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Abstract: Fibrosis is an important health problem and its pathogenetic activation is still largely
unknown. It can develop either spontaneously or, more frequently, as a consequence of various
underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always
characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows
clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory
mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process.
It is now established that defects in the abilities of non-immune cells to mediate immune regulation
may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of
several, not yet well identified, factors results in the aberrant activation of non-immune cells, such
as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules,
exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular
matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been
fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and
perpetuate the vicious circle of abnormal communications between immune and non-immune cells,
responsible for fibrotic evolution of inflammatory autoimmune diseases.
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1. Introduction

Fibrotic autoimmune disorders are a group of chronic pathologies characterized by a
damage in self-tolerance to a broad variety of autoantigens in which fibrosis develops as
the end-result of a chronic inflammatory process [1]. The pathogenesis of autoimmunity
involves dysfunction of the entire immune system, including neutrophils among the innate
immune cells, B and T cells of the adaptive immunity, dendritic cells, and macrophages [2].
Within the various cell types related to fibrotic autoimmune diseases’ pathogeneses, non-
immune cells, such as epithelial cells, endothelial cells, and fibroblasts, are considered to
be key players in the occurrence and progression of these diseases [3]. Based on these
premises, immune and non-immune inflammatory cells are considered to be accountable
for tissue failure in a wide range of fibrotic autoimmune disorders such as rheumatoid
arthritis (RA), systemic lupus erythematosus (SLE), primary Sjögren’s syndrome (pSS),
and systemic sclerosis (SSc) [4]. Indeed, a plethora of recent advances has documented the
functional role of inflammatory cells as therapeutic targets in autoimmune disorders [5].
However, major questions and controversies in the field remain and the comprehension
of the different mechanisms that trigger fibrosis in autoimmune diseases is a challenge
for many researchers. This review collects the latest advances in understanding how
an alteration in the delicate balance between immune and non-immune cells is at the
basis of the fibrotic evolution that is observed in various autoimmune diseases. A list of
autoantigens associated with autoimmune fibrosis was reported in Table 1.
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Table 1. Autoantigens associated with autoimmune fibrosis. (RF = rheumatoid factor;
RNP = ribonucleoprotein).

Antigen Location Antigen Fibrosis Autoimmune Diseases

Nuclear Ro-RNP complex Systemic lupus erythematosus, Sjögren’s syndrome

La antigen Systemic lupus erythematosus, Sjögren’s syndrome

Small nuclear RNP Systemic lupus erythematosus, Idiopathic pulmonary fibrosis

Chromatin Autoimmune hepatitis, Systemic sclerosis

dsDNA Systemic lupus erythematosus, Autoimmune hepatitis

Topoisomerase I Systemic sclerosis

Centromere Systemic sclerosis

Modified proteins Citrullinated proteins Rheumatoid arthritis, Idiopathic pulmonary fibrosis

Carbamylated proteins Rheumatoid arthritis

Extracellular RF (IgG) Rheumatoid arthritis

2. The Role of Immune and Non-Immune Inflammatory Cells in Fibrotic Autoimmune
Diseases: New Discoveries

Inflammatory process is considered to be one of the main steps leading to fibrosis in
autoimmune diseases [6]. Numerous studies have demonstrated that the pathophysiology
of fibrosis in autoimmune diseases involves an aberrant interplay between the immune and
non-immune systems [7]. Both immune and non-immune responses play an essential role
in the early events of fibrosis. Dysregulation of these processes comprises inflammatory
changes, including proliferation of ECM-producing cells and the occurrence of mononuclear
cell inflammatory infiltrates. In this context, both immune and non-immune cells have been
implicated as important active participants in inflammatory processes involving fibrotic
autoimmune diseases [8]. This section will review new insights on the role of immune and
non-immune inflammatory cell types in fibrotic autoimmune diseases.

2.1. Current Understanding of the Involvement of Immune Cells in Fibrotic Autoimmune Diseases

Both innate and adaptive immunity are involved in fibrogenesis of autoimmune
diseases and, interestingly, altered orchestration of the immune system might be an early
event of fibrosis [7]. Dysregulation of these processes results in autoimmune responses
triggered by T lymphocytes, macrophages, or dendritic cells [2]. These activated immune
cells highly secrete factors that modulate inflammatory process and rapidly promote
progressive fibrosis, involving the activation of resident fibroblasts and their transformation
in myofibroblasts [2,7,8]. The following paragraphs report the recent discoveries on the
role of immune cells in the fibrotic evolution of autoimmune pathologies.

