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A B S T R A C T

According to modern precision agriculture principles, remote and proximal sensing can be extraordinarily useful 
tools for sustainable water resource management in viticulture. More than one hundred papers were read and 
cataloged to outline the most effective methodology (comprised of platforms, cameras, indices, single bands, and 
statistical methods) for monitoring water status in different wine grape varieties located in different areas. 
Satellites and airplanes can monitor areas at the regional or larger scale; however, while satellite images can be 
free, airplane imagery can be more expensive. The use of satellite platforms is particularly promising, especially 
due to recent technical progress aimed at improving spatial and temporal resolution. In addition, unmanned 
aerial vehicles (aka drones) equipped with thermal, multispectral, and hyperspectral cameras have provided 
excellent results. Proximal thermal and spectral cameras (e.g., handheld or installed in tractors) can be an 
inexpensive alternative but often present similar problems to traditional methods (e.g., time-consuming). The 
best results were obtained from thermal indices (e.g., Crop Water Stress Index) and the use of machine learning 
(ML) algorithms on individual bands and indices obtained with hyperspectral or multispectral cameras carried on 
drone or satellite platforms.

1. Introduction

From the earliest civilizations, viticulture has been inextricably 
linked with human history, traditions, and the people’s identity from 
different nations and regions. Today, from an agronomical viewpoint, all 
this is threatened by climate change. Among the highest likelihood risks 
of the next ten years are extreme weather events, water scarcity, and 
environmental damage due to human activities (World Economic 
Forum, 2021). Many grapevine areas will be increasingly affected by 
drought, heat waves, and extreme climatic events until at least the 
mid-century (IPCC, 2022). In addition, more pressure on water re
sources is expected to increase due to the rapid population and urban
ization growth (Caser et al., 2017; Nazemi Rafi et al., 2019). Moreover, 
the intensive use of wells has led to the progressive saltwater intrusion 
into coastal aquifers, further reducing the water availability for irriga
tion (Maggiore et al., 2001; Phogat et al., 2018). Therefore, applying a 
sustainable irrigation approach (that may reduce viticulture 
water-footprint) is essential.

Grapevine (Vitis spp L.) is one of the most cultivated species in the 
world (9 percent of the world fruit production in 2020, FAO, 2022), with 
a cultivated area of 7 million ha according to Bezner Kerr et al. (2022). 
China, Italy, and France are the largest producing nations (FAOSTAT, 
2024). In the Mediterranean area, vineyards have been traditionally 
cultivated under rainfed conditions. However, the increase in yield and 
quality as a response to irrigation has promoted installing irrigation 
systems in newly planted vineyards. Furthermore, in areas with high 
evaporative demand, irrigation is sometimes necessary not only for 
economically viable production but also for vine survival.

In agricultural fields, water requirements may be highly variable 
(Brillante et al., 2016): uniformly irrigating in a vineyard with a specific 
variability would lead to water stress in some parts and overwatering in 
others (Brillante et al., 2017; Yu et al., 2020). Irrigation surplus causes a 
decrease in berry quality due to low tasting scores, loss of color, 
reduction of sugars, and increase in pH (Bravdo et al., 1985). Therefore, 
precision irrigation’s main objective is rationalizing water consumption, 
which is possible by determining the within-field spatial variability and 

* Corresponding author at: Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
E-mail address: giuseppe.lopriore@uniba.it (G. Lopriore). 

Contents lists available at ScienceDirect

Scientia Horticulturae

journal homepage: www.elsevier.com/locate/scihorti

https://doi.org/10.1016/j.scienta.2024.113658
Received 17 June 2024; Received in revised form 27 August 2024; Accepted 11 September 2024  

Scientia Horticulturae 338 (2024) 113658 

Available online 27 September 2024 
0304-4238/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:giuseppe.lopriore@uniba.it
www.sciencedirect.com/science/journal/03044238
https://www.elsevier.com/locate/scihorti
https://doi.org/10.1016/j.scienta.2024.113658
https://doi.org/10.1016/j.scienta.2024.113658
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scienta.2024.113658&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


differentiating water inputs according to it. Given the complex re
lationships in the Soil-Plant-Atmosphere Continuum (SPAC), grapevine 
water status at each specific location of the vineyard could be considered 
related to soil and atmosphere water status but cannot be reliably 
determined based on either. Furthermore, if we take into consideration 
that the distribution of water in the soil is quite heterogeneous even 
within the volume of soil affected by the root system of a single vine and 
that the agroclimatic parameters of the atmosphere (used to obtain VPD, 
ETo, etc.) are normally detected with only one onsite agro
meteorological station per vineyard and often for an entire grouping of 
adjacent vineyards, this result in objective constraints to obtaining the 
field spatial variability of the water status of the vine based on indirect 
methods, both soil- and/or atmosphere-based, while they can be reliable 
in determining vineyard water requirements and its irrigation sched
uling. Digital agriculture, especially in the last decade, is addressing the 
need to determine the within-field spatial variability of the water status 
of the grapevine in the vineyard by employing thermal and spectral 
imagery of the canopy derived from remote or proximal sensing, a topic 
on which this paper will be focused. Remote spectral imagery as well as 
proximal, in cases where handheld devices are not used but sensor 
installation platforms such as rovers or operating machines used in the 
vineyard, cope at the same time with the need to not physically go into 
the field to collect data and not to leave expensive and sophisticated 
instrumentation in the field exposed to the elements and to the risk of 
accidental damage or theft. Techniques involving the application of 
moderate and mild water stress can be an essential resource if appro
priately managed to increase water use efficiency and improve grape 
composition in red and black varieties (Chaves et al., 2010). Grapevine 
response to water stress strongly depends on variety (Bota et al., 2016; 
Levin et al., 2019), intensity (van Leeuwen et al., 2009), cropping sys
tems (Nowack et al., 2024; Mihailescu and Bruno Soares, 2020) and 
phenological stage (Castellarin et al., 2007). Moreover, it is well docu
mented that a moderate water deficit has the tendency to favorably 
impact the composition of black grapes, particularly promoting antho
cyanin concentration (Castellarin et al., 2007; van Leeuwen et al., 2009; 
Romero et al., 2013; Gambetta et al., 2020). Basile et al. (2011)
demonstrated that different levels of water stress impact the composi
tion of Cabernet Sauvignon berries differently depending on the pheno
logical phase. Mild-to-moderate water stress, applied post-fruit-set, and 
moderate to severe water stress applied post-veraison improved soluble 
solids concentration (SSC) and increased anthocyanin and polyphenols 
levels. However, applying water stress, even if mild, during the early 
stages of berry development, from anthesis to fruit set, had detrimental 
effects on both yield and berry quality. These results are in agreement 
with those obtained by Romero et al. (2013) on cv. ’Monastrell’, where 
mild water stress at the beginning of the season and moderate water 
stress during pre- and post veraison enhanced berry and wine quality. 
Moreover, Pérez-Alvarez et al. (2021) found that Vitis vinifera L. cv. 
Bobal grapevines, irrigated at 35% of the crop evapotranspiration (ETc), 
exhibited higher total soluble solids accumulation, increased acidity, 
lower pH, and a greater potential of phenolic compounds compared to 
grapes under full irrigation, which received 100% of the ETc. Moreover, 
no statistically significant differences in anthocyanin extractability were 
observed between the deficit and full irrigated treatments. However, the 
water stress response from grapevine is not uniform for all varieties. 
Some have demonstrated a more or less isohydric trend where a sto
matal closure occurs at the first signs of stress (Tardieu, 1998) does not 
show a large circadian leaf water potential (Ψleaf) excursion. Other va
rieties, on the other hand, are characterized by near anisohydric 
behavior, limiting stomatal aperture only partially and showing 
considerable circadian variation in leaf water potential (Ψleaf) (Schultz, 
2003).

