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Abstract. In this paper we study local and global in time existence for a
class of nonlinear evolution equations having order eventually greater than 2
and not integer. The linear operator has an homogeneous damping term; the
nonlinearity is of polynomial type without derivatives:

utt + (−∆)2θu+ 2µ(−∆)θut + |u|p−1u = 0, t ≥ 0, x ∈ Rn,

with µ > 0, θ > 0. Since we are treating an absorbing nonlinear term, large
data solutions can be considered.

1. Introduction. In this paper, we analyze the evolution equation
!
"#

"$

utt + (−∆)2θu+ 2µ(−∆)θut + |u|p−1u = 0, t ≥ 0, x ∈ Rn,

u(0, x) = u0(x),

ut(0, x) = u1(x),

(1)

where µ > 0, θ > 0, and p > 1. In particular the order of the equation can be
higher than 2 and not-integer.

This kind of operators have been considered in [7] and [2] with small data or
with different kind of nonlinearities. See also [1] and the reference therein for other
results on the linear case.
Here we prove the global existence of some energy solutions to (1) without any
assumption on the size of initial data. In literature, to underline such lack of
assumption, it is customary to speak about “large data solution”. Hence, the sign
of the nonlinear term is crucial that is we need an absorbing structure for the
equation

The quasilinear version of (1) with large data has been treated in [4]: assuming
θ > n/4, θ integer, the equation

utt + (−∆)2θu+ 2µ(−∆)θut + |ut|p−1ut = 0 (2)

admits global existence in

u ∈ C([0,∞), H4θ(Rn)) ∩ C1([0,∞), H2θ(Rn)) ∩ C2([0,∞), L2(Rn)) .

For p > 1+4/n, and θ ∈ (n/4, n/2), such solutions satisfy optimal decay estimates,
in the sense that the decay rate of Sobolev solution is the same as of the correspond-
ing linear problem with vanishing right hand side, in particular the energy dissipates
for t → ∞. Moreover, with the same assumption on the p and θ exponents, the
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asymptotic profile of the solutions of (2) can be described by using a combination
of solutions of the diffusion equations of type

vt + a(−∆)θv = 0, t ≥ 0, x ∈ Rn

In many papers on small data solutions, in order to improve decay estimates, L1

regularity for initial data is required (see [2]). Here we do not consider this aspect,
indeed we want to analyze the well posedness in energy spaces and we will pay in
the decay estimates.

In particular our result applies to the semilinear plate equation with strong damp-
ing

utt +∆2u−∆ut + |u|p−1u = 0 .

The same operator has been also considered in [3] for small data solutions and
nonlinear memory term.

We shall prove the following global existence result.

Theorem 1.1. Let n ≥ 1, θ > n/4, p > 1. For any (u0, u1) ∈ H2θ(Rn)× L2(Rn),
there exists a unique global in time solution to the Cauchy problem (1). More
precisely

u ∈ C([0,∞), H2θ(Rn)) ∩ C1([0,∞), L2(Rn)) .

In the next theorem we emphasize other regularity results that comes from the
energy estimates.

Theorem 1.2. Let n ≥ 1, θ > n/4, p > 1. The global solution of (1) given by
Theorem 1.1 satisfies

ut ∈ Lm([0,∞), Ḣ
2θ
m (Rn)) , m ∈ [2,+∞) , (3)

and

u ∈ L∞([0,∞), Ḣγ,
4θ(p+1)
pγ+2θ (Rn)) γ ∈ (0, 2θ] . (4)

Assuming in addition that n/2 < θ < n then

ut ∈ Lm([0,∞), L
2m

m−2 (Rn)) (5)

for any m ∈ [2,+∞).

Remark 1. Let us compare our result with the small data case analyzed in [2].
We have u ∈ C([0,∞), H2θ(Rn)), but we do not know information on the global
boundedness of u in time, apart of (4). Conversely in [2] a decay of ‖u(t, ·)‖L∞ and
hence u ∈ L∞([0,+∞), L∞(Rn)) is given provided p > 1 + 2n/(n − 2θ), θ < n/2
and small initial data in W 2θ,1 ∩W 2θ,∞. This difference is due to our space choice:
we consider large data in energy space. Interesting open problems are the study of
the time decay of the solution and the validity of (4) in non-homogeneous spaces.