2.1.1. Update on the Correlated Pro-Fibrotic Role of CD4+ and CD8+ T Cells

Traditionally, B lymphocytes and CD4+ T lymphocytes are considered to be key cells
in the immunopathogenesis of autoimmune diseases and they have already been widely
studied and are well recognized [9]. However, more recently, studies have demonstrated
the increasing evidence that CD8+ T cells, infiltrating inflamed tissues, cooperate to induce
tissue fibrosis in autoimmune diseases [10]. Emerging studies reported that CD8+ T cells
infiltrate the lesioned skin of patients with SSc, predominantly in the early stage of the
disease and exert a pro-inflammatory and pro-fibrotic activity through the induction of
tissue damage [11,12]. Of particular note, key pro-fibrotic mediators, such as interleukin
(IL)-6, through their signal activate CD8+ T cells and promote their interactions with
fibroblasts, leading to the deposition of extracellular matrix (ECM) and contributing to the
perpetuation of the fibrotic process in SSc patients [13,14]. High levels of the profibrotic type
2 cytokine IL-13 were produced following activation of peripheral blood effector CD8+ T
cells from patients with SSc as compared with healthy controls or with patients with RA. In
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contrast, CD4+ T cells showed a lower and more variable level of IL-13 production. This
abnormality was correlated with the extent of fibrosis and with a high grade of cutaneous
involvement [11]. The role of CD4+ T cells is controversial because, recently, Sakkas and
collaborators demonstrated that in SSc a great number of T cells of TH2 type is detected,
producing pro-fibrotic IL-4, IL-13, and IL-31; in addition, CD4+ cytotoxic T lymphocytes
are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis [15].

A key role for CD8+T cells was also demonstrated in SLE nephritis; Zhang and
colleagues showed that tubule-interstitial CD8+ T cells correlate with clinic-histologic
kidney impairment in SLE nephritis, determining an evident progression of interstitial
fibrosis and, thus, tubular organ atrophy [16]. In addition, the expression of cytotoxic T
cells is increased and the inactivation of CD4+ T cells induces fibrosis and injury of the
liver tissue in patients affected by autoimmune hepatitis [17]. Autoimmune hepatitis is a
progressive inflammatory liver disease characterized by chronic inflammation of the liver,
circulating autoantibodies, hypergammaglobulinemia, and progressive liver fibrosis [18].
CD8+ T lymphocytes may have a significant influence on liver fibrosis and intravascular
effects. After activation, CD8+ T cells usually differentiate into cytotoxic T lymphocytes,
which represent effector cells that destroy tumor cells and infected cells. Actually, the
function of CD8+ T lymphocytes in hepatic fibrosis needs further investigation because
their role is unclear. In the liver, the activity of immune surveillance of the CD8+ T cells
against virus-infected cells seems to be reduced in mice with liver fibrosis caused by HBV
infection [19]. Additionally, in an experimental mice model of carbon tetrachloride-induced
liver fibrosis, the transfer of splenic CD8+ T cells into the mice had the effect of exacerbating
fibrosis, a process that can be prevented by IL-10 treatment [20]. On the contrary, a reduction
of the number of CD8+ T cells had little effect on the progression of hepatic fibrosis in
carbon tetrachloride-treated animals [21]. Given that spleen-derived CD8+ T cells induce
liver fibrosis and that hepatic CD8+ T-cell depletion probably has no effect on liver fibrosis,
various subtypes of CD8+ T-cell may be distributed differently in the spleen and liver of
mice, playing distinct roles in liver fibrosis [22] (Figure 1).

CD8+ T lymphocytes are also crucial players in the mechanism of exocrine gland
injury in pSS [23,24]. In fact, CD8+ T lymphocytes contribute to acinar injury in the salivary
glands, triggering a worsening fibrotic event in pSS [12,23]. Joachims et al. [25] showed
that expanded clones of memory CD4+ T cells in the salivary glands displayed sequence
similarity both within expanded clones of the same individual and among different patients,
indicating that these cells are able to recognize shared antigens. They also observed
that an increased frequency of expanded clones in salivary glands was correlated with
decreased salivary secretion and increased fibrosis. Although CD4+ cells are the majority
of T cells within the glandular infiltrates of pSS patients, CD8+ T cells are also present.
A percentage of these CD8+ T cells show an activated phenotype, as shown by a higher
expression level of Human Leukocyte Antigen–DR isotype (HLA-DR, an MHC class II cell
surface receptor). Increased proportions of HLA-DR+ T cells were associated with higher
disease severity [26]. Additionally, in the blood of pSS patients with anti-SSA positivity,
the increased frequencies of HLA-DR-expressing activated CD4+ and CD8+ T cells in
blood was correlated with the EULAR Sjögren’s syndrome (SS) disease activity index
(ESSDAI) scores [26]. Furthermore, the proportion of activated CD8+ T cells in blood was
established by a multi-omic study based on whole blood transcriptomes, serum proteomes,
and peripheral immunophenotyping, which identified pSS disease signatures dysregulated
in widespread epigenomes, mRNAs, and proteins. [27]. For example, the expression of the
chemokine receptor CXCR3 by activated CD8+ T cells in pSS patients may be important
for their migration to the inflamed salivary glands and, as demonstrated in mice, the
recruitment of activated CD8+ T cells to salivary gland tissue was dependent on CXCR3 [28].
We speculate that chronic antigen stimulation leading to systemic inflammation, reflected
as higher ESSDAI scores, results in the activation of CD8+ T cells in secondary lymphoid
organs, such as spleen, CXCR3 upregulation, and consequent migration to the salivary
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glands [29]. Whether CD8+ T cells, in turn, contribute to glandular dysfunction and fibrotic
evolution or systemic disease activity is unknown (Figure 2).
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2.1.2. Autoimmune Treg Pro-Fibrotic Role