To make irrigation practices efficient and sustainable while avoiding 
quantitative and qualitative production losses, it is essential to identify 
some physiological parameters, that provide an early indicator of vine 
response to drought. Stomatal conductance (gs) and stem water potential 

(Ψstem) are amongst the most important parameters to observe. Stomatal 
regulation is a crucial issue for vineyard drought response and water use 
efficiency (Lovisolo et al., 2010; Martorell et al., 2015). It is well known 
that stomatal closure is one of the first physiological responses of plants 
to water deficit and it induces a reduction in net photosynthesis rate 
(Flexas et al., 2002), and leaf chlorophyll content (Romero et al., 2010). 
Water potential, measured with a pressure chamber (Scholander et al., 
1965) assesses the tension of water inside the xylem. Among daily 
measurements, stem water potential (Ψstem), is preferred to leaf water 
potential (Ψleaf) in viticulture, because it is more stable and reliable 
(Ψleaf) (Choné et al., 2001; Patakas et al., 2005), while Ψleaf is affected by 
vapor pressure deficit or leaf intercepted radiation (Álvarez et al., 2020; 
Vivaldi et al., 2021). The pressure chamber is still the most widely used 
tool for the accurate monitoring of plant water status, because it is 
relatively cheap and easy to use (Tomasella et al., 2023). The assessment 
of plant water status by water potential measurements is a useful tool for 
irrigation management and it is essential in many studies focused on 
basic and applied plant sciences. However, monitoring water potentials 
and stomatal conductance is time-consuming, therefore costly, and re
quires a consistent assortment of equipment, as well as the need for 
measurements on many leaves to minimize the high spatial variability of 
plant water status (Petruzzellis et al., 2022). Remote and proximal 
sensing collect information over large areas at low costs and can detect 
spatial variability of crop water stress, overcoming the limitations of 
traditional methods. This provides a significant benefit over traditional 
data sources because it is possible and cost-effective to cover a wide area 
routinely (Kasampalis et al., 2018). High-resolution imagery can be 
obtained from remote or proximal sensors on different platforms. The 
distance from the surveyed objects can vary from a few centimeters (e.g., 
hand-held or tractor mounted sensors), in the case of proximal sensing, 
to a few hundred meters (MAVs and UAVs, respectively, Manned and 
Unmanned Aerial Vehicles), to hundreds of kilometers (satellite), in the 
case of remote sensing. UAVs allow for obtaining the highest spatial and 
temporal resolution imagery over modest-sized areas, can carry cus
tom/modern sensors and are the most expensive option (Matese et al., 
2015). Commercial satellite services have moved in recent years toward 
offering higher spatial and temporal accuracy and allow large coverage 
with minimal user intervention (Roy et al., 2021). The vegetation 
indices or the individual spectral bands acquired by these sensors can be 
related to ground-data acquired with traditional methods to monitor 
water stress, to delineate irrigation management zones (Bahat et al., 
2021), or to build predictive models (Pôças et al., 2020).

This review aims to highlight the best methodologies (comprised of 
indices, single bands, and statistical methods) for grapevine water stress 
assessment through remote and proximal sensing on several varieties 
under different climate and irrigation conditions. First, the traditional 
methods used to monitor water status in grapevines were defined, 
highlighting the strengths, weaknesses and possible methods to improve 
correlations with thermal or spectral data, Section 3. A similar approach 
was followed for Platforms and Cameras, Section 4. Section 5 presents a 
comparison of the best correlations between physiological parameters 
and vegetation indices or single reflectance bands, obtained with ther
mal, multi- and hyperspectral cameras. Finally, data analysis methods 
were described, focusing on innovative machine learning techniques, 
Section 6. The experiences, advice and opinions found in the reviewed 
articles were presented and discussed in this paper to support future 
research and improve achievements in the area of remote and proximal 
sensing in viticulture.

2. Review methodology

Article were found on Scopus and Web of Science data bases. Several 
keywords were used to include as many items as possible. First, the crop 
of interest was inserted: ("viticulture" OR "vineyard" OR "vine" OR 
"grapevine" OR "wine" OR "Vitis" OR "vinifera"). Next, traditional pa
rameters and instruments used in crop water stress assessment were 
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included: ("water" OR "water stress" OR "SWP" OR "LWP" OR "stem" OR 
"stomatal conductance" OR "gs" OR "pressure chamber" OR "Scholander" 
OR "porometer" OR "gas exchange" OR "chlorophyll"). Finally, the 
innovative methods used in Agriculture 4.0 were added to the research: 
("remote sensing" OR "proximal sensing" OR "thermal" OR "multispec
tral" OR "hyperspectral" OR "UAV" OR "drone" OR "satellite" OR 
"airborne") AND ("index" OR "indices" OR "VI" OR "vegetation index"). 
Only works from 2012 onward were selected. After removing duplicates 
and papers unsuitable for this review, more than one hundred papers 
were collected. Finally, all the documents and 151 indices and bands 
(from hyperspectral, multispectral, and thermal cameras from satellites, 
UAVs, aircraft, and proximal sensors) were cataloged. For each paper, 
the following were highlighted: author, year, DOI, title, location, plat
form, camera, indices/bands, parameters studied, number of surveys, 
vines considered, size of the dataset, statistical methodology, cropping 
system, variety, irrigation treatment, main objective, and highlights. For 
each index, the following parameters were highlighted: sensor/camera, 
full name, formula, estimated parameter, and bibliographical 
references.

3. Physiological indicators to assess water status

Traditionally, spot measurements of physiological parameters, such 
as Ψleaf and Ψstem, or gs have been used for the assessment of plant water 
status. The physiological parameters described in this section are those 
commonly used to monitor the water status of crops (Fig. 1). They are 
also used to validate new methodologies, in this case, modern remote 
and proximal sensing, that can overcome traditional techniques’ limi
tations. These paragraphs introduce the techniques, their strengths, and 
limitations, and especially suggestions for improving the results 
regarding correlations with spectral and thermal data.

3.1. Stem water potential (Ψ stem)

The Ψstem, was the most common method across all papers in the 
collection (Fig. 1).

It is considered a solid reference technique for sustainable irrigation 
management (Levin, 2019), according to several other studies on 
grapevine and other tree species (Choné et al., 2001; Moriana et al., 
2012). As for the best timing, solar noon is the most used time to conduct 
the evaluations. Best practices to carry-out this measurement were 
recently assessed by Levin (2019). The advantage of Ψstem over Ψleaf is 
the very low variability across leaves on the same plant (coefficient of 
variation lower than 5%), which makes possible to assess grapevine 
water status by collecting only one leaf per vine (López-García et al., 
2021). In addition, the leaves must be covered in bags made of a low 
water vapor transmission material (high-density polyethylene, HDPE, or 
metalized biaxially-oriented polyethylene terephthalate BoPET) to stop 
transpiration and stabilize the water status between the leaf and stem. 

