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Abstract 

Background  Mediterranean forests are increasingly threatened by wildfires, with fuel load playing a crucial role in fire 
dynamics and behaviors. Accurate fuel load determination contributes substantially to the wildfire monitoring, man-
agement, and prevention. This study aimed to evaluate the effectiveness of airborne Light Detection and Ranging 
(LiDAR) data in estimating fine dead fuel load, focusing on the development of models using LiDAR-derived metrics 
to predict various categories of fine dead fuel load. The estimation of fine dead fuel load was performed by the inte-
gration of field data and airborne LiDAR data by applying multiple linear regression analysis. Model performance 
was evaluated by the coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error 
(MAE).

Results  Through multiple linear regression models, the study explored the relationship between LiDAR-derived 
height and canopy cover metrics and different types of fine dead fuel load (1-h, 10-h, 100-h fuel loads, and lit-
ter). The accuracy of these models varied, with litter prediction showing the highest accuracy (R2 = 0.569, nRMSE 
= 0.158). In contrast, the 1-h fuel load prediction was the least accurate (R2 = 0.521, nRMSE = 0.168). The analysis 
highlighted the significance of specific LiDAR metrics in predicting different fuel loads, revealing a strong correlation 
between the vertical structure of vegetation and the accumulation of fine dead fuels.

Conclusions  The findings demonstrate the potential of airborne LiDAR data in accurately estimating fine dead fuel 
loads in Mediterranean forests. This capability is significant for enhancing wildfire management, including risk assess-
ment and mitigation. The study underscores the relevance of LiDAR in environmental monitoring and forest manage-
ment, particularly in regions prone to wildfires.
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Resumen 

Antecedentes  Los bosques del Mediterráneo están siendo crecientemente amenazados por incendios forestales, 
con los combustibles finos jugando un rol crucial en la dinámica del fuego. Este estudio tiene por objetivo evaluar la 
efectividad de datos del LiDAR (Light Detection and Ranging), para estimar los combustibles finos muertos dentro 
de esos ecosistemas. EL foco estuvo puesto en el desarrollo de modelos usando medidas derivadas del LiDAR para 
predecir varias categorías de carga de combustible fino muerto, crucial para entender y manejar el riesgo de incendio. 
La estimación de la carga de combustible fino muerto fue realizada mediante la integración de datos de campo y de 
datos LiDAR, aplicando un análisis de regresión linear múltiple. La performance del modelo fue evaluada mediante el 
coeficiente de determinación (R2), la raíz del error cuadrático medio (RMSE) y el error medio absoluto (MAE). 

Resultados  A través de modelos de regresión múltiple, este estudio exploró las relaciones entre medidas de altura 
y cobertura del dosel derivadas del LiDAR y diferentes tipos de carga de combustibles muertos (de 1 h, 10 h, 100 h, 
y 1000 h, y mantillo o broza). La exactitud de esos modelos varió, con la predicción de la broza dando la exactitud 
más alta ((R² = 0.569, nRMSE = 0.158). En contraste, la predicción de los combustibles de 1 h fue el menos exacto (R² 
= 0.521, nRMSE= 0.168). El análisis subrayó la significancia de las medidas del LiDAR en la predicción de las diferentes 
cargas de combustibles, revelando una fuerte correlación entre la estructura vertical de la vegetación y la acumula-
ción del combustible fino muerto. 

Conclusiones  Los resultados demuestran el potencial de los datos LiDAR en la estimación exacta de las cargas de 
combustibles finos muertos en los bosques mediterráneos. Esta capacidad es significativa para mejorar el manejo del 
fuego incluyendo la determinación y mitigación del riesgo. El estudio subraya la relevancia del LiDAR en el monitoreo 
y manejo de bosques, particularmente en regiones proclives al fuego.

Background
Over the past decades, the frequency and severity of 
wildfires have been increasing throughout the Europe 
(Cardíl et  al. 2023; Nolè et  al. 2022; Regos et  al. 2023; 
Vieira et  al. 2023). The consequences of wildfire have a 
significant impact on ecosystems, resulting in soil degra-
dation and greenhouse gas emissions (Gajendiran et  al. 
2024). Therefore, early fire prevention and suppression 
are urgently required. Fuel load is the critical factor in 
assessing fire characteristics such as flame length, fuel 
consumption, and severity and is also an essential input 
for fire behavior models (Li et  al. 2021). Generally, fuel 
load, defined as the fuel dry mass per unit area, quanti-
fies the amount of both live and dead biomass available 
for ignition and combustion (Alonso-Rego et al. 2020). It 
is considered a key characteristic of fuel and is the only 
component related to fire that can be modified (Gale 
et al. 2021). Furthermore, fuel load plays a crucial role in 
assessing the carbon cycle and predicting fire emissions 
(Jiménez et  al. 2013; Lasslop and Kloster 2015). There-
fore, accurately estimating fuel load on forest floors is 
essential for effective fuel management and wildfire pre-
vention to mitigate wildfire’s adverse effects.

