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ABSTRACT 25 

Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid 26 

type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and 27 

degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have 28 

shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in 29 

disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and 30 

cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands 31 

are emerging as a novel therapeutic approach. The design of selective ligands is however hampered 32 

by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent 33 

three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, 34 

and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. 35 

Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an 36 

excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best 37 

pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior 38 

and molecular docking simulations provided a sound rationale by highlighting the relevance of the 39 

arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-40 

inflammatory cytokines production was also investigated to exert the ability of the best compounds 41 

to modulate the inflammatory cascade. 42 

 43 

 44 

 45 



INTRODUCTION 46 

The endocannabinoid system (ECS) is a highly conserved lipid signaling network in all vertebrates, 47 

including humans. It is involved in the homeostatic control of several physiological functions, and is 48 

the focus of considerable research efforts aimed at its therapeutic exploitation.1–3 ECS consists of: i) 49 

two types of G-protein-coupled receptors,4 mainly differing for their tissue expression pattern5,6 and 50 

ii) endogenous cannabinoids and enzymes responsible for their synthesis and degradation. So far, two 51 

major cannabinoid-specific receptors, named Cannabinoid receptor subtype 1 (CB1R)7 and 52 

Cannabinoid receptor subtype 2 (CB2R), have been cloned and characterized from mammalian 53 

tissues.8,9 In addition, other receptors, including the transient receptor potential cation channel 54 

subfamily V member 1 (TRPV1) and certain orphan G protein-coupled receptors (GPR55, GPR119, 55 

and GPR18) have been proposed to act as endocannabinoid receptors and defined as non-canonical 56 

cannabinoid receptors.8,10 ECS is also composed of: i) endogenous agonists for these receptors that 57 

are known as ‘endocannabinoids’ and include anandamide and 2-arachidonoyl glycerol; and ii) 58 

enzymes responsible for endocannabinoid biosynthesis, cellular uptake and degradative 59 

metabolism.11–13 CB1R is expressed throughout the body and it is abundantly distributed in the central 60 

nervous system (CNS);14,15 it mediates the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-61 

THC).16,17 CB1R has been also localized in extracerebral tissues such as the gastrointestinal tract, 62 

adipose tissue, liver, uterus, and prostate.18–21 CB2R has been, instead, essentially found in cells and 63 

tissues associated with the immune system,8,22,23 although very low concentrations have been also 64 

found in the brain,24–26 gastrointestinal tract tissues and other cells such as vascular endothelial cells, 65 

cardiomyocytes, and bone cells.27 In the last few years, CB2R modulation has disclosed many 66 

potential therapeutic effects8,13,28 since overexpression of the receptor has been detected in activated 67 

microglia and infiltrated macrophages in the brain,22,29–31 in disorders based on an inflammatory state 68 

such as neurodegenerative diseases,29,32–39 in acute pain, persistent inflammatory pain, postoperative 69 

pain, cancer pain and neuropathic pain11,40–44 and in cancer cells.25,45–50  70 



At the CNS level, CB2R activation leads to microglia polarization from the M1-state (the microglia 71 

pro-inflammatory phenotype, characterized by pro-inflammatory cytokines production) to the M2-72 

state (the microglia anti-inflammatory phenotype, characterized by anti-inflammatory cytokines 73 

production). This anti-inflammatory effect has been hypothesized as a therapeutic strategy to block 74 

the persistent inflammation (neuroinflammation) in neurodegenerative diseases, but also to block the 75 

“cytokines storm” proper of Coronavirus Disease 19 (COVID-19)and also the persistent 76 

inflammatory state found in the onset of several types of tumours (ref).  77 

PIn addition, preclinical studies have demonstrated the critical role of CB2R in the inflammatory 78 

process associated with rheumatoid arthritis, inflammatory bowel diseases, atherosclerosis or liver 79 

ischemia-reperfusion injury.51–56 For this reason, the anti-inflammatory, and the immune-modulatory 80 

actions of CB2R agonists have potential roles for treating these diseases.28,57–61 Moreover, given the 81 

involvement of CB2R  receptors in immunomodulatory processes, the possible role of the CB2R  82 

receptor in the modulation of the inflammatory and cytokines misbalance, observed in Coronavirus 83 

Disease 19 (COVID-19) patients, was also proposed.62  84 

 CB2R antagonists have been less investigated63 but recent studies indicate that CB2R antagonists 85 

can ameliorate renal fibrosis64 and delay tumor progression,65 indicating their potential as compounds 86 

for treating fibrotic conditions and cancer. However, there are many pieces of evidence that CB2R 87 

antagonists may be a good therapeutic option in the treatment of inflammation associated with 88 

obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD).66  89 

In the last years, interesting papers presented the design and the synthesis of new CB2R 90 

antagonist67,68 suggesting that additional studies aimed at characterizing the pharmacophore portion 91 

responsible for activation at functional level are becoming essential in the field.    92 

In this study, we aimed to discover new selective CB2R ligands as promising drugs devoid of the 93 

psychotropic side effects, associated with drugs abuse due to the CB1R interference.69,70  94 

CB2R has a high degree of homology with CB1R, sharing 44% of sequence identity and 68% of 95 

sequence similarity in the transmembrane region, which contains the binding site, thus complicating 96 
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the development of selective CBR ligands.9 In fact, many CB2R ligands also modulate CB1R, making 97 

the understanding of the individual signaling contributions difficult. However, the recent release of 98 

two CB2R crystal structures, one complexed with an agonist and the other with an antagonist,4,71 99 

represents an unprecedented opportunity to guide at a molecular level of detail the rational discovery 100 

of newer and selective ligands. In this respect, we focused on the design and synthesis of CB2R 101 

selective ligands based for the first time on the N-adamantyl-anthranil amide scaffold (Figure 1 B). 102 