The equilibration time is very low, Levin (2019) showed that 10 min is 
sufficient for equilibrium, and Hochberg (2020), suggested that even a 
shorter timeframe may be needed although from a practical stand-point 
longer time intervals are most common, as often used in the reviewed 
articles. Finally, the best practice consists in minimizing the time be
tween excision and measurement, although it is possible to transport the 
leaves to a more convenient location within a limited timeframe if the 
bags are fully closed (petiole in the bag) and composed of low water 
vapor transmission material. Levin (2019) reported a maximum time
frame of 240 s using low density polyethylene, while Hochberg (2020)
suggested that longer times are theoretically possible when using lower 
water vapor transmission material, considering that excised leaves 
would lose 0.1 MPa for every 9mg of water loss, thus about 0.3 MPa after 
150 min when fully enclosed in foil laminated bags. The timeframe 
between excision and measurement remains a critical issue from a 
practical standpoint, which limits the amount of leaves that could be 
assessed in a day also considering that measurements should be con
ducted within a limited time window, to limit any circadian variation in 
the Ψstem (Lopez-Garcia et al., 2021). For the development of predictive 
models linking to achieve better correlations with data obtained by 
remote and proximal sensing is important to optimize the pressure 
chamber protocol; this is possible due to larger datasets and a reduction 
in the effect given by the circadian variation of the Ψstem.

3.2. Leaf water potential (Ψ leaf)

Ψleaf is one of the most significant metrics of plant water status, 
providing key information for several physiological processes including 
the plant response to water deficit (Rodriguez-Dominguez et al., 2022). 
Ψleaf can be measured, using a pressure chamber, using the recommen
dations described in the previous paragraph (Levin, 2019). As previously 
discussed, Ψleaf has a higher variability than Ψstem, as it is more influ
enced by the environmental conditions at the leaf level, such as Vapor 
Pressure Deficit (VPD) or leaf intercepted radiation (Álvarez et al., 
2023). As a consequence, the relationships with remote sensed data can 
be more robust when developed on Ψstem (Bellvert et al., 2014) or 
pre-dawn Ψleaf (Pôças et al., 2020; Tosin et al., 2021). The pre-dawn Ψleaf 
is widely recognized as a valid indicator for vines water status moni
toring (Intrigliolo and Castel 2006). It allows minimizing the influence 
of transpiration and environmental variables (e.g., VPD) on measure
ments (Santesteban et al., 2011). In fact, before sunrise, stomata are still 
closed determining the equilibrium between leaf and plant potential 
(Santesteban et al., 2011). Additionally, the aforementioned different 
isohydric and anisohydric behavior of various varieties must also be 
considered, as it leads to different patterns in the circadian Ψleaf trends. 
Blanco-Cipollone et al. (2017) suggested that pre-dawn Ψleaf would be 
preferred to Ψstem in plants with isohydric behavior. Moreover, both 
Ψleaf and Ψstem are sensitive to environmental conditions at the day of 
the measurement, (Williams and Baeza, 2007; Suter et al., 2019) and 

Fig. 1. Physiological measurements (Stem Water Potential, Leaf Water Potential, gas exchange, leaf pigments, canopy temperature, Equivalent Water Thickness) 
usually correlated with proximal and remote sensed data in the bibliography.
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Ψstem has been modeled from coarse soil and topography information 
and environmental data alone (Brillante et al., 2016). It should not 
therefore be surprising to observe, that the inclusion of weather data in 
association with remotely sensed canopy information can improve the 
fit of these models (Tang et al., 2022). Furthermore, both phenological 
stage and variety can influence Ψleaf, affecting therefore the relation
ships with remotely or proximally sensed data. Bellvert et al. (2015)
attributed the effect of variety in the correlation of Ψleaf with thermal 
indices to the different stomata regulation. Moreover, there could be an 
effect of the seasonal changes in leaf turgor and osmotic potential 
(Bartlett et al., 2022). This variability makes relationships harder to fit 
when more comprehensive dataset including multiple varieties and 
dates are grouped together (Bellvert et al., 2015). Bellvert et al. (2015)
suggested to develop different seasonal baselines for different varieties. 
Finally, leaf senescence can also affect Ψleaf values by changing gas ex
change mechanisms (Zufferey, 2016); therefore, leaves of the same 
age-group should be analyzed with the pressure chamber, or alterna
tively relying on the use of Ψstem data.

3.3. Leaf gas exchange and fluorimetry parameters

It is well known that plants respond to water stress with partial 
stomatal closure, which induces a decrease in photosynthesis and limits 
the leaf transpiration rate. This leaf response reduces the evaporative 
cooling process, resulting in higher leaf surface temperature. Moreover, 
different varieties have different physiological response to water stress 
(Dayer et al., 2022), thus they have different reductions in net photo
synthesis (Pn), stomatal conductance (gs) or leaf transpiration rate (E) at 
different water potential thresholds. Varieties that exhibit a tighter 
stomatal regulation, may be more problematic to model from remotely 
sensed data, as their response to environmental conditions is more im
mediate and not necessarily translated in a whole-canopy modification 
that can be recorded from coarse satellite imagery. Cogato et al. (2022)
reported low correlation coefficients in this scenario between thermal or 
spectral indices and physiological parameters. These relationships may 
also be influenced by the time of the day when the physiological pa
rameters are acquired, for example, García-Tejero et al. (2016) obtained 
good results on two varieties (Touriga Nacional and Aragonez) for gs 
measurements between 11:00 and 14:00 h, without genotype in
terferences. On the other hand, using the pooled data relative to the time 
window of 14:00 - 17:00 h, a significant effect of the variety was noticed. 
To cope with this issue, Fuentes et al. (2012) recommended to use 
midday gs, during the period of maximum evapotranspiration. More
over, chlorophyll fluorescence techniques are also essentials for under
standing plant responses to water stress. In drought conditions, plants 
reduce CO2 assimilation due to stomatal closure and decreased meso
phyll conductance, leading to lower photosynthetic carbon fixation 
(Salazar-Parra et al., 2012) hence reducing photosynthesis rates and 
inducing a photo-oxidative damage . The absorbed light energy, which 
cannot be used for photosynthesis, is then redirected to 
non-photochemical quenching processes to protect the photosynthetic 
system (Demmig-Adams et al., 1996). This response can be effectively 
monitored using chlorophyll fluorescence parameters, which provide 
insights into energy absorption, utilization, and dissipation in photo
system II (PSII). Matese et al. (2018) monitored leaf gas exchange and 
chlorophyll fluorescence on plants subjected to different water regimes 
to compare them with proximal and remote sensed data. Measurements 
were conducted at midday using the LI-6400XT portable photosynthesis 
system (LI-COR, Lincoln, NE, USA). Finally, it can be useful to assess the 
different responses to water stress shown by various cultivars. Hochberg 
et al. (2013) found that Cabernet Sauvignon (isohydric), compared with 
Shiraz (anisohydric), despite showing reduced stomatal conductance, 
compensated with higher photosynthesis and photorespiration, thereby 
improving its ability to avoid photosynthetic damage under drought 
conditions.