However, quantifying the forest fuel load is challeng-
ing due to its spatial and temporal variability (Lydersen 
et al. 2015). Traditional fuel load estimation methods are 
mainly based on field surveys, which are labor-intensive, 
time-consuming, and limited in spatial coverage (D’Este 
et  al. 2021; Stefanidou et  al. 2020). Therefore, exploring 

alternative methods for fuel load estimation becomes 
crucial.

Remote sensing technology has been widely used to 
estimate fuel load as it offers numerous benefits over 
field-based approaches of fuel load assessments, includ-
ing the ability to provide high-resolution data and cost 
efficiency over large areas in remote or inaccessible 
regions (Gale et  al. 2021). A great variety of previous 
studies have attempted to use passive remote sensors to 
estimate the fuel loads (Jin and Chen 2012; Franke et al. 
2018; Santos et  al. 2023). For example, Arellano-Pérez 
et  al. (2018) used multispectral Sentinel-2 to estimate 
surface fuel load in even-aged pine stands in northwest 
Spain (12% of accuracy). Li and He (2022) combined 
optical data (Landsat 7 ETM+) and spaceborne synthetic 
aperture radar data to estimate above-ground live forest 
fuel loads in northern Sweden using a semi-empirical 
retrieval model, achieving reasonable performance with 
64% or higher accuracy. Li et al. (2021) employed satellite 
data including Landsat Enhanced Thematic Mapper Plus 
(ETM +) and Advanced Land Observing Satellite (ALOS) 
Phased Arrayed L-band Synthetic Aperture Radar (PAL-
SAR) data to estimate the above-ground forest fuel loads 
in Sweden. The models demonstrated high accuracy, with 
performance ratings of 76% for stem fuel load, 81% for 
branch fuel load, and 82% for foliage fuel load.

Other authors (Labenski et  al. 2023; Urbazaev et  al. 
2018), recently, have emphasized some limitations of 
the passive remote sensors as they are poorly capable of 
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providing estimates for each horizontal and vertical fuel 
layer of the forest stand. In this regard, active remote sen-
sors, such as the Light Detection and Ranging (LiDAR) 
scanners can fill these gaps by actively capturing three-
dimensional information of vegetation layers (Giannico 
et al. 2016). Several previous studies have examined the 
potential of LiDAR data in fuel load estimation (Alonso-
Rego et  al. 2020; Chen et  al. 2017; Heisig et  al. 2022; 
Hudak et al. 2016; Lin et al. 2021; Mauro et al. 2021; Price 
and Gordon 2016). Lopes Queiroz et  al. (2020) demon-
strated a novel approach that using optical imagery com-
bined with an infra-canopy vegetation-index layer from 
multispectral aerial LiDAR to estimate and map coarse 
woody debris in Alberta’s boreal forest, with a coef-
ficient of determination (R2, the proportion of the vari-
ation in the dependent variable that is predictable from 
the independent variable) value of 62% and a root mean 
square error (RMSE, the quadratic mean of the differ-
ences between the observed values and predicted ones) 
of 0.224 compared to field data. Marino et al. (2022) used 
low-density LiDAR point cloud data to estimate main 
canopy fuel attributes such as canopy base height, canopy 
fuel load, and bulk density in a pine-dominated forest 
in Spain, with an adjusted R2 of 68% and RMSE of 0.14. 
Bright et  al. (2022) combined multitemporal airborne 
LiDAR and Landsat-derived fire history metrics to pre-
dict and map canopy and surface fuels across the land-
scape of the northern Arizona in the USA, with the R2 
of 50%, 39%, 59%, and 48% for canopy fuel, 1- to 1000-h 
fuels, litter and duff, and total surface fuel, respectively. 
However, few previous studies have specifically focused 
on fine dead fuel load estimation using airborne LiDAR 
data. Fine dead fuel load significantly influences the 
occurrence and behavior of wildfires (Zhang and Tian 
2024). Due to its low moisture content, fine dead fuel 
load dries out quickly, facilitating the easy ignition and 
rapid spread of wildfires. Therefore, fine dead fuel load is 
considered as the primary source of ignition and propa-
gation of wildfires (Nguyen et al. 2024). Thus, an accurate 
assessment of fine dead fuel load is crucial for effective 
wildfire management, as well as for ecological and envi-
ronmental considerations.

To address the literature gap in the use of airborne 
LiDAR for fine dead fuel load prediction, the main objec-
tive of this research was to investigate the potential use of 
airborne LiDAR in predicting four different fine dead fuel 
load parameters (i.e., 1-h, 10-h, and 100-h fuel load, lit-
ter) in the Mediterranean forest. We employed multiple 
linear regression analysis to examine the contribution of 
vegetation vertical structure metrics obtained from air-
borne LiDAR to the reliable prediction of each individual 
fine dead fuel load type in the Apulia region of southern 
Italy, where is strongly affected by wildfires. This study 

intends to increase the ability to regularly estimate fine 
dead fuel load across large areas by using LiDAR-derived 
metrics, which would benefit to the fire risk assessment 
and fuel load management.

