 

experimental period for both water sources (D and S) and irrigation treatments (FI and RDI) is 297 

shown in Fig. 3A, B. Plants irrigated at full water requirements using desalinated RW 298 

maintained the s close to -1.0 MPa during the three-year experimental period (Fig. 3A). By 299 

contrast, under drought conditions, the s values progressively decreased in both RDI 300 

treatments compared with full irrigation trees, reaching values at midday of -2.5 and -2.6 MPa 301 

for the S-RDI and D-RDI treatments, respectively at the end of deficit irrigation period in 2018. 302 

However, these values were never reached in 2019 which was a year characterized by a larger 303 

amount of rainfall over the deficit irrigation period and lower evaporative demand compared with 304 

2017 and 2018 (Fig. 1).  305 

Once full irrigation conditions were restored, s in the RDI treatments immediately recovered 306 

and matched that of the full irrigation trees during the first two growing seasons. While in 2019, 307 

this recovery took more time, especially in S-RDI, and differences among treatments only 308 

disappeared at the end of the experimental period. 309 

No pronounced differences in s were found between trees of both full irrigation treatments 310 

(D-FI and S-FI) during most of the experimental period, although lower s values were 311 

observed in plants irrigated with saline RW compared with trees irrigated with desalinated RW in 312 

2019. Similarly, in plants subjected to both RDI, 3 years after the beginning of the irrigation with 313 

reclaimed water S-RDI plants had the lowest s. As expected, s and l were higher in general 314 

in the trees of both full irrigation treatments than in both RDI treatments, although s measured 315 

at midday showed lower variability than l (Fig. 3A, B). Thus, s was able to detect differences 316 

among treatments to a greater extent than l. 317 

The application of the RDI strategy, with desalinated or saline RW, reduced the leaf osmotic 318 

potential (o) values compared with D-FI during the water stress periods, which induced similar 319 

values of leaf turgor potential (t) in the D-FI and S-RDI treatments, and even higher in D-RDI 320 

at the end of the deficit period in 2019 (Fig. 3C). The lowest values for t were found in D-RDI 321 
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trees, reaching a value of 0.5MPa during the RDI period in 2018, coinciding with the lowest 322 

value of s (Fig. 3D). 323 

At the end of the deficit irrigation periods in 2018 and 2019, leaf osmotic potential values at 324 

full turgor (100s) decreased in trees irrigated with saline RW (S-FI and S-RDI), especially under 325 

the combination of saline reclaimed water and regulated deficit irrigation (S-RDI) (Table 3). This 326 

reduction was indicative of the osmotic adjustment that took place in these trees as a 327 

consequence of the irrigation (0.37 MPa and 0.79 MPa for S-FI and S-RDI treatments, 328 

respectively).  329 

 330 

3.4. Leaf gas exchange 331 

 332 

Stomatal conductance (gs) and the photosynthetic rate (Pn) are shown in Fig. 4. The trees 333 

subjected to both deficit irrigation treatments showed lower gs values than the full irrigated trees 334 

during the RDI period, especially in the case of trees irrigated with desalinated RW in 2018 (Fig. 335 

4A). Such reductions with respect to the full irrigation trees were also observed in 336 

photosynthesis levels, although the differences were less marked (Fig. 4B). 337 

Once well-watered conditions were restored, both the Pn and gs values of the plants that had 338 

been exposed to deficit irrigation showed recovery with respect to the full irrigation treatments 339 

and similar values of Pn and gs were obtained in all treatments at the end of each growing 340 

season. Trees irrigated at full water requirements using saline water reduced Pn with respect to 341 

D-FI in 2019, 3 years after the beginning of the saline irrigation. At that time, the lowest Pn 342 

values were found in S-RDI plants, this is when the two constraints were combined. 343 

In general, trees subjected to RDI treatments showed higher Pn/gs ratios (intrinsic water use 344 

efficiency) than full irrigated trees during the deficit irrigation period, but these differences 345 

between treatments disappeared when irrigation was restored (Fig. 4C). All treatments showed 346 

a decline in leaf transpiration rate (E) as the evaporative demand of the atmosphere increased, 347 

whereas more pronounced E reductions were found in D-RDI and S-RDI treatments in response 348 

to a decrease in the irrigation amount (Fig. 4D). This parameter changed in the RDI treatments 349 

according to the irrigation applied in each phase. In the RDI treatments, when irrigation pattern 350 