3.4. Sap flow measurement

Sap flow measurements allow us to directly verify the functioning of 
the plant’s hydraulic transport system, which is indicative of the water 
flow from the soil to the leaves where it is released into the atmosphere. 
The latter is influenced at the same time by the water availability of the 
soil and by the transpiration flow, i.e. by the conditions at the extremes 
of the SPAC, it is also determined by the resistances upstream (e.g. roots, 
grafting point, etc.) and downstream (e.g. branches, leaves, etc.) of the 
measuring point but it is also an important indicator of the presence of 
cavitation and/or dead biomass from pruning wounds at the measuring 
point. Different authors have demonstrated how a sufficiently accurate 
management of vineyard irrigation at farm level is quite reliable 
(Eastham and Gray, 1998; Ginestar et al., 1998a, 1998b; Ferreira et al., 
2012; Scholasch, 2018; Mancha et al., 2021). From a practical 
perspective, it should be noted that the probes used in the Thermal 
dissipation probes method proposed by Granier (1985) are needles that 
can determine variable observations depending on the point of intrusion 
into the stem of vines along the circumference and the depth of insertion 
into the wood, especially when part of the needle probe involves 
non-conducting tissues that will lead to an underestimation of the sap 
flow. Differently, the stem heat balance method uses heaters made of 
flexible sheets that are wrapped around the stem and insulated from the 
surrounding environment with one or more layers of packaging insu
lation material and aluminum foil, all held together with elastic bands, 
thus constituting a sleeve that easily adapts to the variations in diameter 
of the stem and integrates the sap flow of the entire section taken into 
consideration including conducting and non-conducting tissue. This last, 
the stem heat balance method has been used on vines with notable 
precision results by Lascano et al. since the early 90s (Lascano et al., 
1992) and onwards until more recent years in which the same authors 
have tested new commercially available sensors, detecting an even 
greater capacity to maintain contact with the stem and an easier 
connection with the datalogger (Lascano et al., 2016). Pearsall et al. 
(2014), while noting that the scientific literature clearly shows the 
ability of sap flow measurements to effectively discriminate irrigated 
and non-irrigated vines in a large number of grape varieties, based on 
both their own data and data and observations found in numerous other 
studies in which sap flow measurements were carried out in the vine
yard, indicated some inherent problems of this method related to the 
translation of sap velocities to absolute volumetric water use compared 
to determinations carried out based on ETo and weighing lysimeters and 
observed how the daily patterns of sap flow velocity and water use of the 
grapevine always differed considerably. In addition, Yunusa et al. 
(2005) also observed a decoupling between sap flow and leaf water 
status measured as stomatal resistance using a porometer.

3.5. Leaf pigments

Leaf pigments, measured with a spectrophotometer or with a SPAD, 
are meaningful parameters to assess plants’ physiological status (Tosin 
et al., 2021; Zarco-Tejada et al., 2013). In addition, leaf chlorophyll 
content can be assessed following extraction with N, 
N-dimethylformamide (Moran and Porath, 1980) and measured using 
a spectrophotometer. Subsequently, the concentration of total chloro
phyll (a + b) (mg/dm2 of leaf area) can be calculated from the equations 
provided by Lichtenthaler and Wellburn (1983). Water stress causes a 
reduction in leaf chlorophyll content (Serrano et al., 2012) and an in
crease in leaf lutein concentration (Tosin et al., 2021). Furthermore, 
Caruso et al. (2017) have shown that leaf chlorophyll content is affected 
by leaf aging; therefore, to obtain good correlations with spectral data, 
they suggested considering leaf position and phenological stage. Indeed, 
they also found an increase in apical leaves chlorophyll concentration 
from June to August and a decrease in basal leaves. In addition, the 
study of xanthophylls, which are part of the carotene group, can also be 
useful in assessing the water status of vines (Tosin et al., 2021). The 
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xanthophyll cycle involves pigments like violaxanthin (Vx), antherax
anthin (Ax), and zeaxanthin (Zx), crucial for protecting plants from 
excess light energy, especially under heating or water stress (Frioni 
et al., 2020; Féret et al., 2017). When water is scarce, stomata close, 
reducing transpiration and increasing the risk of photodamage. The 
cycle shifts Vx to Zx, dissipating excess energy as heat, thus protecting 
photosynthetic machinery. Tosin et al. (2022) observed increased 
oxidation of xanthophylls in non-irrigated vines due to intense light, 
heat and lack of water. Suárez et al. (2008), to detect water stress in 
grapevines, used the Photochemical Reflectance Index (PRI) (from 
airborne hyperspectral imagery) because of its sensitivity to the 
de-epoxidation status of xanthophyll cycle pigments and the effective
ness of photosynthesis (Gamon et al., 1992).

3.6. Equivalent water thickness (EWT)

EWT is the leaf area-weighted moisture content. It is obtained by 
calculating the difference between fresh (FM) and dry mass (DM) 
(dehydrated in an oven) per unit leaf area (A): 

EWT =
(FM − DM)

(A)
(1) 

However, it is rarely used compared to the parameters described 
above. Furthermore, EWT values, and consequently correlations with 
spectral data, are strongly influenced by the variety. Indeed, high-vigor 
varieties (like Tempranillo) have the largest leaves, the highest leaf 
water content and the highest correlation with spectral data 
(González-Fernández et al., 2015; Rodríguez-Pérez et al., 2018).

4. Platforms & cameras

In the last years, new techniques have emerged as an alternative to 
the traditional methodologies to assess the crop-water status. In this 
sense, the use of remote and proximal sensing in agriculture to assess 
crop water status is being progressively introduced for improving water 
resource management.

4.1. Ground-based

4.1.1. Thermal
It is well known that plant temperature is associated with plant water 

status (Tanda and Chiarabini, 2019). Thermal imaging techniques rely 
on water-stressed crops closing the stomata, limiting leaf transpiration 
and surface cooling and determining an increase in canopy temperature 
(Costa et al., 2010).

Proximal measurements of vegetation surface temperature can be 
carried out using thermal sensors installed close to the canopy. This can 
provide an early indication of plant water status since the increase in leaf 
temperature values is one of the first physiological changes associated 
with water stress (Gómez-Candon et al., 2022). Several authors have 
worked to identify methodologies based on portable thermal sensors 
that can support farmers’ irrigation scheduling with reduced costs. For 
example, Amogi et al. (2020) identified a real-time crop image capture 
tool via smartphone based on low-cost thermal-RGB sensors. Diago et al. 
(2022) used a radiometer mounted on a mobile platform; and recom
mended installing the system on tractors or other machines routinely 
used in viticultural operations. Vehicle-mounted cameras, which move 
at slow speeds, can monitor several plants instead of handheld sensors 
that focus only on a few (Gutiérrez et al., 2021). De Oliveira et al. (2021)
suggested that the accuracy of canopy temperature measurements using 
infrared thermography could be improved by proximal detection to 
reduce the effects of wind, humidity, sunlight and shadow (which affect 
canopy boundary layer temperature). Gutter et al. (2022) obtained 
better results with data measured on the north side of the canopy. In 
addition, several authors recommend using thermal data obtained dur
ing the maximum atmospheric demand period (Pou et al., 2014; 

Sepúlveda-Reyes et al., 2016). Araújo-Paredes et al. (2022) and Sepúl
veda-Reyes et al. (2016) used both proximal and Unmanned Aerial Ve
hicles (UAVs) thermal indices; they found that proximal data were in 
line with remotely sensed data. Moreover, the ground-based method can 
be expensive and time-consuming and, since each reading provides only 
values for each plant in isolation, it does not allow an overall evaluation. 
Consequently, the limitations of this methodology do not significantly 
differ from those already indicated for traditional methods such as the 
Scholander pressure chamber.

4.1.2. Multispectral
Multispectral camera applications are mainly based on spectroscopy 

techniques; in fact, each surface shows a unique spectral signature 
(namely, the reflectance as a function of wavelength), that can be used 
to obtain information about the crop’s biophysical and biochemical 
variables. As expected, correlations with traditionally measured physi
ological parameters are higher with proximal sensing models than with 
remote sensing (Bianchi et al., 2021). However, in this study, models 
based on proximal and remote sensing are both valid in identifying 
water status variability. Furthermore, as mentioned above, several 
critical issues are involved when using proximal sensing 
(Araújo-Paredes et al., 2022).