Recently, an intriguing role identified for a functional T cell subset named regulatory
T lymphocytes (Treg) in tissue fibrosis has also begun to emerge [30]. Treg are crucial
keepers of the immune system, shaping the development of fibrosis and causing lethal
organ dysfunction [31]. Although some investigations have highlighted a controversial
role for the Treg cells depending on the disease model, in recent years the majority of
reports demonstrated an increase in the number of Treg in patients at the early phase
of SSc [32]. Treg seem to be able to secrete transforming growth factor-β (TGF-β), the
major pro-fibrotic factor, which induces myofibroblast activation and fibrosis [33]. In
addition, the dysfunction of Treg cells in the early phase of SSc leads to autoimmunity
and inflammation [34]. Notably, Treg cells have the capacity to differentiate in T-helper17
(Th17) cells under inflammatory conditions. Th17 cells secrete IL-17A, which could also
promote myofibroblast transformation and fibrosis and was related to vasculopathy by
promoting endothelial inflammation. A transcriptomic comparison between the early and late
phases of SSc revealed a differentiated gene expression exclusively in Treg cells. Using an
RNA-seq analysis to compare early SSc vs. late SSc patients, it was also reported that, in the
early phase of SSc, enhancement of the oxidative phosphorylation pathway was observed
which represents a metabolic sign of differentiation of Treg to Th17 cells [34]. Therefore,
an imbalance between Treg and Th17 cells seems to be implicated in the pathogenesis
of the early SSc. The contribution of Treg cells to the pathophysiology of SSc has been
explained by several mechanisms, sometimes conflicting. In a normal function, Treg
cells release inhibitory cytokines, such as IL-10, TGF-β, and IL-35, which function as
immunosuppressive factors [35]. First, in SSc the suppressive effect of Treg cells is limited,
causing an altered immune response and leading to chronic inflammation and fibrosis.
The decreased inhibitory ability of Treg cells in SSc patients is attributed to the decreased
production of TGF-β and IL-10 [36]. On the other hand, it is now established that the
promotion of fibrosis by pro-fibrotic cytokines is produced by Treg cells. For example,
TGF-β contributes to fibrotic pathology through the proliferation of fibroblasts, promoting
collagen production and ECM secretion, and also induces the epithelial–mesenchymal
transition (EMT). In addition, Treg cells seem to be able to differentiate into Th2-like
cells in SSc and to promote fibrosis through the production of IL-4 and IL-13 [36]. By
these mechanisms, Treg cells are thought to be associated with several aspects of immune
dysregulation and fibrosis during SSc pathogenesis.

Recent findings, based on the study of the dysfunction and imbalance of Treg cells
in pSS, have demonstrated a significantly lower frequency of Treg positive for pSTAT5 in
pSS patients after IL-2 stimulation, compared with healthy controls [37]. No differences
were demonstrated in other T-cell populations, indicating a specific impact of Tregs in
pSS pathogenesis which, of course, will need to be clarified [37] (Figure 2). A decreased
number of Treg cells was also demonstrated, specifically, in the patients with SLE, psoriatic
arthritis, juvenile idiopathic arthritis, and autoimmune liver disease [31,38]. In the liver,
a dual role of Tregs in fibrogenesis was detected because they are responsible for fibrosis
promotion or immunosuppression [39]. In fact, a large number of Tregs are revealed in
the fibrotic microenvironment in patients with hepatocellular carcinoma, in which it was
observed that a reduction in Tregs promoted the regression of fibrosis [40]. Conversely,
in autoimmune hepatitis, hepatic stellate cells (HSCs) were activated, whose function
is to produce and accumulate ECM, a pivotal event in liver fibrosis. Simultaneously,
HSCs selectively promote the survival and the activity of Tregs in an IL-2–dependent
manner. Tregs can both protect HSCs from NK cell attack and, on the contrary, exert an
inhibitory effect on HSCs, confirming the dual role of Tregs in liver fibrogenesis and the
importance of equilibrium. The balance between Tregs which could convert to Th17 cells,
seems, once again, fundamental in maintaining homoeostasis and immunoregulation; this
mechanism, for reasons that are still unclear, can deregulate and leads to the production of
pro-inflammatory cytokine by Th17, such as IL-17 and IL-22 [39].
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2.1.3. Emerging Pro-Fibrotic Role of T Follicular Helper Cells