was changed, the trees increased or decreased their leaf transpiration (E) and adjusted to the 351 

new conditions, but with some particular characteristics. When trees were exposed to deficit 352 

irrigation after full irrigation conditions, plants of both RDI treatments restricted their E in relation 353 

to the full irrigation trees. This reduction was earlier and more marked in plants irrigated with 354 

desalinated RW, while the leaf rate readjustment in S-RDI took more time and during the first 355 

deficit irrigation period the leaf transpiration rate of S-RDI was similar to that of full irrigation 356 

plants, despite the lower levels of water applied (Fig. 4D). Once well-watered conditions were 357 

restored, the E in D-RDI plants quickly recovered and their E matched that of trees that had 358 

been well irrigated since the beginning of the experiment. In contrast, E values in the S-RDI 359 

plants increased more slowly and even were significantly lower than that in full irrigated trees at 360 

the end of growing season in 2017. 361 
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The net photosynthetic rates (Pn) decreased as stomatal conductance decreased, 362 

particularly when gs was below 150 mmol m-2 s-1, (Fig. 5A). In addition, plants showed higher  363 

Pn/gs ratios when stomatal conductance decreased from maximum to around 100 mmol m-2 s-1, 364 

but when g<100 mmol m-2 s-1, the decline in Pn/gs was more pronounced (Fig. 5B). Only trees of 365 

the D-RDI treatment reached gs values below 100 mmol m-2 s-1 during the deficit irrigation 366 

period. Fig. 6 presents the response of gs for all treatments to the decline of s. Stomatal 367 

conductance was maintained relatively high until s reached at about -1.2 MPa. Afterwards, it 368 

declined gradually, and by the time s was below -2 MPa, gs was lower than 100 mmol m-2 s-1. 369 

 370 

Discussion 371 

 372 

Fruit trees in general have demonstrated wide variability in their reaction to water stress and 373 

salinity. Variations in plant growth have been previously used to identify water or salt tolerant 374 

plants (Tattini and Traversi, 2008; Sidari et al., 2008). In our experiment, shoot growth in Prunus 375 

dulcis plants was more influenced by the irrigation with saline reclaimed water than by water 376 

deficit. However, Pedrero et al. (2015) irrigated young grapefruit trees for 3 consecutive years 377 

with saline RW with the same level of salinity used in our essay (EC=3 dS m-1) reporting no 378 

reductions of the canopy volume, which confirms the differences between species, and points to 379 

the higher relative salt sensitivity of almond compared with grapefruit when using reclaimed 380 

water. 381 

The effects of salinity and water stress on plant growth were additive, as trees submitted to 382 

RDI combined with saline RW had the lowest values of shoot length and trunk diameter, as 383 

previously reported by Glenn et al. (2012). Each of the different stresses tested in our study 384 

caused differences in growth responses of P. dulcis, indicating that the kind of stress and their 385 

interaction are key factors to success when using reclaimed water and /or regulated deficit 386 

irrigation strategies. In contrast to shoot length, trunk diameter was not reduced by saline RW 387 

irrigation under full irrigation, while trees submitted to both deficit irrigation treatments showed 388 

the lowest values of trunk diameter. Therefore, in almond trees, trunk growth was more 389 

sensitive to water deficit than to salinity. The reported differential response between shoot 390 

elongation and trunk diameter to salinity and deficit irrigation might be attributed to the variation 391 

in the time required by salts to affect each parameter. In fact, not all growth parameters are 392 

similarly affected by ionic and osmotic stress. This result is in agreement with Munns and Tester 393 

(2008), who reported that the reduction in growth parameters like plant size or trunk cross 394 

sectional area is evident much later than the reduction in cell production in young leaves. 395 

P. dulcis plants can cope with water shortage during kernel filling or irrigation with saline RW 396 

with no important reduction in growth. However, growth was markedly reduced by the 397 

combination of saline reclaimed water and regulated deficit irrigation, which is a negative 398 

aspect, as the reduction of the tree canopy could affect the crop fruit load /potential yield 399 

(Nicolás et al., 2016; Romero-Trigueros et al., 2017). 400 
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In general, an increase in Na+ and Cl- concentration in the irrigation water led to an 401 

accumulation of Na+ and Cl- in the plant tissues of numerous species (Munns and Tester, 2008; 402 