4.1.3. Hyperspectral
Hyperspectral cameras use hundreds of bands with smaller ampli

tude (5–10 nm); thus, they can identify specific absorption peaks rela
tive to specific substances. Spectroradiometers (De Bei et al., 2011; 
García-Estévez et al., 2017; Pôças et al., 2017) or spectrophotometers, 
by measuring one leaf per vine (Cogato et al., 2021) or contactless from a 
vehicle (obtaining a larger number of measurements) (Diago et al., 
2017), have been used frequently. To the best of our knowledge, 23 
authors (24.5% of the total papers reviewed) have conducted studies 
using hyperspectral proximal cameras to assess water status variability 
in vineyards. The high spectral resolution allows for capturing specific 
absorption peaks of specific substances such as leaf pigments directly 
related to crop water status, i.e., chlorophyll (Tosin et al., 2021; Vaz 
et al., 2016; Zarco-Tejada et al., 2013). Moreover, Diago et al. (2017)
proposed an on-the-go method to successfully take a large number of 
measurements, thus ensuring high temporal, spatial and spectral reso
lution. Finally, the availability of a large number of wavelengths is a 
relevant aspect especially if they are all used within ML models 
(Loggenberg et al., 2018).

4.2. Unmanned aerial vehicles (UAVs)

4.2.1. Thermal
Thermal cameras are an effective tool for monitoring crop transpi

ration activity. Several studies showed that thermal data acquired with 
UAV are as accurate as the Scholander pressure chamber method in 
Ψstem estimation (Araújo-Paredes et al., 2022). Furthermore, Matese 
et al. (2018) obtained similar results using UAV and ground-based 
thermal cameras.

Moreover, it has been reported that the relationships between ther
mal and physiological data are stronger during the maximum atmo
spheric demand period (i.e., midday); lower relationships were obtained 
during the non-water stress period (Sepúlveda-Reyes et al., 2016) and in 
the early morning because of the difficulty in separating soil from can
opy temperatures (Bellvert et al., 2014).

In addition, better spatial resolution (e.g., 30 cm) can help to reduce 
soil temperature influence and achieve better correlations (Bellvert 
et al., 2014). To this end, Gago et al. (2017) used a multicopter that 
allowed them to fly extremely close to the vine canopy (15 m above the 
ground), achieving high spatial resolution images (< 2.5 cm/pixel).

4.2.2. Multispectral
Multispectral cameras use a few bands (4–10) with high amplitude 
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(15–70 nm). Therefore, they cannot distinguish specific details of the 
reflectance spectrum. However, within the reviewed works, they were 
used more than hyperspectral cameras because they are less expensive 
and they have been accessible to more consumers for a longer time.

UAVs enable the obtaining of multispectral images with high spatial 
(centimetric) and temporal resolution.

Reynolds et al. (2017, 2018) showed that UAV-NDVI (Normalized 
Difference Vegetation Index) maps are comparable with those obtained 
by proximal sensing. As in the previous case, it is recommended to do the 
surveys at midday, to avoid the “shadow effect” on the images (Caruso 
et al., 2017; López-García et al., 2021; Poblete et al., 2017).

4.2.3. Hyperspectral
A small number of research studies have been conducted with 

hyperspectral cameras placed on UAVs (Hurley et al., 2019; Zarco-Te
jada et al., 2013; Vasquez et al., 2023).

Zarco-Tejada et al. (2013) obtained better results of leaf carotenoid 
content estimation with hyperspectral imagery (yielding errors below 1 
μg/cm2) rather than multispectral imagery. The authors attributed this 
to the fact that pixel mismatches between bands, inherent to the mini
aturized multi-lens camera technology used in most UAVs, affected the 
indices calculated.

Furthermore, the canopy zone-weighting (CZW) method, employed 
by Maimaitiyiming et al. (2017), which consists in dividing the canopies 
into sunlit, nadir, and shaded zones, provided better relationships with 
vine physiological parameters; indeed, this method can minimize the 
effects of within-canopy shadows caused by the illumination condition 
and canopy heterogeneity (Maimaitiyiming et al., 2017).

4.3. Manned aerial vehicles (MAVs)

Of the reviewed studies, nine of them used remote data obtained 
from aircraft equipped with thermal and multispectral cameras. Multi
spectral images were mainly used to delineate irrigation management 
zones. Bellvert et al. (2021) obtained multispectral images with a res
olution of 50 cm by flying over 1500 m above ground level. The afore
mentioned study allowed them to delineate irrigation sectors as a 
function of vigor level in a 100-ha vineyard. However, the authors 
acknowledged that the largest contribution to irrigation management 
costs came from the aircraft flight itself. Moreover, Ledderhof et al. 
(2016) suggested resampling the images into a 3 × 3-pixel area of in
terest (≈1.15 × 1.15 m) to obtain stronger correlations with vine per
formance and grape composition. Furthermore, Bellvert et al. (2016)
showed that weekly remotely sensed Ψleaf via a thermal camera placed 
on an airplane was successfully used to monitor water status during 
regulated deficit irrigation.

Pagay & Kidman (2019) showed that using indices obtained from a 
thermal camera placed on a fixed-wing aircraft can be a promising 
strategy for irrigation management. In that work, the study was con
ducted in an extended area (approximately 100 ha) and the experi
mental sites were up to 20 km apart. Indeed, unlike other aerial 
platforms such as UAVs, the use of an airplane can provide wide spatial 
coverage in a short period for regional-scale irrigation management.

4.4. Satellite (Landsat 8, sentinel 2, planet)

Satellite platforms have some weaknesses regarding spatial and 
temporal resolution compared to UAVs. This can represent a problem for 
irrigation management: large pixels may also include soil or weeds. 
Laroche-Pinel et al. (2021) obtained better results in plots without grass 
in the inter-row. Additionally, the revisit periods are fixed, based on the 
different satellite’s orbits, and it’s uncommon for them to coincide with 
ground surveys. This mismatch introduces an initial error that can 
impact the correlations. In addition, the presence of clouds concurrent 
with satellite overflight may reduce image reliability (Helman et al., 
2018), reducing usable images for prompt irrigation management. 

However, they have remarkable advantages: the image acquisition is 
recurrent in time and often free of charge (e.g., Sentinel 2 and Landsat).

Furthermore, they do not require going to the field. Several studies 
highlighted the feasibility of using satellite platforms in irrigation 
management in large-scale vineyards or for regional-scale evaluations 
(Bellvert et al., 2021; Cohen et al., 2019; Helman et al., 2018). Indeed, 
monitoring vast vineyards by UAVs or traditional methods, would be 
economically disadvantageous and would be very challenging to collect 
enough data to represent the whole area. In addition, satellite sensors 
can capture a very large surface in one single moment, reducing the 
impact of time change on plant physiology. Indeed, to better reflect vine 
water conditions across the vineyard, many midday Ψstem measurements 
are necessary (Brillante et al., 2017; Yu et al., 2020). Bellvert et al. 
(2021) suggested using remote sensing data to map the spatial vari
ability of vineyards, identify regions and irrigation sectors with similar 
characteristics, and geolocate representative vines to be monitored 
within each region. Helman et al. (2018) used Planet Near Infrared and 
Visible (NIR-VIS) and seasonal Ψstem data from several vineyards to 
derive a general model for in-season monitoring of Ψstem at the vineyard 
level. The model achieved a correlation coefficient of r = 0.78, a root 
mean square error (RMSE) of 18.5%. This constellation of small nano
satellites provides high spatial resolution (3m) data and a daily global 
revisit time. However, Planet delivers only four spectral bands (three in 
the VIS region and one in the NIR region), although new sensors from 
the same vendors are planned that will provide higher accuracy and 
more spectral bands. The multispectral camera on Sentinel-2 can mea
sure reflected solar radiation from VIS into 13 spectral bands with a 
repetition time of 5 days and a spatial resolution of 10–60 m (Drusch 
et al., 2012) (Fig. 2).