T follicular helper (Tfh) cells have been identified as a distinct CD4+ helper T cell
subset. They express a high level of surface markers, such as CXCR5, CD40L, inducible
co-stimulator (ICOS), programmed cell death protein-1 (PD-1), and a downmodulation
of C-C chemokine receptor type 7 (CCR7) [7,41]. Tfh cells are important modulators
of B cell maturation and specialized to help B cells to produce high-affinity antibodies
toward antigens and, thus, to develop an important humoral immune response [42,43].
Moreover, they are characterized by enhanced expression of IL-21 that promotes B cells’
differentiation into plasma cells and Ig isotype switching and by elevated production
of the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), essential for B cell
function [43]. Many investigations have found severe proliferation and/or activation of Tfh
cells in multiple autoimmune disorders characterized by intense fibrosis [7]. A possible role
played by Tfh cells in the pathogenesis of SS was known; indeed, increased percentages
of circulating Tfh cells (cTfh) have been demonstrated in peripheral blood [44] and in
salivary glands of SS patients [45]. Several lines of evidence also support a pathogenic role
of Tfh cells and IL-21 in human SLE. The Tfh surface marker ICOS seems to be crucial for
optimal IL-21 production [46]. Higher plasma levels of IL-21 are found in SLE patients
correlating with the number of switched memory B cells and with several markers of
disease severity [43,47]. Findings from the literature are instead conflicting regarding Tfh
cells’ frequencies in human RA. In some studies, augmented frequencies of cTfh cells in
RA patients were observed, in particular in those with new-beginning disease [48]. On
the role of Tfh in the fibrotic evolution of autoimmune diseases, few results are available
in literature regarding the role of Tfh cells in SSc pathogenesis. A recent study provides
evidence that Tfh cells induce skin fibrosis and correlate with dermal fibrosis [49] in SSc
patients. Furthermore, it has been shown that the administration of both IL-21 and ICOS
antibodies can effectively reduce skin fibrosis [50]. Moreover, an interesting recent report
also evidenced that in patients with idiopathic pulmonary fibrosis (IPF), the levels of Tfh
cells in the peripheral blood were increased [51]. Overall, from these data it can be deduced
that Tfh cells may be involved in both immunological and fibrotic autoimmune disease,
regulating autoreactive B cell expansion and fibroblast activation.

2.1.4. Macrophages, Dendritic Cells, Mast Cells

In the complexity of the immune scenario, macrophages—key cells that classically initi-
ate and sustain chronic inflammation in a simultaneous or parallel manner—are now recog-
nized as capable of secreting fibrotic factors once activated [52]. Monocytes’/macrophages’
activation, due to the plasticity of these cells, could be an important step for the transi-
tion from the inflammatory to the fibrotic phase in SSc pathology. Through the release
of fibro-proliferative factors, macrophages trigger the fibrotic process determining, for
example, skin and lung SSc-related tissue fibrosis [52,53]. Consequently, an autocrine loop
begins in which the release of fibrotic factors by macrophages drives the transformation of
more monocytes/macrophages into cells with pro-fibrotic phenotype [52–54]. This cellular
crosstalk occurs, clearly, in autoimmune hepatitis; hepatic resident macrophages have been
shown to exert an intricate role in the initiation of inflammatory responses causing liver
injury and can acquire a pro-fibrogenic phenotype that leads to aberrant tissue remodeling,
culminating in liver and fibrosis and failure [55]. It is not possible to define exactly whether
the macrophages involved in liver fibrosis belong to the M1 or M2 type. A switch between
M1 and M2 phenotypes probably occurs because of their plasticity. M2 macrophages can
be activated through IL-4Rα signaling, which determines liver inflammation and fibrosis.
However, it has been demonstrated that the activation of M2-macrophages also represents
a key event in viral-associated immune dysregulation and liver fibrosis [55].

Interestingly, in line with this concept, studies have highlighted that dendritic cells
also display high plasticity after injury, driving pro-fibrotic inflammatory mechanisms in
autoimmune diseases. Functional alterations of dendritic cells assist the immune processes
favoring the altered T cell polarization and pro-fibrotic inflammation in the SSc [56]. DCs
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are commonly categorized into three major populations: the conventional DC (cDC)1, cDC2,
and the plasmacytoid DC (pDC) [57]. pDCs are the subtype that appears to be more relevant
for the development of fibrosis in SSc pathogenesis [56,58]. In patients with SSc, pDCs are
mainly found in the skin and lungs [59], correlated with the severity of SSc disease [59].
Importantly, pDCs play a direct role in causing and maintaining fibrosis, as their depletion
has been shown to improve skin and lung fibrosis. Furthermore, the presence of pDCs
in the lungs appears to be a feature of pulmonary fibrosis, since their frequency in the
lungs is similar in both SSc-interstitial lung disease (ILD) and idiopathic pulmonary fibrosis
patients [60]. A key role in the pro-fibrotic activity of pDCs is done by CXCL4, secreted
from pDCs of SSc patients, which creates an inflammatory environment in the tissues that
they infiltrate. CXCL4 plays a central role in a feedback loop that contributes to increased
inflammation and fibrosis [61]. It can directly promote the differentiation of different cell
types into myofibroblasts, increasing the collagen and ECM component production and
contributing to fibrosis [62]. Furthermore, increased levels of CXCL4 are found in the
blood and skin of SSc patients [63], correlated with disease complications, such as ILD
and pulmonary hypertension (PH). The production of CXCL4 from pDCs of SSc patients
was also stimulated by TLR8, aberrantly expressed in this disease [64]. TLR8 induces the
production of CXCL4 [64]. Additionally, TLR8 expression leads to an increased infiltration
of pDCs into the tissues, exacerbating the disease and resulting in worse skin fibrosis [64].