Method
Study area
The Apulia region, situated in southern Italy’s peninsu-
lar area, lies between 39°50′ and 41°50′ N latitude and 
15°50′ and 18°50′ E longitude (Fig.  1). Encompassing 
19,345 square kilometers, the region is divided into six 
provinces. The region’s orography consists of 53% plain, 
with hills and low mountains in the northwest, where the 
highest point reaching 1155 m above sea level. The cli-
mate is typically Mediterranean with hot, dry summers 
and mild, rainy winters. The annual mean rainfall varies 
between 450 mm and 650 mm. The mean annual temper-
ature ranges from 12 °C in mountainous areas to 19 °C in 
southern coastal areas (D’Este et al. 2021).

Forests in the Apulia region are mainly represented by 
various tree species including Quercus ilex L., Q. pube-
scens Willd, Q. cerris L., Q. coccifera L., Carpinus betu-
lus L., Carpinus orientalis Mill, Fagus sylvatica L., Pinus 
halepensis L., Pinus pinea L., Phillyrea spp., Ruscus acu-
leatus L., Pistacia lentiscus L., Asparagus acutifolius L., 
Cistus monspeliensis L., C. incanus L., C. salvifolius L., 
Fraxinus ornus L., Prunus spinosa L., and Paliurus spina-
christi Mill (Elia et al. 2015).

According to the European Forest Fire Information 
System (EFFIS) annual fire reports, from 2011 to 2022, 
over 50,000 hectares were burned in more than 4500 
recorded fire events in the Apulia region. Typically, fire 
season occurs from May to September, with a significant 
increase in fire events peaking in August. Apulia is among 
the Italian regions that the most frequently affected by 
wildfires. For this reason, we selected the Apulia region 
as the pilot area for our study.

Field Data
The field data were collected during 2018 and 2019. 104 
plots across the Apulia region were randomly selected to 
assess the fine dead fuel load. The sample areas identi-
fied in Apulia present different forest formations includ-
ing coniferous forest, broadleaf forest, mixed forest, areas 
with Sclerophyllous vegetation, and areas with bushes 
and shrubs.

Fuel load sampling was conducted using the method 
developed by the US Department of Agriculture Forest 
Services (Brown et al. 1982). The field sampling protocol 
is demonstrated in Figs. S1 and S2. Firstly, circular plots 
with a diameter of 10 m each were identified using GPS-
registered geographical coordinates. Within each plot, 
a 15-m transect length was established to sample the 
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dead woody material in the form of small dead branches, 
stems, fallen or lying shrubs, and tree trunks.

A measuring tape is placed on the ground, extending 
7.5 m in each direction from the sampling center, form-
ing a 60° angle with the northward sampling plane. The 
objective is to record the number of woody pieces on 
the ground that intersect the tape. Only pieces whose 
central axes intersect with the transect are counted. If a 
curved piece intersects the transect at multiple points, 
each intersection is recorded according as specified by 
the method developed by Brown et  al. (1982). In this 
survey, dead woody materials were classified into three 
time-lag classes (1-h, 10-h, and 100-h) based on the 
diameter measured by the caliper at the point of intersec-
tion with the transect (Lydersen et al. 2015). The 1-h fuel 
load mainly consisted of needles, leaves, and small twigs 
with a diameter of less than 0.65 cm. The 10-h fuel load 
included dead twigs and foliage with a diameter between 
0.65 and 2.5 cm. The 100-h fuel load was large branches 
and large pieces of bark with a diameter ranging from 2.5 

to 7.5 cm. The collection of litter, which was composed of 
plant residues on the ground was conducted by placing a 
30 × 60 cm rectangular plot within a square area of 2.5-m 
sides, which was positioned 5 m away from the center of 
the sampling plane along the transect. From within each 
plot, a sample of litter was obtained and placed in sealed 
bags and put in an oven at 105 ℃ for 24 h to exclude the 
moisture content from the fuel load and then calculated 
the dry mass of litter.

LiDAR Data
Airborne LiDAR (Light Detection and Ranging) tech-
nology was used in this study to gather high-resolution 
data reflecting the structure of the forest vegetation. 
LiDAR data was derived from “Ministero dell’Ambiente 
e della Tutela del Territorio e del Mare”. The LiDAR 
data were acquired with ALTM Gemini and ALTM 
3100EA laser-scan sensors from the Canadian company 
Optech. The LiDAR data was mainly obtained in 2013 
and the resolution was three points per m2.