Using single bands from Sentinel-2 combined with ML algorithms 
gave promising results to predict Ψstem on a large scale in the work of 
Laroche-Pinel et al. (2021). Cohen et al. (2019) in a regional scale 
research, taking weekly or biweekly measurements on 82 vineyards, 
obtained good correlations using Sentinel-2 data; moreover, they 
attributed this especially to the short-wave infrared (SWIR) bands, 
where water has well defined absorption regions (Caruso and Palai, 
2023). In addition, Cohen et al. (2019) showed that satellites such as 
Sentinel-2 are preferable to others with a better spatial resolution 
(Planet) but do not have these specific bands related to water status.

5. Indices and single bands

As part of this review, 114 indexes used in the different papers were 
cataloged. The NDVI (from multi or hyperspectral camera) and Crop 
Water Stress Index (CWSI) (from thermal camera) are the most widely 
used indices (Fig. 3). In addition, 19 individual bands were identified 
(among more than 200 used) that were found to be most correlated with 
vine water status. Moreover, some authors used more than 30 indexes 
(Thapa et al., 2022), others more than 60 (Hurley et al., 2019), and still 
others preferred to use all the available VIs (e.g., from the HSDAR 
package) (Tosin et al., 2021).

5.1. From thermal cameras

The CWSI is one of the most accurate indices in water status moni
toring (Caruso et al., 2021). CWSI values tend to be higher in response to 
increased water stress. Several works have used thermal indices to 
generate maps to realize different irrigation management zones (MZs) 
(Bahat et al., 2021; Baluja et al., 2012). In addition, Ψstem (coefficient of 
determination, R2 = 0.89) (Belfiore et al., 2019) and Ψleaf (R2 = 0.83) 
(Bellvert et al., 2014) have often been used to validate the method and it 
is often judged accurate. However, it can be affected by variety, 
phenological stage, exposure of the measured canopy area, and the 
measurement time. Furthermore, different varieties may have different 
control over stomatal closure under water shortage. Indeed, Fuentes 
et al. (2012) obtained slightly better results correlating CWSI and gs 
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when they used only one variety data (i.e., Chardonnay) (R2 = 0.87). 
Belfiore et al. (2019) obtained better correlations on Moscato than on 
Merlot due to a more pronounced response to the irrigation treatments 
by the former. However, Matese et al. (2018) in an experiment on Ver
mentino, Cabernet sauvignon and Cagnulari, consider CWSI a reliable in
dicator of crop water status, independently of cultivars, collecting good 
negative correlation with Pn (coefficient of correlation, R = -0.80). 
Furthermore, changes in osmotic potential and leaf turgor at different 
phenological stages may result in changes in the correlations obtained 
(Bellvert et al., 2015). Some authors suggest, when using a proximal 
thermal camera, that the shaded side should be preferred (Pou et al., 
2014; Sepúlveda-Reyes et al., 2016; Zhou et al., 2022). Furthermore, 
intuitively, early morning is not a good time to conduct surveys because 
of the minimal changes due to low stress levels. Instead, midday values, 
obtained during the maximum atmospheric demand, are more stable. 
Finally, the other indices, Stomatal conductance index (Ig) and the 
second version of the stomatal conductance index (I3), were correlated 
with gs obtaining good results. gs has a positive relationship with Ig (R2 

= 0.92) (Fuentes et al., 2012) and, a negative with I3 (R2 = - 0.72) 
(Baluja et al., 2012). The thermal indices used in the reviewed papers are 
shown in Table 1.

Thermography provided excellent results in numerous studies, ob
tained by both proximal and remote sensing (both UAVs and aircraft) (in 
the former (Araújo-Paredes et al. (2022) highlighted the higher costs). 
However, a potentially critical point is measuring reference tempera
tures (unlike spectroscopy techniques) (Diago et al., 2017).

5.2. From multispectral cameras

NDVI is one of the most widely used indices. However, it has rarely 
proved accurate enough to discriminate low or medium stress levels 
(Espinoza et al., 2017; Ferrer et al., 2020) and often showed poor per
formances (Vaz et al., 2016). Espinoza et al. (2017) found that it can 
discriminate moderate or severe stresses, exhibiting more significant 
differences in gs values. The authors obtained better correlations with gs 
using the Green Normalized Difference Vegetation Index (GNDVI) index 
(r = 0.65; p < 0.01). NDVI is more sensitive to plant biomass than water 

Fig. 2. NDVI maps from different resolution imagery, with (a) UAV imagery and (b) Sentinel-2 imagery, from a study site, a commercial vineyard in Andria 
(BT), Italy.

Fig. 3. Frequency of use of Vegetation indices with 5 or more references.

Table 1 
Overview of the Thermal VIs used to assess vine water status, the physiological 
parameters found to correlate with them and the related reference.

THERMAL

ID INDEX FULL NAME FORMULA PARAMETERS REFERENCE

1 CWSI Crop Water 
Stress Index

(Tcanopy - T 
wet)/ (Tdry – 
Twet)

SWP, gas 
exchange

Finco et al. 
(2022)

3 Ig Stomatal 
conductance 
index

(Tdry- 
Tcanopy)/ 
(Tcanopy- 
Twet)

gas exchange Baluja et al. 
(2012)

2 I3 2nd version of 
the stomatal 
conductance 
index

(Tcanopy – 
Twet)/(Tdry – 
Tcanopy)

gas exchange Baluja et al. 
(2012)

F. Abbatantuono et al.                                                                                                                                                                                                                         Scientia Horticulturae 338 (2024) 113658 

7 



status (Oldoni et al., 2020). Larger canopies have a higher water de
mand, and that is precisely why NDVI may not be a good indicator under 
water stress (Bellvert et al., 2021). However, Caruso et al. (2017) ob
tained good correlations between NDVI from UAV and leaf chlorophyll 
(using a Minolta SPAD 502 portable greenness meter (Konica Minolta, 
Inc., Osaka, Japan)) but not in all dates (R2 = 0.66** at fruit set 
completed, 0.66** at the beginning of bunch closure, and 0.37* at 
veraison). In addition, Reynolds et al. (2017) found that areas with low 
NDVI from UAV images corresponded to those with low NDVI from 
ground-based sensors. These areas also exhibited higher canopy tem
peratures and more negative Ψ leaf values, all of which are indicators of 
increased plant stress.

Moreover, in the case of low spatial resolution imagery (e.g., satellite 
imagery), pixels may not be limited only to canopies but also include 
parts of soil; however, some indices can reduce the soil background ef
fect such as Soil-adjusted vegetation index (SAVI), Optimized SAVI 
(OSAVI), and the ratio between Transformed CARI (Chlorophyll Ab
sorption Ratio Index) and OSAVI (TCARI/OSAVI). Helman et al. (2018)
achieved better performance using this index with weekly 
satellite-collected data (Planet) on 82 commercial vineyards (Cabernet 
Sauvignon). Indeed, numerous publications have identified excellent 
correlations between these indices and parameters such as gs (Baluja 
et al., 2012), midday Ψstem (M. Romero et al., 2018; Tang et al., 2022) 
and leaf chlorophyll (extracted with acetone and measured with spec
trophotometer) (Zarco-Tejada et al., 2013). Baluja et al. (2012) obtained 
good correlations between UAV TCARI/OSAVI and gs (R2 = 0.84, 
p<-0.05) using a watershed algorithm on GRASS GIS (r.watershed) to 
extract rows and obtain pure vine pixels. Moreover, (Zarco-Tejada et al., 
2013) combined the TCARI/OSAVI index with R515/R570 (obtained 
from a customized PlantPen for carotene estimation) to estimate foliar 
carotene content on Tempranillo obtaining an R2 = 0.93; RMSE = 0.73 
g/cm2. The aforementioned and most used indices in reviewed papers 
are shown below (Table 2).