Mast cells are immune cells mainly found in connective tissues with a well-established
role in allergy and anaphylaxis. However, a great deal of evidence underlines their active
role in tissue healing, angiogenesis, and exacerbation of chronic inflammation that char-
acterizes autoimmune diseases [65]. Leehan and collaborators have recently investigated
the role of mast cells in salivary gland fibrosis which is a pathological feature of pSS and
positively correlates with high focus scores, but not with the age of the patients [66]. They
demonstrated that mast cells are strongly associated with fibrosis and fatty infiltration of
salivary glands that represent a biological response to gland injury. It is hypothesized that
they promote fibrosis by interacting with local fibroblasts and producing enzymes respon-
sible for cleavage and activation of metalloproteinases, which are important mediators of
tissue injury and repair [66]. A schematic comprehensive overview of the involvement of
immune cells in autoimmune-related fibrosis is reported in Figure 3.
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of chronic inflammation, many immune cell populations with diverse functions are activated to pro-
duce multiple cytokines that lead to the proliferation and activation of myofibroblasts, directly
involved in the development of fibrosis in various autoimmune diseases (Th17 = T helper 17;
Treg = regulatory T lymphocytes).

2.2. Non-Immune Cells in Fibrotic Autoimmune Diseases

Recently, it has been proposed that also the non-immune cells, such as epithelial cells,
endothelial cells, and fibroblasts may contribute to inflammation, autoimmunity, as well as
fibrosis. Non-immune cells, when damaged or activated, release molecules involved in the
regulation of several types of immune responses. Furthermore, the de novo production
of bioactive factors by non-immune cells, in response to several stimuli, can influence
immunological processes. Therefore, defects in the abilities of non-immune cells to mediate
immune regulation may be involved in the pathogenicity of a series of inflammatory
autoimmune diseases which often show a fibrotic organ evolution. This section will review
the main non-immune cell types involved in fibrotic autoimmune diseases.

2.2.1. Epithelial Cells

Epithelium includes various highly specialized cells that play critical roles in almost
all biological processes, and they are considered essential to maintain tissue homeostasis
in many organs. In this context, several studies have begun to examine the active role
of epithelial cells in several autoimmune disorders characterized by fibrosis. The EMT
program, under pathological conditions, can lead to the reduction of normal epithelial cells,
destroying tissue architecture, inducing pathogenic activation of fibroblasts, and driving or-
gan failure [8]. The knowledge of the molecular mechanisms that occur in the EMT program
has demonstrated that the epithelial state of the cells initially considered immutable can
undergo important changes in gene expression and post-translational regulation, leading
to the repression of the epithelial characteristics and to the acquisition of mesenchymal
characteristics displaying fibroblast-like morphology and cytoarchitecture [67]. Recently,
considerable attention has been paid to chronic inflammatory disorders pSS in which the
inflammatory status is often associated with pathological EMT-dependent salivary gland
fibrosis [68]. Emerging evidence suggests that epithelial cells are also an important source
of myofibroblasts in organ fibrosis [69], and this trans-differentiation is evaluated as a
tightly specialized system of the EMT process that may be a central event in the salivary
gland fibrosis [68]. The implications of these findings were very important and the recent
explosion of knowledge in the biology of cellular differentiation has highlighted, for ex-
ample, that differentiated cell type, such as a tubular or acinar salivary gland epithelial
cell in pSS, with a wide set of glandular characteristics, such as secretion and transport,
could radically change their transcriptional process, transcribing genes characteristic of
the mesenchymal cell type [68–71]. Supporting this opinion, recent evidence highlights
that salivary gland epithelial cells derived from healthy biopsies, when exposed to TGF-β1
stimulation, acquired a more fibroblast-like morphology [68,72,73]. Additionally, in SSc,
recent studies have demonstrated anomalous phenotypes of the skin epithelium [74]. In-
deed, phenotypically altered epithelial cells possibly explain the selective organ fibroses
in the skin, oesophagus, and lung that occur in SSc [74]. In this context, several studies
have begun to examine the functional role of tubular epithelial cells in the pathogenesis
of lupus nephritis [75]. Renal tubular epithelial cells actively participate in the tubuloin-
terstitial pathology of lupus nephritis through the expression of cytokines, chemokines,
and pro-fibrotic factors, and play a crucial crosstalk with infiltrating cells of the immune
system [75,76]. Findings suggest that anti-dsDNA antibodies that bind to the surface of
renal tubular epithelial cells, but without cellular uptake and cytoplasmic/nuclear translo-
cation, can promote tubule interstitial fibrosis and subsequently kidney dysfunction [77].
Yung et al. reported that anti-dsDNA antibodies derived from lupus nephritis patients
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induce a significant increase in the fibronectin expression in human renal tubular epithelial
cells, a process dependent, in part, on the secretion of such fibrogenic factors as TGF-β [77].
These data suggest that fibrosis development in lupus nephritis is initiated and amplified
via complex signaling pathways involving anti-dsDNA antibodies, fibronectin, and TGF-β
in renal tubular epithelial cells [75]. A recent study has identified a key role for IL-23 as a
pro-fibrotic molecule in RA-associated interstitial lung disease through the induction of the
EMT-dependent transformation of somatic alveolar type I epithelial cells in fibroblast-like
cells. The acquisition of a mesenchymal phenotype induced by IL-23 included increased
deposition of ECM, the acquisition of invasiveness, and resistance to apoptosis—all events
which may contribute to the formation of fibroblastic foci in fibrotic ILD, especially in the
context of autoimmune pathology such as RA [78] (Figure 4).
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2.2.2. EMT: New Player Regulating the Interplay between the Immunity and Fibrosis