Remark 2. The assumption θ > n/4 is necessary for our approach. Indeed, in the
proof of local in-time existence theorem we use the embeddingH2θ(Rn) ↩→ L∞(Rn).
On the other hand we do not have assumptions on p from above. In the last section
of this paper we will give some information on the case θ < n/4 and a critical
exponent p will appear.

Remark 3. Finally, we suggest the interested reader to consider the global existence
problem for the same operator with two kinds of nonlinear terms of focusing type,
one dependent on u and the other on ut. Another possibility is to deal with µ = µ(t).
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1.1. Notation. Let f, g : Ω → R be two functions. If there exists C > 0 such that
f(y) ≤ Cg(y) for all y ∈ Ω, then we write f ≲ g. Similarly f ≈ g means that there
exist two constants C1, C2 > 0 such that C1g(y) ≤ f(y) ≤ C2g(y) for all y ∈ Ω.

In all the paper, ∗ is the convolution with respect to the x variable.

We denote f̂ = Ff , the Fourier transform of a function f with respect to the x
variable.

For any s ∈ R, we define the operator |D|s, acting on suitable functions and
distributions, as follows:

|D|sf := F−1(|ξ|sFf).
For any s > 0, we denote by Hs(Rn) the usual Sobolev space {f ∈ L2(Rn) : |ξ|sf̂ ∈
L2(Rn)}. We also denote by Ḣs(Rn) the homogeneous space obtained only requiring

|ξ|sf̂ ∈ L2(Rn), being f in the tempered distributions spaces modulo polynomials.
In Section 3.1, given m ≥ 1 and A a space of function depending on x ∈ Rn, we
put for brevity

Lm
t Ax := Lm([0,+∞), A(Rn))

to denote the space of u(t, x) such that the function t → ‖u(t, ·)‖A(Rn) is in Lm([0,
+∞)).

2. The analysis of Problem (1).

2.1. The fundamental solution. Let us consider the linear Cauchy problem with
vanishing right hand side associated to (1):

!
"#

"$

ϕtt + (−∆)2θϕ+ 2µ(−∆)θϕt = 0, t ≥ 0, x ∈ Rn,

ϕ(0, x) = u0(x),

ϕt(0, x) = u1(x).

(6)

After applying the Fourier transform, we get
!
"#

"$

ϕ̂tt + |ξ|4θϕ̂+ 2µ|ξ|2θϕ̂t = 0 ,

ϕ̂(0, ξ) = û0(ξ),

ϕ̂t(0, ξ) = û1(ξ).

We denote by K := K(t, x) the fundamental solution; its Fourier transform solves
!
"#

"$

K̂tt + |ξ|4θK̂ + 2µ|ξ|2θK̂t = 0 ,

K̂(0, ξ) = 0,

K̂t(0, ξ) = 1.

The solution of (6) is given by

ϕ(t, x) = (Kt(t, ·) + 2µ(−∆)θK(t, ·)) ∗ u0(x) +K(t, ·) ∗ u1(x). (7)

Let us describe K̂(t, ξ). We shall distinguish three cases.

• If µ > 1, then

K̂(t, ξ) =
e−bt|ξ|2θ − e−at|ξ|2θ

2|ξ|2θ
%
µ2 − 1

=
e−at|ξ|2θ

2
%
µ2 − 1

e−(b−a)t|ξ|2θ − 1

|ξ|2θ ,

where

a = µ+
%
µ2 − 1, b = µ−

%
µ2 − 1;

• If µ = 1, then K̂(t, ξ) = te−t|ξ|2θ ;
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• If µ ∈ (0, 1), then

K̂(t, ξ) =
e−µt|ξ|2θ

%
1− µ2

sin(t
%
1− µ2|ξ|2θ)
|ξ|2θ .