Tang et al., 2022 have estimated Ψleaf on different varieties by uti
lizing a ML (Random Forest) model trained with meteorological pa
rameters (noontime mean air temperature, vapor pressure deficit) and 
data obtained through UAVs (especially red-edge band-based indices, 
like Normalized Difference Red Edge, NDRE) on Petite Sirah, Cabernet 
Sauvignon and Merlot. In addition, the ability to utilize individual bands 
in combination with ML models, and artificial neural networks (ANN) 
often ensured the most satisfactory results, more accurate than con
ventional indices (López-García et al., 2022). Poblete et al. (2017) using 
ANN models with information between 550–800 nm improved the Ψstem 
prediction showing values of R2 (Coefficient of Determination), MAE 
(Mean Absolute Error), RMSE (Root Mean Squared Error), RE (Relative 
Error) equal to 0.87, 0.1 MPa, 0.12 MPa, and -9.107%, respectively. 
Laroche-Pinel et al. (2021), using a regression model with the Red, NIR, 
Red-edge, and Short-wave infrared (SWIR) bands from Sentinel-2, ob
tained, indifferently from the variety (isohydric and anisohydric), 
promising results. In conclusion, papers using single bands and ML 

models represent only a small percentage of the articles reviewed. 
However, the results are encouraging and satisfactory, especially when 
individual band data can be freely (or at a moderate cost) acquired from 
satellite platforms such as Sentinel-2 or PlanetScope.

5.3. From hyperspectral cameras

By recording the full spectrum of solar irradiance with high- 
resolution instruments, it becomes possible to identify the spectral 
bands and regions most sensitive to changes in plant water status. Wei 
et al. (2021) reported low performance by traditional indices, whose 
application is abundantly found in the bibliography, (i.e. Normalized 
Difference Vegetation Index (NDVI), Moisture Stress Index (MSI) or 
Photochemical Reflectance Index (PRI)) in an experiment on Pinot Noir; 
in contrast, a PLSR-trained model with Simple Ratio indices calculated 
over the entire spectrum ensured the best Ψstem predictions (R2 = 0.85; 
RMSE = 110 kPa). Furthermore, Cogato et al. (2022) showed that PRI 
was the best index to estimate leaf gas exchange, Pn (R2=0.62 on 
Grenache; R2=0.68 on Shiraz) and gs (R2=0.65; on Grenache; R2=0.72 on 
Shiraz). The most closely correlated bands with crop water status are 
SWIR, NIR, Red, Red-edge, and Green (Table 3 shows some particularly 
sensitive wavelengths to changes in the vine’s water status). Cogato 
et al. (2021) identified the wavelength ranges 604 (green-red transi
tion), 720 (red-edge), and 1333–1340 nm (NIR) as particularly sensitive 
to heat wave stress. The red-edge zone has often been selected to 
distinguish water stress zones in grapevine (Tosin et al., 2020). Vaz et al. 
(2016) highlighted that the best indicators for chlorophyll content 
estimation in Trincadeira and Aragonez leaves were narrow-band 
hyperspectral indices calculated in the 700–750 nm spectral region 
(R2 = 0.78 and 0.79). However, Loggenberg et al. (2018) assert that 
better results on Shiraz were obtained using a subset of bands (from the 
initial 176, only 9 were chosen for Random Forest, mainly in the green 
region) that did not include red-edge wavelenghts. In addition, Pôças 
et al. (2020) pointed out the importance of the green region on Touriga 
Nacional and Touriga Franca. This can be explained because the green 
region (i.e., 500–600 nm) is particularly sensitive to changes in chlo
rophyll and xanthophyll concentration, which correlates with water 
stress.

Hyperspectral cameras have been used in most of the work con
cerning chlorophyll and other leaf pigments. This reveals the importance 
of high spectral resolution in this field. In addition, the possibility of 
having many individual bands for inclusion in ML models is also 
attractive. However, higher costs, larger camera sizes, and a consider
able amount of data more difficult to handle must be considered.

6. Statistical methods

6.1. Regression methods

Sepúlveda-Reyes et al. (2016) used a linear regression analysis 

Table 2 
Overview of some main Multispectral VIs used to assess grapevine water, the physiological parameters found to correlate with them and the related reference.

MULTISPECTRAL

ID INDEX FULL NAME FORMULA PARAMETERS REFERENCE

1 GNDVI Green normalized difference vegetation index (R790− R510)/ (R790+R510) gas exchange Espinoza et al. (2017)
2 NDRE Normalized Difference Red Edge Index (R840-R717)/ (R840+R717) leaf pigments, LWP Tang et al. (2022)
3 NDVI Normalized difference vegetation index (R850− R625)/ (R850+R625) SWP, LWP, gas 

exchange
Oldoni et al. (2020)

4 OSAVI Optimized soil-adjusted vegetation index (1 + 0.25)(R840− R668)/ 
(R840+R668+0.25)

SWP Tang et al. (2022)

5 SAVI Soil-adjusted vegetation index 1.5*(R840− R668)/ (R840+R668+0.5) SWP Tang et al. (2022)
6 TCARI Transformed CARI (Chlorophyll Absorption Ratio 

Index)
3[(R700–R760)–0.2(R700− R550) (R700/ 
R670)]

leaf pigments Zarco-Tejada et al. 
(2013)

7 TCARI/ 
OSAVI

TCARI/OSAVI TCARI/OSAVI leaf pigments Zarco-Tejada et al. 
(2013)
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between plant physiological variables and CWSI calculated from 
different points in the canopy. Also, Helman et al., 2018 highlighted 
significant results for a single linear regression model for four VIs (SAVI, 
GNDVI, NDVI and Enhanced Vegetation Index (EVI)) (r = 0.80–0.82; p <
0.01). Laroche-Pinel et al. (2021) obtained the best Ψstem estimation 
using Bayesian Ridge and Linear Regression (R2 = 0.40 and RMSE =
0.26) and all Sentinel-2 bands, with a database composed by 349 
observations.

Moreover, Cogato et al., 2022 used the Statgraphics "comparison of 
alternative models" tool to choose the best model. The Exponential Type 
and PRI hyperspectral index seem to be the best regression model for 
estimating Pn (R2=0.62 on Grenache; R2=0.68 on Shiraz) and gs 
(R2=0.65; on Grenache; R2=0.72 on Shiraz). Reciprocal-X and the Water 
Index performed best in Ψstem estimation (R2=0.63 on Grenache; 
R2=0.73 on Shiraz).

Furthermore, the partial least squares-regression (PLS-R) as often 
been applied with discrete results especially combined with the use of 
hyperspectral cameras. Indeed, it is a method judged to be performant in 

building models based on the entire spectrum (Mirzaie et al., 2014), by 
combining the most important information from hundreds of bands 
(Huang et al., 2004). Diago et al. (2022) obtained good results in Ψstem 
estimation by including atmospheric (canopy and air temperature, 
relative humidity, atmospheric pressure, VPD) and spectral variables in 
their models (R2

cv of ~ 0.63, and Root Mean Square Error of Cross 
Validation between 0.124 MPa and 0.206 MPa). Finally, 
González-Fernández et al., 2015, demonstrated the utility of PLSR and 
continuum removal analysis estimating Tempranillo EWT obtaining an 
R2= 0.675 and RMSE = 0.014% using the range 1265 nm to 1668 nm. In 
conclusion, however, plant spectral response to physiological changes 
cannot always be described by linear relationships, making traditional 
statistical models not robust enough to achieve accurate plant water 
status estimations (M. Romero et al., 2018).