In recent years, epithelial to mesenchymal transition (EMT) has been extensively stud-
ied as a possible therapeutic target for fibrosis [72,73,79] and, therefore, a brief refresher in
this area is needed. A better understanding of the crosstalk between chronic inflammation,
autoimmunity, fibrosis, and EMT may represent an opportunity for the development of
a broadly effective anti-fibrotic therapy in autoimmune diseases. Cells of multicellular
organisms hire several phenotypes that have different functions, morphologies, and gene
expression patterns, and, drastically, can undergo specific changes when subjected to de-
terminants stimuli and microenvironments [80]. The inflammatory cells secrete crucial
regulatory proteins, such as pro-fibrotic cytokines, chemokines, and growth factors, which
can trigger the EMT process [81]. EMT is a highly dynamic process that often gives rise to a
series of intermediate phenotypic states in which the cells progressively acquire mesenchy-
mal markers without a concomitant complete loss of epithelial markers [82]. The expression
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of both mesenchymal and epithelial markers reflects the plasticity of cells depending on
their environment [83]. Importantly, EMT leads to the early development of pathological
organ fibrosis through paracrine signaling from the epithelium to potential fibroblasts [84].
The fibrotic process affects a variety of organs and tissues through the activation of specific
molecular pathways [84]. However, two common hallmarks are evidenced: the critical
role of the TGF-β and the implication of the inflammatory process, which are essential for
initiating the fibrotic degeneration [72,79]. EMT is tightly related to fibrosis development
in several organs and fibrogenesis represents the common response of organs and tissues
to virtually all chronic repetitive injuries in multiple autoimmune disorders [72,73,79].
During chronic autoimmune diseases, inflammatory and epithelial cells produce fibrogenic
mediators. In this context, TGF-β1 emerged as a crucial factor regulating interactions
between epithelial and mesenchymal cells and fibroblasts proliferation [85]. One of the
hallmarks of excessive pathological fibrogenesis is the acquisition by resident fibroblasts of
a myofibroblasts contractile phenotype expressing high levels of α-Smooth muscle actin
(α-SMA). Additional immune cells are recruited into the fibrotic tissue, amplifying the
fibrotic response by the secretion of chemokines, cytokines, and growth factors responsible
for the differentiation of other myofibroblasts implicated in ECM deposition [86]. The prin-
cipal EMT pathway is mediated by Smad and we can indicate it as TGF-β1/SMAD/Snail
pathway; it is a particularly interesting system active in the EMT-dependent fibrotic process
in a number of diseases [72,87]. Alternatively, or parallel to Smads pathways, TGF-β1 also
utilizes a multitude of intracellular non-canonical, non-Smads TGF-β-mediated cascade
triggered by the binding of ligands different from TGF-β family members to tyrosine
kinase receptors [88,89]. This may suggest that the therapeutic use of TGF-β signaling
inhibitors, actually used in cancer, may also be hypothetically extended to the treatment
of inflammatory autoimmune disorders, but future investigations are needed to prove
this hypothesis.