Remark 4. In the case µ > 1 we can write

K(t, x) =
1

2
%
µ2 − 1

|D|−2θ(Gb(t, x)−Ga(t, x)),

where Ga is the fundamental solution to the diffusion equation

vt + a(−∆)θv = 0.

If µ = 1, then K = tG1.

Let us state some basic estimates for the fundamental solution in L2(Rn).

Lemma 2.1. Let θ ≥ 0 and s ≥ 0. It holds

‖K(t, ·) ∗ g‖H2θ(Rn) ≲ (1 + t)‖g‖L2(Rn) , (8)

‖Kt(t, ·) ∗ g‖Hs(Rn) ≲ ‖g‖Hs(Rn) , (9)

‖Ktt(t, ·) ∗ g‖L2(Rn) ≲ ‖g‖Ḣ2θ(Rn) , (10)

for any g such that the right side is finite.

The loss in time-decay in the right side of (8) is evident for µ = 1 and it appears
for µ ∕= 1 while considering |ξ| close to zero. For other Sobolev estimates of (6) see
[1], [2] and [4].

2.2. Local existence. Let us recall the classical contraction mapping principle in
the version of [8].

Lemma 2.2. Let X1, X2 be Banach spaces, S : X1 → X2 a linear operator and
N : X2 → X1 a map such that N0 = 0. Given ϕ ∈ X2, one considers the equation

u = ϕ+ SNu. (11)

Assume that there exist C0 > 0 and R > 0, such that

‖SG‖X2
≤ C0‖G‖X1

, for any G ∈ X1; (12)

‖Nv −Nw‖X1 ≤ 1

2C0
‖v − w‖X2 (13)

for any v, w ∈ X2 with ‖v‖X2 ≤ R, ‖w‖X2 ≤ R. If ‖ϕ‖X2 ≤ R/2, then there exists
u ∈ X2 the unique solution to (11). Moreover ‖u‖X2 ≤ 2‖ϕ‖X2 .

We take

X1 = L∞([0, T ], L2(Rn)), ‖v‖X1 = ‖v‖L∞([0,T ],L2(Rn))

and

X2 = {u ∈ L∞([0, T ], H2θ(Rn)) such that ut ∈ L∞([0, T ], L2(Rn))}
‖u‖X2

= ‖u‖L∞([0,T ],H2θ(Rn)) + ‖ut‖L∞([0,T ],L2(Rn)) .

We put

Sv(t, x) =

& t

0

K(t− τ) ∗ v(τ, x)d τ .
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From (8) and (9) with s = 0, we deduce that S : X1 → X2. More precisely, we can
conclude that there exists C1 > 0, independent of T > 0, such that

‖Sv‖X2
≤ C1(T

2 + T )‖v‖X1
.

In particular S satisfies (12). Now we introduce ϕ as the solution of (6) written
in the form (7). From (8), (9) with s = 2θ and (10), we see that if u0, u1 ∈
H2θ(Rn)× L2(Rn), then ϕ ∈ X2. More precisely there exists C2 > 0, independent
of T > 0, such that

‖ϕ‖L∞([0,T ],H2θ(Rn)) + ‖ϕt‖L∞([0,T ],L2(Rn)) ≤ C2T (‖u0‖H2θ(Rn) + ‖u1‖L2(Rn)) .

Finally, we put

Nv = |v|p−1v .

The solution of (1) satisfies u = ϕ+ SNu. In order to prove (13), we use

‖Nv −Nw‖L2(Rn) ≲ ‖u− w‖L2(Rn)(‖v‖p−1
L∞(Rn) + ‖w‖p−1

L∞(Rn)) .

This implies the existence of C3 > 0, independent of T > 0, such that

‖Nv −Nw‖L2(Rn) ≤ C3‖u− w‖X2
(‖v‖X2

+ ‖w‖X2
)p−1

if

θ > n/4.