Fig. 1  Location of the Apulia region in Italy and 104 field plots across the Apulia region
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LiDAR point cloud data processing was conducted 
using LAStools (Isenburg, 2014). The LiDAR point-
cloud data were initially classified into ground and non-
ground points, and normalized z values of height above 
ground for each return to eliminate the effect of varying 
elevation on vegetation structure calculations. Once 
each point cloud was suitably georeferenced and nor-
malized, any points below zero were removed, and the 
heights of all remaining points classified as vegetation 
that is 0.4 m above the ground were calculated. These 
procedures involved the use of various LAStools (i.e. 
lasground, lasheight, and lasclassify) (Isenburg, 2014). 
Finally, we clipped a buffer zone with a radius of 10 m, 
ensuring that the LiDAR metrics were extracted specif-
ically within predefined areas. These 10-m radius plots 
correspond to the areas where field surveys were con-
ducted to measure fine dead fuel loads.

A set of LiDAR metrics were extracted directly and 
calculated using “lascanopy” function (Table  1). These 
metrics were grouped into three main categories. The 
height characteristics include variables that are com-
monly used, such as maximum height, minimum height, 
mean height, and height percentiles. Variables that are 
grouped into the height variability categories include 
simple descriptions of point height distribution such as 
kurtosis, skewness, and standard deviation. The point 
cloud cover was described based on the percentage of 
return. The percentage of the first return was described 
as canopy cover and the percentage of all returns was 
described as canopy density (Giannico et al. 2016, 2022).

Fine dead fuel load prediction
Because of the relatively low number of observations in 
this study, multiple linear regression was applied using 
the LiDAR-derived metrics (Table 1) for the development 
of models predicting the fine dead fuel load (i.e., litter, 
1-h, 10-h, and 100-h fuel load). Prior to analysis, outliers 
in the multiple linear regression models were assessed 
through visualizing residual plots. First, we initialized a 

multiple linear regression model incorporating all avail-
able features. Then we removed the outliers based on the 
Cook’s distance method, which any point that was more 
than 3× the mean of all the distances was identified as 
outliers and excluded. This procedure was repeated until 
the model achieved a relatively good fit for the majority 
of the dataset.

Due to the large number of the LiDAR metrics to be 
considered as potential predictive variables, we used 
stepwise regression to select the most significant ones 
in terms of correlation with fine dead fuel load and pre-
dictability. Stepwise regression is the step-by-step itera-
tive construction of a regression model that involves the 
selection of variables to be used in a final model, through 
adding (forward) or removing (backward) variables in 
succession (Smith 2018). In this study, we did both for-
ward and backward selection at each step. Through the 
use of the Akaike Information Criterion (AIC), the num-
ber of variables was optimized by removing the least 
significant variable one at a time with the highest AIC 
until the model with the lowest AIC was identified. The 
selected variables for each type of fuel load after step-
wise regression were used to perform the multiple linear 
regression analysis, as shown in the following equation 
(Park 2020):

where y is the fine dead fuel load measured in the field 
survey; x1, x2, ..., xn are the selected variables from LiDAR 
data; β0, β1, β2, ..., βn are the estimated regression param-
eters; ε is residuals.

Model performance
To assess the stability of the best model after the step-
wise procedure, the dataset was split into an 80% train-
ing set and 20% testing set. This random partitioning 
was repeated five times to obtain five random subsam-
ples, ensuring a robust validation of the model against 

(1)y = β0 + β1x1 + β2x2 + · · · + βnxn + ε

Table 1  Descriptions of selected LiDAR metrics derived from the point cloud as explanatory variables

Category Metrics Code

Height characteristics Maximum height max

Minimum height min

Mean height avg

Percentile of height distribution p10, p25, p50, p75, p90

Height variability Standard deviation of height std

Skewness of height ske

Kurtosis of height kur

Cover Percentage of first return > 1.37 m in height cov

Percentage of all returns > 1.37 m in height dns
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overfitting. Using each one of the subsamples, the opti-
mal multiple linear regression model with the correct 
number of variables was calibrated using a training set 
and validated using a testing set.

The performance of the multiple regression model was 
evaluated based on three standard goodness-of-fit met-
rics, including the normalized root mean squared error 
(nRMSE), mean absolute error (MAE), and the coeffi-
cient of determination (R2). The formulas for these met-
rics are as follows (D’Este et al. 2021):

where yi is the predicted value, xi is the observed value, 
and yi is the mean of the observed value.

Result
Field measurements summary statistics
Table 2 presents the statistics of fine dead fuel load col-
lected from field plots. The 1-h fuel load ranged from 0 
to 4.10 t/ha and averaged 0.68 t/ha, 10-h fuel load ranged 
from 0 to 7.14 t/ha with an average value of 1.54 t/ha, 
100-h fuel load ranged from 0 to 12.01 t/ha and averaged 
1.24 t/ha, and litter ranged from 0 to 260.83 t/ha and 
averaged 73.33 t/ha. From a total of 104 plots, nine plots, 
representing 8% of the total plots, were removed as outli-
ers based on the method mentioned before.