2.2.3. Endothelial Cell

Dysregulation of endothelial cell function is proposed as a crucial start event, leading
to vascular remodeling linked to fibroproliferative vasculopathy. Impaired angiogenesis
may be induced by the massive proliferation of fibroblasts observed in some autoimmune
diseases characterized by intense pathological fibrosis. New insights have evidenced that
myofibroblasts involved in tissue fibrosis can still derive from endothelial cells through
a process known as EndoMT [90,91]. It is a non-malignant phenomenon of cellular trans-
differentiation in which endothelial cells undergo a phenotypical change where they lose
vascular epithelial factors and acquire mesenchymal cell markers [92]. Among systemic
autoimmune diseases, endothelial dysfunction has been extensively studied in SLE. In
SLE patients, endothelial dysfunction is the main factor of vascular aging and pre-clinical
atherosclerosis that leads to vascular fibrosis, contributing to the early onset of cardiovas-
cular disease and cardiovascular mortality [93]. Interesting studies have highlighted that
endothelial dysfunction also occurs in patients with pSS. Recent epidemiologic data indi-
cate an increase in cardiovascular risk in patients with pSS and endothelial dysregulation
may cause vascular fibrosis, leading to arterial stiffness, which precedes the development of
high blood pressure [94]. This study demonstrates that patients with pSS, without clinically
evident cardiovascular disease or without concomitant cardiovascular risk factors, have
an altered endothelial function and a massive proliferation of fibroblasts, which suggest a
higher susceptibility to the development of vascular fibrosis [94]. Therefore, induction of
pro-inflammatory cytokines, such as TNFα and IL-6, involved in atherosclerotic damage,
in combination with IFNγ and IL-17, reduces the number of smooth muscle cells, increases
collagen production, and favors fibrosis development, with subsequent formation of fi-
brous atherosclerotic plaque [95]. In this intriguing scenario, the evidence that circulating
biomarkers of inflammation predict future cardiovascular events in patients with pSS
further reinforces the strict interplay between chronic inflammation and atherosclerosis.
Furthermore, subclinical cardiovascular involvement is directly related to elevated inflam-
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matory injury, postulating that inflammation and disease activity are cardiovascular disease
risk factors in patients with pSS [94]. In the case of SSc, recent reports have evidenced that
this disease was characterized by a massive accumulation of fibroblasts and myofibroblasts
and by an abnormal production of interstitial collagens and extracellular matrix compo-
nents, and was identified by the dysregulation of endothelial cell activity as a pivotal event
that contribute to vasculopathy in SSc [92,96] (Figure 5).

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. In chronic autoimmune diseases, endothelial cells are often the primary site of inflamma-
tion that triggers the downstream molecular events of fibrosis. The activation of myofibroblasts in 
various autoimmune diseases such as SLE (Systemic Lupus Erythematosus) and SSc (systemic scle-
rosis) may result from the phenotypic conversion of endothelial cells into activated mesenchymal 
cells, a process known as endothelial to mesenchymal transition (EndoMT) (IFN-γ = interferon 
gamma; pSS = primary Sjӧgren’s syndrome; TNF-α = tumor necrosis factor-alpha). 

2.2.4. Fibroblasts 
Traditionally, fibroblasts were considered the main contributory cells to the struc-

tural integrity of tissues; only recently have they been recognized as cells that exhibit a 
dynamic role in physiological or pathological processes [97,98] and are considered active 
producers of inflammatory cytokines and chemokines. An emerging concept, derived 
from experimental research on fibroblasts in inflammatory and fibrotic diseases, is that 
their differentiation is maintained by extrinsic and intrinsic danger signals and local mi-
croenvironment-derived morphogens [99,100]. Moreover, fibroblasts can initiate the early 
molecular processes leading to inflammatory events [100] and, consequently, can be in-
volved with a prominent role in the pathogenesis of fibrotic autoimmune conditions [100]. 

An interesting paper by Wang, W. et al. [101] demonstrated an incisive role of fibro-
blasts in systemic sclerosis. In this study, fibroblasts isolated from skin and lung biopsies 
of patients with systemic sclerosis was analyzed and an altered expression of the A20 gene 
was detected; A20 is a gene strongly linked with disease susceptibility and fibrotic mani-
festations [101]. According to some reports it was demonstrated that A20 expression in 
fibroblasts can inhibit the fibrotic process, whereas its negative transcriptional regulator, 
called DREAM (downstream regulatory element antagonist modulator), promotes fibrotic 
processes [102]. The authors proposed that the upregulation of DREAM in systemic scle-
rosis fibroblasts underlies suppression of A20, which in turn contributes to unchecked 
pro-fibrotic signaling in stimulated fibroblasts [101]. Interestingly, targeting the A20–
DREAM regulatory network could represent a novel therapeutic approach in systemic 
sclerosis [102]. 

Figure 5. In chronic autoimmune diseases, endothelial cells are often the primary site of inflammation
that triggers the downstream molecular events of fibrosis. The activation of myofibroblasts in various
autoimmune diseases such as SLE (Systemic Lupus Erythematosus) and SSc (systemic sclerosis)
may result from the phenotypic conversion of endothelial cells into activated mesenchymal cells,
a process known as endothelial to mesenchymal transition (EndoMT) (IFN-γ = interferon gamma;
pSS = primary Sjögren’s syndrome; TNF-α = tumor necrosis factor-alpha).

2.2.4. Fibroblasts

Traditionally, fibroblasts were considered the main contributory cells to the structural
integrity of tissues; only recently have they been recognized as cells that exhibit a dynamic
role in physiological or pathological processes [97,98] and are considered active producers of
inflammatory cytokines and chemokines. An emerging concept, derived from experimental
research on fibroblasts in inflammatory and fibrotic diseases, is that their differentiation is
maintained by extrinsic and intrinsic danger signals and local microenvironment-derived
morphogens [99,100]. Moreover, fibroblasts can initiate the early molecular processes
leading to inflammatory events [100] and, consequently, can be involved with a prominent
role in the pathogenesis of fibrotic autoimmune conditions [100].