Zrig et at., 2015; Álvarez et al., 2018; Momenpour et al., 2018). In our study, higher Na+ and Cl- 403 

contents were observed in the leaves of P dulcis trees irrigated with S, correlating with their 404 

lower shoot growth (Acosta-Motos et al., 2017). Under salt stress conditions, the ability to 405 

control the Na and/or Cl contents of the leaves, minimizing entry through the roots, retaining 406 

ions in the roots and lower stem and/or limiting transport to the aerial parts, is a crucial 407 

mechanism that can result in improved plant growth and survival under saline conditions 408 

(Pérez-Alfocea et al., 2000; Colmer et al., 2005).  409 

In the present study, P. dulcis were not able to retain Na+ and Cl- in the woody parts of the 410 

tree, especially for Cl- ions, although the retention and transport of each ion was different, as 411 

previously reported by Tattini and Traversi (2008). Trees irrigated with saline RW of 3 dS m-1 EC 412 

increased their Cl- content in leaves, especially in S-RDI, while the increase in the Na- content 413 

was similarly for both levels of irrigation, regardless the amount of water. The greater decline in 414 

plant growth observed in the almond trees submitted to RDI combined with saline RW could be 415 

attributed to excessive Cl- in leaves. Indeed, in certain species Cl- toxicity seems to be more 416 

severe than Na+ (Fornes et al., 2007). 417 

In plants exposed to water deficit, turgor maintenance is usually obtained by means of 418 

increasing concentrations of solutes as a consequence of cell volume reduction, which has 419 

been described as more efficient that turgor maintenance achieved through the production of 420 

organic solutes (Navarro et al., 2009; Turner, 2018). In our assay, the almond trees exposed to 421 

RDI reduced leaf osmotic potential as a tolerance mechanism to drought, which allow trees to 422 

maintain the high cell turgor pressure values. In addition, the irrigation with saline RW pointed to 423 

lower values of leaf osmotic potential at full turgor in almond trees, which is indicative of the 424 

osmotic adjustment process that occurs in these trees, as previously found in almond trees 425 

subjected to similar salinity levels (Shibli et al., 2003; Zrig et al., 2015). However, osmotic 426 

adjustment was not observed in almond trees exposed to water deficit when irrigated with 427 

desalinated RW.  428 

Similar observations are described in other species grown under salinity and water stress, 429 

where lower osmotic adjustment was found in water stress than in salt stress (Sucre and 430 

Suarez, 2011; Álvarez et al., 2012; 2018). The osmotic adjustment can be achieved by uptake 431 

the inorganic ion from the soil solution or by synthesis of organic solutes, the latter being the 432 

more cost-effective strategy (Slama et al., 2008). This could indicate that these solutes (Na and 433 

Cl) were responsible for the osmotic adjustment observed in almond plants when irrigated with 434 

saline RW. Zrig et al. (2015) found that Cl- and Na+ were the main osmolytes involved in 435 

osmotic adjustment in almonds subjected to salinity. However, this mechanism of leaf turgor 436 

maintenance by the accumulation of inorganic solutes, especially Cl-, can have deleterious 437 

effects on the plant (Pérez-Pérez et al., 2007). In the present investigation, it appeared that the 438 

high accumulation of Cl- in leaves of both S, especially S-RDI may have been responsible for 439 

the reduction in growth and death of older leaves observed in these plants. 440 
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Plant water status, measured by the leaf and water potential, decreased in almond exposed 441 

to water deficit or irrigated with saline RW, indicating a slight dehydration in these plants (Zrig et 442 

al., 2015; Espadafor et al., 2017). During the first two years, the lowest values of the s and l 443 

were observed in D-RDI, producing the lowest values of stomatal conductance and leaf 444 

transpiration rate. However, in the last year of the experiment (2019) the lowest values were 445 

observed for plants irrigated with S, especially when combined with RDI, due to the 446 

accumulation of salts together with passive dehydration (Slama et al., 2008). Álvarez and 447 

Sánchez-Blanco (2015) reported that stem water potential measured at midday can be used as 448 

an indicator of the stress resulting from water and salt stress in C. laevis plants, not only with 449 

salinity and water deficit separately but also when combined. A similar response was also noted 450 

in our essay with P dulcis when saline and desalinated reclaimed water was used for irrigation 451 

combined with RDI, as s was the most discriminating indicator for these stresses (Choné et al., 452 