Multiple regression model prediction for fine dead fuel 
load
Principle component analysis based on the correlation 
matrix was used to detect the presence of potential collin-
earity in the multiple regression analysis. The condition 
number was calculated by the square root of the largest 
eigenvalue divided by the smallest eigenvalue, which was 
used to suggest collinearity. The condition number larger 
than 30 was indicated as collinearity (Næsset 2002). The 

(2)nRMSE =

∑
(yi−xi)

2

∑
xi2

(3)MAE =
n
i=1

|yi−xi|
n

(4)R2 = 1−

∑n
i=1 (xi−yi)

2

∑n
i=1 (xi−yi)

2

selected models for further analysis were those fulfilled 
the requirement of condition number smaller than 30.

In general, the result presented in Table  3 showed 
that R2 values ranging from 0.521 to 0.569 (0.110–0.169 
nRMSE) could be achieved by the multiple linear regres-
sion model developed with LiDAR-derived metrics for 
the 1-h, 10-h, 100-h fuel load and litter. The accuracy of 
estimation varied across different models. Among four 
different fuel types, litter was the most accurately esti-
mated, with the model yielding an R2 of 0.569 and 0.158 
nRMSE. In particular, the accuracy of the prediction 
between 10-h fuel load and litter was very close, with 
an R2 of 0.568 and 0.569 and nRMSE of 0.169 and 0.158, 
respectively. The model with the lowest predictive accu-
racy was the 1-h fuel load. Fifty-two percent of the 1-h 
fuel load variance was explained with an nRMSE of 0.168. 
The models’ fits to the field-measured fine dead fuel load 
values were not very close to the hypothetical 1:1 rela-
tionship (Fig. 2), indicating the limitation of using multi-
ple linear regression analysis to predict the fine dead fuel 
load.

The developed models for each fuel type were evalu-
ated by implementing the independent test set. The 
cross-validation confirmed the robustness of the multi-
ple linear regression model (Table 4). The calculation for 
5 subsamples of train and test sets showed similar MAE, 
nRMSE, and R2 values, demonstrating that there was no 
overfitting in the final model.

Relationship between LiDAR‑derived metrics and fine dead 
fuel load
The multiple linear regression analysis conducted on 
various fine dead fuel load types revealed significant 
relationships between LiDAR-derived variables and 
fine dead fuel load including litter, 1-h, 10-h, and 100-h 
fuel load, each exhibiting distinct associations with the 
predictors (Table 5).

In the case of metrics from the cover category, meas-
ured as the percentage of returns greater than 1.37m, 
were less consistently significant across the models but 
showed some influence in 10-h fuel load and litter. Spe-
cifically, dns, which represented the canopy density, 

Table 2  Summary of the field-measured fine dead fuel load

Fuel type Fine dead fuel load statistical measures (t/ha)

Min Max Mean Std

1-h fuel load 0.00 4.10 0.68 0.63

10-h fuel load 0.00 7.14 1.54 1.56

100-h fuel load 0.00 12.01 1.24 2.20

Litter 0.00 260.83 73.33 58.48

Table 3  Performance metrics of multiple linear regression 
model for each fuel type. Each standard goodness-of-fit metrics 
summarized with coefficient of determination (R2), normalized 
root mean squared error (nRMSE), and mean absolute error (MAE)

Fuel type(T/ha) R2 nRMSE (%) MAE

1-h fuel load 0.521 0.168 0.275

10-h fuel load 0.568 0.169 0.728

100-h fuel load 0.549 0.110 0.720

Litter 0.569 0.158 27.958
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was positively correlated with litter in the model, indi-
cating that denser canopies contribute to more surface 
litter.

Regarding height variability, the standard deviation of 
height (std) consistently demonstrated a negative rela-
tionship with both 1-h, 10-h, and 100-h fuel loads, sug-
gesting that greater height variability decreased overall 
fuel load. This could imply that uniform forest canopies 
could accumulate more fuel. Skewness of height (ske) 
and kurtosis of height (kur) revealed significant dynam-
ics, with skewness of height showing a significant nega-
tive coefficient in th 100-h fuel load model while kurtosis 
of height displayed a positive correlation, particularly in 
the 10-h fuel load model, underscoring the impact of the 
shape of the height distribution on fuel accumulation.

For the height characteristics, minimum height (min) 
consistently exhibited a positive correlation across fuel 
load models, particularly in the 100-h fuel load model. 
The percentile metrics provided insight into the distri-
bution of canopy height and their relation to fuel loads. 
Notably, lower percentiles such as 10 percentile height 

(p10) and 25 percentile height (p25) and higher percen-
tiles such as 75 percentile height (p75) and 90 percen-
tile height (p90) exhibited both negative and positive 
influences across 1-h, 10-h, and 100-h fuel load mod-
els, reflecting their complex roles in fuel accumulation 
dynamics.