6.2. Machine learning (ML)

Recently, an increasing number of papers in the bibliography have 

Table 3 
Overview of the main bands captured with Hyperspectral cameras, correlated to vine water status, the physiological parameters found to correlate with them and the 
related reference.

SINGLE BANDS

ID CAMERA NAME WAVELENGTH PARAMETER REFERENCE

1 multispectral GREEN 530 nm SWP Poblete et al. (2017)
2 multispectral GREEN 550 nm SWP Poblete et al. (2017)
3 hyperspectral GREEN 520–610 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
4 multispectral GREEN 560 nm chlorophyll Diago et al. (2022)
5 multispectral GREEN-YELLOW 570 nm SWP Poblete et al. (2017)
6 multispectral RED 670 nm SWP Poblete et al. (2017)
7 hyperspectral RED 620–640 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
8 multispectral RED EDGE 700 nm SWP Poblete et al. (2017)
9 hyperspectral RED EDGE 680–720 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
10 multispectral NIR 800 nm SWP Poblete et al. (2017)
11 hyperspectral NIR 770–1340 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
12 multispectral NIR 840 nm LWP, SWP Diago et al. (2022)
13 hyperspectral NIR-SWIR 1100–2100 nm gs Diago et al. (2017)
14 hyperspectral SWIR 1400–1450 nm LWP Rapaport et al. (2015)
15 hyperspectral SWIR 1421–1550 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
16 hyperspectral range 1941–2200 nm 1941–2200 nm SWP, gs, E, Pn, WUE Cogato et al. (2021)
17 hyperspectral range 350 - 2500 nm 350 -2500 nm LWP González-Fernández et al. (2019)
18 hyperspectral range 473–708 nm range 473–708 nm SWP Loggenberg et al. (2018)
19 hyperspectral HSDAR 

package for R
HSDAR 
package for R

LWP, LWC, Car, Lut, Ca, Cb, Cab Tosin et al. (2021)

Fig. 4. Statistical Methods for Data Analysis used in the reviewed articles.
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applied ML, although they are still a few if compared to other data 
analysis methods (Fig. 4).

They allow to find the underlying rules and hidden connections be
tween the given information (Gutiérrez et al., 2021). ML techniques can 
describe linear and non-linear systems by learning from the input-output 
relationship in the training phase (López-García et al., 2022). Indeed, 
the algorithms gradually adapt to improve their performance as the 
number of available training samples increases.

Furthermore, the combination of Artificial Neural Network (ANN) 
and singular bands usually resulted in more accurate than the traditional 
indices. ANNs are robust tools for agricultural predictions, handling 
complex and nonlinear relationships. The learning process in a network 
is automatic and is based on the selection of appropriate weight values 
(Samborska et al., 2014); this allows for improved predictive ability over 
time. ANNs have proven effective in various agricultural applications, 
including predicting plant water uptake (Qiao et al., 2010) and crop 
yield (Khairunniza-Bejo et al., 2014). Their ability to integrate with 
remote sensing data, such as multispectral imagery, allows for more 
accurate and scalable assessments of plant health and water status. 
Poblete et al., 2017 obtained good results in Ψstem prediction using ANN 
models including 550–800 nm bands (R2=0.87, MAE=0.1 MPa, 
RMSE=0.12 MPa, RE=-9.107%). However, the authors also pointed out 
some critical issues of ANN-based models; i.e., the difficulty in clearly 
identifying which variables contribute most to the output (’black-box’) 
or the possibility of causing training data overfitting due to the model 
interaction and nonlinearity.

Finally, some authors underlined the importance of including 
meteorological variables in the models to improve the prediction accu
racy (Thapa et al., 2022); thus, Tang et al. (2022), including in a 
Random Forest (RF) model Tair and VPD, and multispectral UAV-VIs, 
obtained good results in Ψleaf prediction (R2= 0.778, RMSE of 0.123 
(±0.03) MPa and a MAE of 0.100 (±0.026) MPa). They also found that 
RF performed better than extreme gradient boosting (XGB) model ac
cording to other studies (Loggenberg et al., 2018). Indeed, RF may 
ensure greater accuracy when used to classify high-dimensional data 
such as hyperspectral imagery. Indeed, in the case of hyperspectral 
imagery, where the dataset is very large due to the large amount of 
bands, the Hughes effect (Hughes, 1968) may result in a reduction in 
model accuracy. RF helps mitigate the Hughes effect through two main 
mechanisms: bagging, which creates multiple decision trees from 
random subsets of data to reduce overfitting, and aggregating the trees’ 
predictions to improve accuracy by balancing out errors from less 
relevant variables. This approach enables RF to effectively handle 
high-dimensional data and improve classification accuracy (Loggenberg 
et al., 2018). In conclusion, ML methods can detect relationships be
tween spectral data and physiological parameters when traditional 
methods have not yielded satisfactory results. As evidence of this, M. 
Romero et al., 2018 showed how a simple regression failed to find re
lationships between VIs and Ψstem as opposed to an ANN model (where 
the coefficients of determination for training, validation and testing 
were obtained are R = 0.8, 0.72 and 0.62, respectively).

7. Conclusions and future perspectives

Traditional parameters (i.e., Ψstem, Ψleaf, gs) have many critical issues 
detrimental to the successful monitoring to manage the water resource 
sustainably. Indeed, they are time-consuming, thus, in the context of an 
entire vineyard, the data can be significantly affected by time differences 
between measurements; in fact, it is important to have a congruous 
number of measurements without, nevertheless, excessively exceeding 
the midday window. In addition, it is not possible to know the water 
status of all plants; rather, only some leaves of some vines are measured. 
The operator’s skills and knowledge can greatly influence the reliability 
of the parameters. On the other hand, about correlations, to obtain more 
robust models, it is important to choose the most reliable parameter (e. 
g., especially Ψstem) and to make more efficient the data collection 

method (i.e., having more measurements, at different phenological 
stages with larger datasets). In the reviewed papers, the results from 
UAVs-thermal, multispectral, and hyperspectral data do not often differ 
much from traditional results and those obtained from proximal thermal 
and spectral sensors (moreover, the costs are lower, and they can cover 
large areas in reduced time). Furthermore, the use of satellites and 
aircraft appears necessary at regional or district scales. In the former 
case, the data can often be downloaded for free (Sentinel-2, Landsat); in 
the latter, however, the costs are considerably high. As technology ad
vances, the use of satellites may even become preferable in some cases to 
UAVs due to lower costs and data obtained regularly over time without 
the need to travel to the field.

Finally, within the cataloged papers, the best results were obtained:

a. using indices obtained from thermal cameras, such as CWSI (which, 
however, require the acquisition of reference temperatures)

b. applying ML techniques and single bands obtained from multispec
tral or hyperspectral cameras; in contrast, traditional indices (espe
cially NDVI) provided inferior performance.

In addition, bands particularly sensitive to water stress are red-edge, 
NIR, Green, SWIR, and Red.

In conclusion, the large amount of data acquired from proximal and 
remote sensors makes it necessary to process them through equally 
innovative techniques (i.e., artificial intelligence). All this is to integrate 
Decision Support Systems and be truly beneficial to the final user.
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Pérez-Álvarez, E.P., Molina, D.I., Vivaldi, G.A., García-Esparza, M.J., Lizama, V., 
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Tomasella, M., Calderan, A., Mihelčič, A., Petruzzellis, F., Braidotti, R., Natale, S., 
Lisjak, K., Sivilotti, P., Nardini, A., 2023. Best procedures for leaf and stem water 
potential measurements in grapevine: cultivar and water status matter. Plants 12, 
2412. https://doi.org/10.3390/plants12132412.
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