An interesting paper by Wang, W. et al. [101] demonstrated an incisive role of fibrob-
lasts in systemic sclerosis. In this study, fibroblasts isolated from skin and lung biopsies
of patients with systemic sclerosis was analyzed and an altered expression of the A20
gene was detected; A20 is a gene strongly linked with disease susceptibility and fibrotic
manifestations [101]. According to some reports it was demonstrated that A20 expres-
sion in fibroblasts can inhibit the fibrotic process, whereas its negative transcriptional
regulator, called DREAM (downstream regulatory element antagonist modulator), pro-
motes fibrotic processes [102]. The authors proposed that the upregulation of DREAM in
systemic sclerosis fibroblasts underlies suppression of A20, which in turn contributes to
unchecked pro-fibrotic signaling in stimulated fibroblasts [101]. Interestingly, targeting the
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A20–DREAM regulatory network could represent a novel therapeutic approach in systemic
sclerosis [102].

New reports have documented that the immunomodulatory role of the fibroblasts
derived from salivary glands was discovered in a primary site affected by the pSS [103].
Interestingly, these specific clusters of fibroblasts constitute the formation of tertiary lym-
phoid structures, which are linked to severe disease and can determine a risk factor for the
development of lymphoma in pSS [103]. Recent advances in single-cell profiling techniques
have demonstrated the presence of fibroblasts in inflamed salivary glands tissue, providing
evidence of the existence of inflammation-associated fibroblasts in chronically inflamed
tissues [104]. Clusters of fibroblasts were identified as key players in the development of
renal fibrosis and, in particular, in lupus nephritis [105].

New discoveries highlighted as myofibroblasts are the main actors involved in renal
fibrogenesis. Interestingly, the differentiation of fibroblasts to myofibroblasts is a key
cellular event in many autoimmune fibrotic disorders [106].

Single-cell sequencing has demonstrated that myofibroblasts have different gene ex-
pression profiles with dynamic changes in fibrosis of different organs [107]. Myofibroblasts,
armed with myosin and smooth muscle actin (α-SMA), become able to secrete TGFβ, VEGF,
CTGF, IL-1, IL-6, and IL-8 [108].

It has been suggested that myofibroblasts localized in renal fibrotic tissue may de-
rive from different precursor resident cells, including fibroblasts and epithelial cells [109].
Moreover, myofibroblasts not only contribute to deposition of ECM, but they can produce
radical oxygen species and, through their intrinsic contractile properties, can alter renal
tissue architecture [109]. Their pathogenic role in renal fibrosis has been discovered in
different murine models in which the removal of myofibroblasts can reduce fibrogene-
sis [98]. Moreover, myofibroblasts are considered as one of the principal participants in
the final point of EMT. After an acute insult, a temporary activation of the EMT process
is considered of fundamental importance in renal repair [105,110]. The identification of
key morphogen signals that regulate fibroblast differentiation could provide a therapeutic
opportunity (Figure 6).
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view that fibroblasts represent purely structural elements has been gradually replaced by the ac-
knowledgement that they are dynamic cells actively involved in the evolution from inflamma-
tory states to fibrosis (A20-DREAM = A20-downstream regulatory element antagonist modulator;
CTGF = connective tissue growth factor; ECM = extracellular matrix; EMT = epithelial to mesenchy-
mal transition; Il: interleukin; pSS = primary Sjögren’s syndrome; SLE = Systemic Lupus Erythe-
matosus; SSc = systemic sclerosis; TGF-β = tumor growth factor beta; VEGF = vascular endothelial
growth factor).

3. Conclusions

The fibrotic consequences of various primary autoimmune diseases, characterized by
tissue damage resulting from chronic inflammatory conditions, remain a major unsolved
diagnostic and therapeutic challenge. From experimental experience, it seems that all
fibrotic tissues derived from autoimmune patients display signs of chronic immunologically
mediated inflammation during the earliest periods of fibrosis. In these initial stages of
fibrotic evolution, a predominant role is certainly played by immune cells, although some
questions remain open about the specificity of lymphocyte subtypes occurring in fibrotic
tissue, as well as about a possible imbalance of pro- and anti-fibrotic factors produced by
components of the immune cells infiltrate. For example, the precise mechanism underlying
the immune reaction in fibrogenesis mediated by Tregs, probably depending on different
immune microenvironments and molecular pathways, is still unclear and will require
further investigation. Actually, there is accumulating evidence showing that non-immune
cells, such as epithelial cells, endothelial cells, and fibroblasts are cells with important
immunomodulatory properties, play a pivotal role in the switch to chronic inflammation.
Determining the exact contribution of these mechanisms remains a challenge, as they are at
the cross-point of multiple regulatory networks also involving immune and non-immune
cells and this, in an autoimmune condition in which the immune system works in an altered
way, makes the scenario even more complex. For example, whether EMT activation may
interfere with the crosstalk between epithelial cells, mesenchymal cells, and immune cells,
stimulating fibrotic evolution, remains elusive. Since valid biomarkers for the diagnosis
and staging of autoimmune-related fibrosis are not yet available, more detailed knowledge
on the cellular and molecular basis of fibrogenesis is urgently needed. From this point of
view, a better knowledge of the non-immune cells contribution to autoimmune fibrosis
should help to appreciate the reasons underlying the actual clinical failures and design
more effective therapies.
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