Discussion
In this study, multiple linear regression analysis was 
implemented for the prediction of various fine dead fuel 
loads (i.e., litter, 1-h, 10-h, and 100-h fuel load) using 
airborne LiDAR data. Height and canopy cover metrics 
derived from LiDAR were used as potential independent 
variables for the development of four regression mod-
els, with different predictors for each fine dead fuel load 
parameter. Following the cross-validation approach, the 
evaluation performance statistics showcased that there 
was no overfitting in the calibrated model. Overall, the 
results demonstrated that multiple linear regression 
models based on the airborne LiDAR-derived metrics 
describing forest structure have the potential to predict 

Fig. 2  The observed versus predicted plots for the prediction of a 1-h fuel load (R2 = 0.521), b 10-h fuel load (R2 = 0.568), c 100-h fuel load (R2 = 
0.549), and d litter (R2 = 0.569) through the multiple linear regression analysis (The red line is the 1:1 line). Each standard goodness-of-fit metrics 
summarized with coefficient of determination (R2), normalized root mean squared error (nRMSE), and mean absolute error (MAE). These results refer 
to the models produced with the use of LiDAR-derived metrics
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fine dead fuel load in the Mediterranean forest stands 
with moderate accuracy.

According to the results of the regression analysis, the 
fine dead fuel load explained by the models varied in their 
accuracy (R2 values) ranging from 0.521 to 0.569 and 
nRMSE values between 0.110 and 0.169. Our result in 
general exceeds those from previous studies. For exam-
ple, Stefanidou et al. (2020) found that a multiple linear 
regression model including LiDAR height distribution 
metrics explained 48% in litter load, 58% in 1-h fuel load, 
and 48% in 10-h fuel load in the forest located in central 
Greece. Similarly, Jakubowksi et al. (2013) also predicted 
each type of surface fuel load through combining mul-
tiple linear regression, additive regression, and support 
vector machine algorithms. Their results showed that 
the model of the 1-h, 10-h, and 100-h fuel load and litter 
all yielded very poor correlation coefficients. Moreover, 
Alonso-Rego et al. (2021) used both airborne laser scan-
ning (ALS) and terrestrial laser scanning (TLS) metrics to 
estimate surface fuel loads. The results showed that with 
models based on ALS metrics, in the case of downed 
woody debris load and litter and duff load variables, the 

R2 were 0.4069 and 0.1049, respectively. As with models 
based on the combination of ALS and TLS metrics, the 
R2 was 0.4894 for the downed woody debris load model 
and 0.4311 for litter and duff load model.

In our study, the highest accuracy was observed in esti-
mating litter (R2 = 0.569, nRMSE = 0.158). This could 
be attributed to the fact that litter typically remains on 
the surface, unlike larger woody fuels that may be bur-
ied, making it more detectable by LiDAR. In contrast, the 
1-h fuel load was predicted with the lowest accuracy (R2 
= 0.521, nRMSE = 0.168). The potential reason could be 
that 1-h fuel load varies at millimeter scales, influenced 

Table 4  Prediction performance of the multiple linear regression 
model in 5 training and testing subsamples of 1-h fuel load; 
10-h fuel load; 100-h fuel load; litter. Each standard goodness-
of-fit metrics summarized with coefficient of determination 
(R2), normalized root mean squared error (nRMSE), and mean 
absolute error (MAE)

MAE Mean absolute error; nRMSE Normalized root mean squared error; 
R2 Coefficient of determination

Fuel type MAE nRMSE R2

1-h fuel load Subsample 1 0.283 0.217 0.535

Subsample 2 0.237 0.236 0.510

Subsample 3 0.274 0.201 0.507

Subsample 4 0.279 0.203 0.525

Subsample 5 0.234 0.222 0.536

10-h fuel load Subsample 1 0.703 0.190 0.583

Subsample 2 0.784 0.179 0.609

Subsample 3 0.736 0.207 0.601

Subsample 4 0.798 0.196 0.571

Subsample 5 0.818 0.199 0.588

100-h fuel load Subsample 1 0.978 0.330 0.621

Subsample 2 0.909 0.292 0.590

Subsample 3 0.938 0.281 0.605

Subsample 4 0.903 0.275 0.607

Subsample 5 0.940 0.314 0.597

Litter Subsample 1 29.803 0.184 0.599

Subsample 2 27.220 0.223 0.588

Subsample 3 27.275 0.182 0.547

Subsample 4 25.848 0.192 0.554

Subsample 5 29.941 0.210 0.559

Table 5  Results of variable selection to each fuel type by 
stepwise regression, each variable summarized with: kurtosis of 
height (kur), skewness of height (ske), minimum height (min), 
standard deviation of height (std), percentage of first return > 
1.37m in height (cov), percentage of all returns > 1.37m in height 
(dns), 10 percentile height (p10), 25 percentile height (p25), 50 
percentile height (p50), 75 percentile height (p75), 90 percentile 
height (p90)