For w = 0, being N0 = 0, we get N : X2 → X1.
Let R > 0. Renaming

C0 = 1/2pC3R
p−1 , (14)

we get (13) for any ‖v‖X2 ≤ R, ‖w‖X2 ≤ R. For small T > 0, we get

T 2 + T < C0/C1 (15)

so that Lemma 2.2 implies the local existence result once

‖u0‖H2θ(Rn) + ‖u1‖L2(Rn) ≤ R/(4C2T ) . (16)

This proves that for suitable T > 0, one has

u ∈ L∞([0, T ], H2θ(Rn)) and ut ∈ L∞([0, T ], L2(Rn)).

If we recall (7) and the continuity of K and Kt in time-variable, we can restrict
X1 and X2 to

X̃1 = C([0, T ], L2(Rn))

X̃2 = C([0, T ], H2θ(Rn) ∩ C1([0, T ], L2(Rn))} .

These arguments give the following statement.

Theorem 2.3. Let n ≥ 1, p > 1 and θ > n/4. Assume that u0 ∈ H2θ(Rn) and
u1 ∈ L2(Rn). There exists a suitable T > 0 and a unique solution of (1) in energy
space:

u ∈ C([0, T ], H2θ(Rn)) ∩ C1([0, T ], L2(Rn)).

Comparing this result with Section 9 in [2], we see that for θ > n/4, the upper
bound on p that appears in such paper is not necessary.
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2.3. Energy estimates. Let us introduce the energy

E(u)(t) =
1

2
‖ut(t, ·)‖2L2(Rn)+

1

2
‖(−∆)θu(t, ·)‖2L2(Rn)+

1

p+ 1
‖u(t, ·)‖p+1

Lp+1(Rn) . (17)

It is crucial that any term of the energy is non negative.
Multiplying by ut(t, ·) the equation and integrating by parts, formally we get

d

dt
E(u)(t) + 2µ‖|D|θut(t, ·)‖2L2(Rn) = 0 .

Being µ > 0, we see that d
dtE(u)(t) ≤ 0, that is the energy is decreasing and

E(u)(t) + 2µ

& t

0

‖|D|θut(s, ·)‖2L2(Rn)ds = E(u)(0) . (18)

This formal computation is justified for solutions such that u(t, ·) ∈ H4θ(Rn)
and ut(t, ·) ∈ H2θ(Rn). We can assert that (18) holds for u(t, ·) ∈ H2θ(Rn) and
ut(t, ·) ∈ L2(Rn) after an approximation procedure. Indeed proceeding as in Section
2.2, we see that a continuous dependence of solutions on the Cauchy data can be
proved in H2θ(Rn) ∩ Lp+1(Rn) for functions having time derivative in L2(Rn).

We can conclude, that the following lemma holds.

Lemma 2.4. Let n ≥ 1, θ > n/4. Let p > 1.
Let u0 ∈ H2θ(Rn) and u1 ∈ L2(Rn). Let Tmax ∈ (0,+∞] be the maximal

existence time of the solution to (1). For any t ∈ [0, Tmax), we have

‖ut(t, ·)‖2L2(Rn) ≤ 2E(u)(0), (19)

‖(−∆)θu(t, ·)‖2L2(Rn) ≤ 2E(u)(0), (20)

‖u(t, ·)‖p+1
Lp+1(Rn) ≤ (p+ 1)E(u)(0) . (21)

Moreover, it holds
& t

0

‖|D|θut(s, ·)‖2L2(Rn)ds ≤
1

2µ
E(u)(0). (22)

2.4. Blow-up dynamic.

Corollary 1. Let n ≥ 1, p > 1 and θ > n/4. Assume that u0 ∈ H2θ(Rn) and
u1 ∈ L2(Rn). Let Tmax ∈ (0,∞] be the maximal existence time of the solution to
the Cauchy problem (1), in particular

u ∈ C([0, Tmax), H
2θ(Rn)) ∩ C1([0, Tmax), L

2(Rn)) .