2001). 453 

P. dulcis is considered a species with high stomatal sensitivity to water deficit, that prevents 454 

xylem cavitation by controlling stomatal function (Espadafor et al., 2017). Studies aimed at 455 

developing regulated deficit irrigation strategies in almonds have reported that plant water 456 

status had a dominant role in controlling stomatal closure and the reduction in stomatal 457 

conductance was attributed to a decrease in leaf and stem water potential. The results of this 458 

study are consistent with the finding of Shakel et al. (2007), who reported a reduction of 50% in 459 

gs when s was -1.4 to -1.8 MPa, a level of water stress that may be moderate for almond, as 460 

values as low as -4.0 MPa have been reported for severe stress levels. The decline in gs 461 

observed in the present work in response to the lowering of s suggests a high sensitivity to 462 

almond to water deficit. In this sense, almond trees are able to adapt to a reduced moisture 463 

level in the soil and, as a result, leaf transpiration rate (E) is reduced (Espadafor et al., 2017). In 464 

our experiment, environmental conditions and level of irrigation applied clearly affected 465 

transpiration, as pointed out by Phogat el al. (2013), Álvarez et al. (2013) and Fereres et al. 466 

(2014).  467 

Although the amount of water applied was the same in both RDI treatments, the lowest 468 

values for both E and gs were found in the trees submitted to RDI combined with desalinated 469 

RW (for the first two years) and in trees submitted to RDI combined with saline RW for the third 470 

year. This indicates that these parameters do not only depend on the amount of water applied 471 

but also on the EC of the water applied.  472 

The inhibition of transpiration under deficit irrigation or salinity is seen as an adaptation and it 473 

is one of the key mechanisms allowing plans to reduce water losses, delay the onset of more 474 

severe stress under drought conditions and limit the accumulation of toxic ions in the shoots in 475 

plants exposed to salinity. Evapotranspiration reductions have been attributed to lower stomatal 476 

conductance in the short term and to the reduction in leaf area in the long term as stress 477 

increases (Ali et al., 2012; Espadafor et al., 2017). In this sense, wilting and a great leaf loss 478 

was observed during the last growing season in S-RDI treatment, when salt injury became 479 

evident in the old leaves.  480 
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A decline in Pn due to irrigation with saline reclaimed water has also been described in a 481 

variety of species, such as Carrizo citrange, a plant sensitive to salinity (Pérez-Pérez et al., 482 

2007) or in M. communis, an ornamental plant tolerant to salinity (Acosta-Motos et al., 2014). 483 

Nevertheless, this parameter is not always decreased by the irrigation with reclaimed water. 484 

Nicolás et al. (2016) reported that the rates of photosynthesis were not reduced in mandarin 485 

trees after six years irrigating with reclaimed water with the same salt level (3 dS m-1) and 486 

Hassena et al. (2018) mentioned that irrigation with treated wastewater significantly increased 487 

the Pn in young olive trees in similar experimental conditions. 488 

As indicated in the results, no pronounced differences in photosynthesis were observed 489 

during the first two years of the experiment between plants irrigated under full irrigation, 490 

regardless the quality of the water source (D-FI and S-FI). However, the cumulative effect of 491 

irrigation with saline RW (3 dS m-1) for a longer period (3 years) was a reduction of Pn. In our 492 

study, trees submitted to the combination of water deficit and saline RW showed a small degree 493 

of Pn reduction during the first two years. However, the third year the reduction in Pn and gs was 494 

more pronounced in S-RDI than in D-RDI plants. Several works have verified that the 495 

morphological and physiological responses of plants to the combination of water and salt stress 496 

are more complex than a simple additive effect of water and salt stress applied individually 497 

(Mittler 2006, Pérez-Pérez et al., 2007). Some studies have shown that drought may magnify 498 

the adverse effects of salinity, reporting more negative impact on plant growth than their 499 

individual effects (Álvarez and Sánchez-Blanco, 2015). However, numerous studies have 500 

demonstrated that the addition of salt to plants submitted to water deficit actually has a positive 501 

effect on biomass accumulation in several species and found that salinity mitigates the 502 

deleterious effects of water stress and enhances plant survival (Glenn and Brown, 1998; 503 

Martínez et al., 2005; Alla et al., 2011, Sucre and Suárez, 2011; Glenn et al. 2012). 504 