*p < 0.1; **p < 0.01; ***p < 0.001

Fuel type Variable Coefficient Std. error p value

1-h fuel load (Intercept) 0.217 0.066 < 0.01**

kur 0.588 0.151 < 0.001***

std − 3.299 0.980 < 0.01**

min 0.973 0.386 < 0.1*

p10 − 4.027 1.065 < 0.001***

p25 2.274 0.614 < 0.001***

p75 − 2.727 0.851 < 0.001**

p90 3.501 0.931 < 0.001***

10-h fuel load (Intercept) 0.416 0.204 < 0.1*

cov − 0.028 0.016 > 0.1

dns 0.023 0.015 > 0.1

kur 2.502 0.708 < 0.001***

std − 7.356 2.462 < 0.01**

min 2.372 1.022 < 0.1*

p10 − 9.370 2.573 < 0.001***

p25 5.457 1.978 < 0.01**

p50 − 2.932 1.515 > 0.1

p90 4.316 1.378 < 0.01**

100-h fuel load (Intercept) − 0.058 0.213 > 0.1

dns 0.023 0.009 < 0.01**

ske − 5.684 1.949 < 0.01**

std − 8.110 2.824 < 0.01**

min 4.694 1.154 < 0.001***

p10 − 10.529 2.259 < 0.001***

p50 3.946 1.813 < 0.1*

p75 − 7.986 2.874 < 0.01**

p90 9.638 2.691 < 0.001***

Litter (Intercept) 8.516 6.453 > 0.1

dns 1.464 0.127 < 0.001***
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by the micro-topography of the forest floor, the presence 
of herbaceous plants, and the accumulation of dead nee-
dles and fine twigs under fallen branches. This heteroge-
neity might not be fully captured by the airborne LiDAR 
data (Labenski et  al. 2023). The final multiple linear 
regression models showed that the height metrics were 
mostly used for fine dead fuel load estimation, indicat-
ing that although airborne LiDAR cannot directly meas-
ure fine dead fuel load, it effectively characterizes stand 
structure and the canopy conditions correlating with fine 
dead fuel load characteristics.

With respect to the LiDAR metrics within each model, 
several previous studies have incorporated the relevant 
metrics related to canopy height and cover into their 
models. For instance, Giannico et  al. (2016) utilized a 
combination of LiDAR-derived height metrics, finding 
that the 95th percentile of height distribution was one of 
the best predictors for estimating forest stand volume and 
above-ground biomass. D’Este et al. (2021) applied multi-
ple algorithms, such as multiple linear regression, using 
remote sensing predictors, including LiDAR data, to esti-
mate the 1-h fuel load. The results indicated that LiDAR 
variables, such as the Canopy Height Model and Canopy 
cover, played a crucial role in fuel estimation. Leite et al. 
(2022) used GEDI-derived vegetation structure metrics, 
including relative height at the 98th height percentile and 
canopy cover fraction, to predict fuel load components. 
In our research, in the case of height metrics, minimum 
height (min) showed a significant positive correlation 
with fuel loads, especially in the 100-h fuel load model 
compared to the 1-h and 10-h fuel load models. This 
suggested that shorter vegetation, including shrubs and 
undergrowth, also contributed to fuel loads. Analysis of 
height percentiles showed negative coefficients for lower 
percentiles (e.g., 10 percentile height) and positive coef-
ficients for higher percentiles (e.g., 90 percentile height) 
across 1-h, 10-h, and 100-h fuel load models, illustrat-
ing the complexity of forest structure in influencing fuel 
loads. Lower forest strata, represented by lower percen-
tiles, likely accumulated less fuel due to moisture reten-
tion and reduced light penetration. In contrast, upper 
layers were exposed to more environmental stress and 
sunlight, leading to more frequent shedding of combus-
tible materials like dead branches and leaves, contribut-
ing to increased fuel loads on the forest floor. Concerning 
height variability, the standard deviation of height (std) 
displayed a consistent negative correlation with the mod-
els of 1-h, 10-h, and 100-h fuel loads. This might result 
from the heterogeneity forest structure, which could dis-
rupt the spatially continuous of fuel loads (Chávez-Durán 
et al. 2022). Kurtosis of height (kur) was included in the 
1-h and 10-h fuel load model as an important predic-
tor. High kurtosis values were frequently associated with 

dense underbrush areas, indicating a substantial accumu-
lation of fine fuels. The presence of skewness of height 
(ske) only in the model as an important variable for pre-
dicting 100-h fuel load suggested an asymmetry in height 
distribution that was relevant for this fuel load type. Can-
opy density (dns) was the only significant predictor of lit-
ter, showing a positive correlation with it. Dense canopies 
typically result from a higher density of trees and larger 
crowns, which leads to more leaves, twigs, and small 
branches falling to the forest floor, thereby contributing 
to the litter layer. In addition, trees shed parts of them-
selves during the natural life cycles, which contribute to 
litter accumulation. Dense canopies create a humid envi-
ronment on the forest floor, which can slow down the 
rate of decomposition of organic matter, resulting in the 
accumulation of organic materials like fallen leaves and 
wood (Wallace et al. 2018).