It holds Tmax < ∞ if and only if,

lim
t→Tmax

‖u(t, ·)‖L2(Rn) = +∞. (23)

Proof. Having in mind (14), (15), (16), we see that Tmax > 0 only depends on
‖u0‖H2θ(Rn) and ‖u1‖L2(Rn). This means that if

lim
t→Tmax

'
‖u(t, ·)‖H2θ(Rn) + ‖ut(t, ·)‖L2(Rn)

(
= +∞

does not hold, then the solution to (1) may be prolonged. Since θ > n/4, then
u0 ∈ H2θ(Rn) implies also u0 ∈ Lp+1(Rn) and E(u)(0) is finite. The energy estimate
(19) gives L2-boundedness of ut. Hence, blow up will be determined by H2θ(Rn)
norm. Recalling that

‖u(t, ·)‖H2θ(Rn) ≃ ‖u(t, ·)‖L2(Rn) + ‖(−∆)θu(t, ·)‖L2(Rn) ,
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we see that the uniform estimate (20) control the second term. We can conclude
that the blow-up appears if and only if L2(Rn) norm tends to infinity.

3. Proof of main theorems.

3.1. Proof of Theorem 1.1. Let Tmax be the maximal existence time of the
solution to (1). We assume, by contradiction, that Tmax < ∞ . We can use energy
estimates, in particular (19), concluding that

‖u(t, ·)‖L2(Rn) ≤ ‖u0‖L2(Rn) +

& t

0

‖ut(s, ·)‖L2(Rn) ≲ (1 + Tmax). (24)

Hence, (23) does not hold. This conclude the proof of the global existence, since
uniqueness is guaranteed by the local existence result.

3.2. Proof of Theorem 1.2. Energy estimates can be summarized as

ut ∈ L∞
t L2

x , (25)

ut ∈ L2
t Ḣ

θ
x , (26)

After interpolation we get (3). The energy estimate gives also

u ∈ L∞
t Ḣ2θ

x ,

u ∈ L∞
t Lp+1

x . (27)

By interpolation we find (4).
Now we suppose that n/2 < θ < n. We can take γ1 = θ/2 and γ2 = θ such that

0 < 2γ1 < n < 2γ2 and use the following relation that holds in fractional Sobolev
spaces:

‖ut(t, ·)‖L∞(Rn) ≲ ‖ut(t, ·)‖Ḣγ1 (Rn) + ‖ut(t, ·)‖Ḣγ2 (Rn).

A proof of the previous inequality is given in [4]. On the other hand,

‖ut(t, ·)‖2Ḣθ/2(Rn)
=

&
||D|θ/2ut(t, x)|2 dx =

&
(|D|θut(t, x))ut(t, x) dx

≤ ‖ut(t, ·)‖Ḣθ(Rn)‖ut(t, ·)‖L2(Rn) ≤ 2E[u](0)‖ut(t, ·)‖Ḣθ(Rn) .

Combining this with (26) we arrive to

ut ∈ L2
tL

∞
x .

By interpolation with (25), we conclude (5) .

Remark 5. Having in mind (27), we see that an influence of the nonlinear term
appears. Indeed in [4], for θ > n/4, with nonlinear term dependent on ut the
solution does not belong to u ∈ L∞

t Lr for any r ≥ 2.

Remark 6. In Theorem 1.2, something better can be said on the continuity in
time variable for u. For example from ut ∈ L∞([0, T ], Ḣγ′

) we can deduce u ∈
C([0,+∞), Hγ′

) and γ′ ∈ (0, θ]. In general, given t > s > 0, we can compute

‖|D|γ
′
u(t, ·)− |D|γ

′
u(s, ·)‖L2(Rn)

=

& t

s

d

dτ
‖|D|γ

′
u(τ, ·)− |D|γ

′
u(s, ·)‖L2(Rn)dτ

=

& t

s

1

2‖|D|γ′u(τ, ·)− |D|γ′u(s, ·)‖L2(Rn)

d

dτ
‖|D|γ

′
u(τ, ·)− |D|γ

′
u(s, ·)‖2L2(Rn)dτ



8 SANDRA LUCENTE

=

& t

s

)
Rn

d
dτ ||D|γ′

u(τ, x)− |D|γ′
u(s, x)|2dx

2‖|D|γ′u(τ, ·)− |D|γ′u(s, ·)‖L2(Rn)
dτ

≤
& t

s

)
Rn

*
|D|γ′

u(τ, x)− |D|γ′
u(s, x)