Álvarez and Sánchez-Blanco (2014; 2015) in C. citrinus and C. laevis reported that if plants 505 

show gs values below 100 mmol m-2 s-1 for long periods, reductions in Pn are mainly caused by 506 

non-stomatal factors and intrinsic water use efficiency is sharply reduced, which could delay 507 

plant relief or cause irreversibly effects. As indicated in the results the values of gs observed in 508 

our study were maintained relatively high, being above 200 mmol m-2 s-1 during most of the 509 

experiment, while gs values lower than 100 mmol m-2 s-1, corresponding to s <-2 MPa were 510 

only observed occasionally. In this sense, the subsequent recovery in Pn that occurred in these 511 

plants when irrigation was restored suggest that water stress did no cause irreversible damage 512 

to leaf tissue, indicating that the maximal PSII primary photochemistry was not permanently 513 

affected by the stressful conditions experienced by plants and leaves can recover 514 

photosynthetic capacity after stress (Álvarez et al., 2018). 515 

In conclusion, our results showed that although both regulated deficit irrigation and saline 516 

reclaimed water slightly decrease tree vegetative growth in Prunus dulcis, plants displayed 517 

different morphological and physiological responses to each stress, being different between 518 

water and salt stress and the combination of both stresses. The use of desalinated reclaimed 519 

water of low conductivity (1 dS m-1) combined or not with RDI treatment is a viable irrigation 520 
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management strategy for saving water without compromising the overall performance of the 521 

almond trees. The tolerance of P. dulcis to drought was related to an effective mechanism of 522 

stomatal control and its ability to recover water status and photosynthesis capacity, 523 

accompanied by an increased water use efficiency (Pn/gs ratio), which are aspect positives of 524 

deficit irrigation. Prunus dulcis responded to irrigation with saline reclaimed water of moderate 525 

conductivity (3 dS m-1) combined or not with RDI treatment by reducing vegetative growth, 526 

restricting Na+ accumulation in leaves in a great extent than Cl- and showing osmotic 527 

adjustment. Thought Prunus dulcis appears to develop mechanisms to confront drought and 528 

salt stress separately, saline reclaimed water combined with deficit irrigation is not 529 

recommended, due to it reduced photosynthesis, affected the capacity of plants to recover 530 

water and carbon balance after water stress and induced a great reduction in growth due to leaf 531 

tissue dehydration and the high content of Cl and Na accumulated in leaves. Based on the 532 

results of this study, desalinated and saline reclaimed water can be used as additional water 533 

resources for almond tree irrigation. The use of desalinated RW could be successfully applied 534 

combined or not with RDI strategies, while the use of saline RW could be only recommended if 535 

full irrigation is carried out so to ensure the sustainability of almond trees. This finding should be 536 

borne in mind when deciding irrigation strategies for use in this kind of crops in water-scarce 537 

Mediterranean environments. 538 
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Figure captions 792 

 793 

Fig. 1. Monthly values of reference evapotranspiration (ET0, mm month-1), rainfall (R, mm month-1), 794 

vapour pressure deficit (VPD, kPa), and irrigation in the full irrigation (FI) and regulated deficit irrigation 795 

(RDI) treatments (mm month-1), during 2017-2019.  796 

 797 
Fig 2. Relationship between RGR as a function of shoot length and Cl- (A) and Na+ (B) leaf content at 798 

the end of the growing season in 2018 in P. dulcis plants subjected to different irrigation treatments. Each 799 

point represents a single plant. Symbols represent the different treatments: Desalinated full irrigated (filled 800 

circles), desalinated regulated deficit irrigation (open circles), saline full irrigation (filled triangles) and 801 

saline regulated deficit irrigation (open triangles). 802 

 803 
Fig. 3 Evolution of the stem water potential (Ψs, A), leaf water potential (Ψl, B), leaf osmotic potential 804 

(Ψo, C) and leaf turgor potential (Ψt, D) in P. dulcis plants submitted to different irrigation treatments. 805 

Values are means ± s.e., n = 5. Symbols represent the different treatments: Desalinated full irrigated (filled 806 

circles), desalinated regulated deficit irrigation (open circles), saline full irrigation (filled triangles) and 807 

saline regulated deficit irrigation (open triangles). Dashed lines represent the beginning and end of the 808 

regulated deficit irrigation periods 809 

 810 
Fig. 4. Evolution of stomatal conductance (gs, A), net photosynthesis rate (Pn; B), intrinsic water use 811 

efficiency (Pn/gs, C) and leaf transpiration rate (E, D) in P. dulcis plants submitted to different irrigation 812 

treatments. Values are means ± s.e., n = 5. Symbols represent the different treatments: Desalinated full 813 

irrigated (filled circles), desalinated regulated deficit irrigation (open circles), saline full irrigation (filled 814 

triangles) and saline regulated deficit irrigation (open triangles). Dashed lines represent the beginning and 815 

end of the regulated deficit irrigation periods.  816 

 817 

Fig 5. Relationship between net photosynthetic rate (Pn) and stomatal conductance (gs) (A) and between 818 
intrinsic water use efficiency (Pn/gs) and gs (B) in P. dulcis plants submitted to different irrigation 819 
treatments. Each point represents a single plant.  820 