Even though the multiple linear regression models in 
our study demonstrated the potential of using LiDAR-
derived height metrics to predict underlying fine dead 
fuel load, there was still room for improvement. Firstly, 
the moderate accuracy of our result indicated that fine 
dead fuel loads are not always correlated with forest 
stand attributes, factors such as topography, wind, tem-
perature, and humidity also play significant roles. There-
fore, incorporating these abovementioned variables 
could notably enhance the accuracy of the fine dead fuel 
load prediction model. In addition, the observed versus 
predicted discrepancies underscored the limitations of 
multiple linear regression in accurate fine dead fuel load 
estimation, suggesting the need for more sophisticated 
models such as machine learning techniques to improve 
accuracy (Cilli et al. 2022). Moreover, the predictive mod-
els developed in this research could not be transferred to 
other forest ecosystems. Although the models showed a 
reliable predictive performance in our area, variations in 
vegetation composition, topography, and sensor charac-
teristics could alter the relationship between the response 
and LiDAR-derived predictive variables, thus influencing 
the results. Fine dead fuel load estimation in different for-
ested areas would require new reference data collection 
and the development of alternative regression models. In 
the future, even less field data, which are time- and cost-
consuming, would be needed with the advancements of 
knowledge and technologies. Nevertheless, we argued 
that the employed methodology provides a robust frame-
work for fine dead fuel load estimation using airborne 
LiDAR data.

Implications for fuel load management
By achieving moderate accuracy from the outputs of 
models in predicting fine dead fuel load, this research 
indicated that LiDAR could be a valuable tool for forest 
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managers to monitor and predict fine dead fuel loads. 
The variable accuracy across different fine dead fuel load 
types suggested a need for adaptive management strate-
gies. For instance, while LiDAR data in this study could 
be reliably used for managing fine dead fuel load with 
larger diameter, finer fuels such as 1-h fuel may require 
additional estimation methodologies such as using a 
mobile laser scanner and more frequent management 
interventions. In addition, the results could contribute 
to more comprehensive fire risk mapping by revealing 
the spatial distribution of the fuel load, which allows for 
more targeted and efficient fuel load management strat-
egies, such as prescribed burns, mechanical removal, 
or other fire prevention measures, especially in critical 
areas.

Focusing on LiDAR metrics used to estimate fine dead 
fuel loads in this study, different metrics exhibited either 
positive or negative correlations with each fine dead fuel 
load type. Moreover, each fine dead fuel load type had 
several significant predictors determined by the variable 
importance. Understanding the relationship between for-
est structure and fuel load accumulation, as indicated by 
LiDAR metrics, can guide forest thinning or other treat-
ment operations, focusing on structural characteristics 
like changing canopy cover or altering tree heights to 
manage the accumulation of specific fine dead fuel load 
type effectively.

Ultimately, the utilization of airborne LiDAR data 
alongside field surveys for fine dead fuel load estimation 
presents a valuable approach for fuel data collection. The 
remotely derived point clouds can consistently predict 
the fine dead fuel load without many tree-level measure-
ments, enabling data collection over larger areas and with 
higher sampling densities than traditional methods that 
rely on field measurements alone. This method is appli-
cable in high-profile areas as well as in actively managed 
forests.

Conclusion
The present paper focused on the estimation of various 
fine dead fuel loads (i.e., 1-h, 10-h, 100-h fuel load, and 
litter) in the Mediterranean forest stands of the Apulia 
region in southern Italy by employing airborne LiDAR 
data. The fine dead fuel loads were predicted by mul-
tiple linear regression models, which were developed 
using LiDAR-derived height and canopy cover metrics 
as potential independent variables. A stepwise regression 
process was applied to compare the developed models in 
terms of accuracy.

The research findings indicated that the predictive 
accuracy of these models varies among different fuel 
types, with the explained variance (R2) between 0.521 
and 0.569 (normalized root mean square error (nRMSE) 

11–16.9%). The study also revealed the significant role of 
specific LiDAR-derived metrics in predicting different 
types of fine dead fuel loads. The importance of these 
metrics reflected the intricate relationship between 
vegetation vertical structure and fine dead fuel load 
accumulation.

In general, the results demonstrated a promising 
approach in estimating fine dead fuel loads with mod-
erate accuracy, providing a robust framework for fine 
dead fuel load estimation using airborne LiDAR data, 
which contributes to the forest fire management. Con-
sidering the limitations of the present study, future 
research should incorporate additional variables such 
as topography, wind, and temperature and employ 
more sophisticated modeling techniques like machine 
learning to improve the accuracy of fine dead fuel load 
estimation.
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