+*
|D|γ′

ut(τ, x)
+
dx

‖|D|γ′u(τ, ·)− |D|γ′u(s, ·)‖L2(Rn)
dτ

≤
& t

s

‖|D|γ
′
ut(τ, ·)‖L2(Rn)dτ ≤ |t− s|‖|D|γ

′
ut‖L∞([0,T ],L2(Rn))

= |t− s|‖ut‖L∞([0,T ],Ḣγ′ (Rn)).

4. Some information on the case θ < n/4. The restriction θ > n/4 appears
as an assumption on the local existence Theorem 2.3. Indeed in the proof it was
necessary to establish the next inequality

‖|v|p−1v − |w|p−1w‖L2(Rn) ≲ ‖u− w‖H2θ(Rn)(‖v‖p−1
H2θ(Rn)

+ ‖w‖p−1
H2θ(Rn)

) .

For θ < n/4 we can still prove this inequality provided

p < 1 +
4θ

n− 4θ
.

Indeed we can use Hölder’s inequality

‖|v|p−1v − |w|p−1w‖L2(Rn) ≲ ‖u− w‖Lr (‖v‖p−1
Lq(p−1)(Rn)

+ ‖w‖p−1
Lq(p−1)(Rn)

)

provided
1

2
=

1

r
+

1

q
.

Hence, we need the embedding H2θ(Rn) ↩→ Lr(Rn) and H2θ(Rn) ↩→ Lq(p−1)(Rn)
given by ,

(n− 4θ) < 2n/r ,
(n− 4θ)(p− 1) < n− 2n/r .

For θ > n/4 these relations are trivially satisfied for any r ≥ 2 and p > 1. Let
θ < n/4 then we are looking for

,
2 ≤ r < 2n

n−4θ ,

(n− 4θ)(p− 1) < n− 2n/r .

The first condition is optimized by taking r = 2n
n−4θ hence

θ <
n

4
, 1 < p < 1 +

4θ

n− 4θ
. (28)

Also the energy estimates (19), (20), (21) and Corollary 1 holds true if we take
u0 ∈ H2θ(Rn)∩Lp+1(Rn). If we want to prove global in time existence in H2θ(Rn),
then we need that H2θ(Rn) ↩→ Lp+1(Rn) and then we assume

1 < p <
4θ + n

n− 4θ
. (29)

If the range for p in (28) is smaller than this, then Theorem 1.1 holds once (28)
holds.

Still we have Theorem 1.2, but we can add something better. Indeed combining
the energy estimates with the sharp fractional Sobolev inequality

‖u(t, ·)‖
L

2n
n−4θ (Rn)

≲ ‖(−∆)θu(t, ·)‖L2(Rn)
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we get

u ∈ L∞
t L

2n
n−4θ
x .

For the proof of the last sharp fractional Sobolev inequalities and its variant one
can see [5]. As a conclusion, Theorem 1.2 holds when (28) is satisfied, moreover

u ∈ L∞
t Lm

x , m ∈
-
p+ 1,

2n

n− 4θ

.
.

Remark 7. Let us briefly discuss the condition (29), that is, the upper bound

pc(n, θ) =
4θ + n

n− 4θ
. (30)

Indeed the symbol of the equation is given by

p(τ, ξ) = τ2 + |ξ|4θ − 2iµ|ξ|2θτ ,
with τ ∈ R and ξ ∈ Rn. When we scale this symbol by using λ > 0, we see that

p(λτ,λ
1
2θ ξ) = λ2p(τ, ξ) .

According to the notation of [6], the operator has quasi-homogeneous dimensionQ =
1+ n

2θ and the corresponding Gagliardo-Nirenberg type exponent is 2∗(Q−1) = pc .
This exponent also realizes the comparison level of the different terms of the energy
(17), since it is the critical exponent for the embedding H2θ(Rn) ↩→ Lp+1(Rn).
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