 821 
Fig 6. Relation between stem water potential (Ψs) and stomatal conductance (gs) in P. dulcis plants 822 

submitted to different irrigation treatments. Each point represents a single plant.  823 

 824 
 825 

 826 
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Table 1 Physical and chemical properties for desalinated reclaimed water (D) and saline reclaimed water 

(S) in 2017, 2018 and 2019 

  2017 2018 2019 

Property Units D S D S D S 

pH 
 

7.53 ± 0.31 8.15 ± 0.20 8.11 ±0.32 8.44 ±0.34 7.70±0.13 7.89±0.11 

ECw dS m-1 1.00 ± 0.15 3.00 ± 0.45 1.13 ±0.61 3.00 ±0.89 1.17±0.04 2.56±0.30 

SARw (meq/L)0.5  3.70 ±0.42 7.20 ±1.52 4.79±1.94 5.69 ±1.62 5.52±0.75 7.09±1.54 

Ca+2 mg L-1 56.28 ±11.30 121.3 ± 22.1 50.76±21.52 108.05±57.15 65.18±8.07 140.80±8.12 

Mg+ mg L-1 20.9 ± 5.40 35.5 ± 6.10 18.31±8.12 35.96±16.82 13.56±1.25 31.81±2.28 

K+ mg L-1 20.67 ± 8.81 42.76 ± 6.30 20.37±9.77 33.54±12.60 14.49±1.03 30.02±3.76 

Na+ mg L-1 148.4 ± 53.2 353.2 ± 48.7 160.1±85.7 270.7±126.4 186.2±25.0 359.2±79.3 

B+3 mg L-1 0.14 ± 0.06 0.15 ± 0.07 0.13±0.05 0.14±0.04 0.14±0.01 0.15±0.01 

NO3
- mg L-1 15.83 ± 2.53 36.16 ± 9.28 28.39±25.08 42.70±19.93 25.6±3.1 11.52±1.14 

PO4
3- mg L-1 1.3 ± 0.61 3.1 ± 0.52 2.01±0.52 2.51±1.45 2.09±0.43 2.30±0.29 

SO4
-2 mg L-1 98.0 ± 16.2 227.4 ± 37.5 92.4±66.1 144.9±92.1 49.3±1.3 95.5±0.3 

Cl- mg L-1 198.1 ± 54.1 379.5 ± 72.3 199.8±184.7 380.2±181.3 236.0±28.7 487.4±112.8 

Values are the mean±SE of 12 individual samples taken throughout the crop cycle.  

 

Table 2. Trunk diameter at the end of each growing season in P. dulcis subjected to different irrigation 

treatments. Values are the mean±SE of five trees. 

Year 
Treatments 

 
 

D-FI D-RDI S-FI S-RDI P 

2017 3.73 ± 0.09 a 3.69 ± 0.05 a 3.64 ± 0.14 a 3.49 ± 0.17 a ns 

2018 4.63 ± 0.19 a 4.36 ± 0.10 a 4.54 ± 0.06 a 4.24 ± 0.16 a ns 

2019 4.86 ± 0.13 a 4.54 ± 0.07 b 4.76 ± 0.05 a 4.20 ± 0.09 c * 

Means within a row without a common letter are significantly different by Duncan 0.05 test. 

(P; probalility level, ns; non significance, *P<0.05) 

 

Table 3. Leaf osmotic potential at full turgor (100s) at the end of each growing season in P. dulcis 

subjected to different irrigation treatments. Values are the mean±SE of five trees. 

Year 
Treatments 

 
 

D-FI D-RDI S-FI S-RDI P 

2018 -1.89 ± 0.08 a -2.04 ± 0.05 a -2.12 ± 0.03 bc -2.25 ± 0.06 c ** 

2019 -1.79 ± 0.05 a -1.83 ± 0.18 a -2.20 ± 0.14 b -2.59 ± 0.10 c ** 

Means within a row without a common letter are significantly different by Duncan 0.05 test 

(P; probalility level, **P<0.01) 
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