The first important contribution for the rational design of CB2R selective ligands was given by Zhi-103 

Jie Liu and co-workers, who solved, for the first time, a CB2R crystal structure (resolution 2.8 Å).71 104 

Importantly, the protein was crystallized in complex with the synthetic antagonist AM10257 (N-105 

(adamantan-1-yl)-1-(5-hydroxypentyl)-4-methyl-5-phenyl-1H-pyrazole-3-carboxamide), designed 106 

by the same authors through an evolutive optimization of Rimonabant, the first known CB1R 107 

antagonist approved for clinical use.72 The visual inspection of the complex allowed the 108 

characterization of the binding pocket and provided valuable information on the activation 109 

mechanism.71 Noteworthy, the chemical scaffold of AM10257 consists of a core represented by a 110 

pyrazole ring substituted with three groups extending in different directions (“three-arm pose 111 

interactions”) (Figure 1A). Accordingly, we tried to propose the same type of interactions on our 112 

anthranil amide derivatives as shown in Figure 1.  113 

 114 



  115 

Figure 1. Comparison between the “three-arms pose interactions” of the CB2R antagonist AM10257 116 

within the CB2R binding pocket71 (A) and the general structure of our N-adamantyl-anthranil amide 117 

derivatives (B). 118 

Compounds of our series 4-21 (cfr Schemes 1 and 2) replace the pyrazole with the phenyl leaving 119 

unchanged the directions of the three decorating groups in agreement with the “three-arms pose 120 

interaction” hypothesis. In this respect, the arm 1 can be a hydrogen atom, a bromine atom or an 121 

aromatic or heteroaromatic ring. We observed that the phenyl group represented the best option to 122 

engage the CB2R and thus we explored electron withdrawing/donating substituents to assess their 123 

impact on binding. As far as arm 2 is concerned, the aniline nitrogen atom was alkylated with a 124 

variable alkyl chain (five to seven carbon atoms) to evaluate the optimal length for the interaction. 125 

With regard to arm 3, the  N-adamantyl carboxamide group was kept unmodified for its crucial role 126 

in establishing hydrophobic interactions with CB2R54. To prove the actual importance of the 127 

adamantyl group52,73–75 we also prepared compound 25 (Table 3), which bears, instead, a cyclohexyl 128 

ring. All the newly synthesized derivatives were tested for their pharmacodynamic profile (affinity 129 

and selectivity at the CB2R) and for the best compounds of the series, in terms of CB2R affinity and 130 

selectivity, the CB2R functional profile (agonism or antagonism) was assayed. Importantly, the 131 



impact on the production of the pro- and anti-inflammatory cytokines in monocytes and macrophages, 132 

in resting and lipopolysaccharide (LPS) -activated state, was finally evaluated to better support the 133 

therapeutic potential of the most promising CB2R ligands as anti-inflamamtory agents. 134 

Chemistry. The synthesis of our N-adamantyl-anthranil amide derivatives was accomplished as 135 

depicted in Schemes 1–3. 136 

The starting anthranilic acids (commercially available anthranilic acid and 1) after activation with 137 

HBTU, were coupled with adamantylamine in presence of N,N-Diisopropylethylamine ( DIPEA) in 138 

dry dimethylformamide (DMF) affording adamantylamides 2 and 3, that subsequently provided the 139 

corresponding N-adamantylanthranil amide derivatives (4–9) through a reductive amination with the 140 

appropriate aliphatic aldehyde. Scheme 1. 141 

 142 

Scheme 1. Synthesis of N-adamantylanthranil amide derivatives (4–9)a 143 

 144 

aReagents and conditions: (a) NaOH/EtOH, rt. (b) DIPEA, DMF anhydrous, 0 °C, HBTU, 1-145 

adamantylamine, rt. (c) Aliphatic aldehyde, NaBH(OAc)3, dry THF rt. 146 

 147 



As shown in Scheme 2, aryl substituted derivatives of N-adamantyl-anthranil amide (10–21) were 148 

prepared by a Suzuki-Miyaura reaction in dioxane/K2CO3 (2M) from the N-adamantyl-149 

bromoanthranil amide derivatives (7–9) and the appropriate boronic acid. 150 

 151 

Scheme 2. Synthesis of substituted derivatives of N-adamantyl-anthranil amide (10–21)a 152 

 153 

 154 

aReagents and conditions: (a) appropriate boronic acid, Pd(PPh3)4, dioxane/K2CO3 (2M), reflux. 155 

 156 



The synthesis of derivative 25 was performed from the commercially available methyl-2-amino-5-157 

bromobenzoate that was coupled with benzene boronic acid in dioxane/K2CO3 (2M) obtaining 158 

compound 22 that upon reductive amination with valeraldehyde gave the N-pentil-bromoanthranil 159 

amide derivative 23. Then the ester function was hydrolyzed under basic condition to provide the 160 

corresponding carboxylic acids 24 that was coupled with cyclohexylamine in dry DMF leading to the 161 

formation of compound 25. (Scheme 3). 162 

 163 

Scheme 3. Synthesis of N-cyclohexyl-anthranil amide derivative (25)a 164 

 165 

aReagents and conditions: (a) phenylboronic acid, Pd(PPh3)4, dioxane/K2CO3 (2M), reflux. (b) 166 

valeraldehyde, NaBH(OAc)3, dry THF, rt. (c) NaOH/EtOH, rt. (d) DIPEA, DMF anhydrous, 0 °C, 167 

HBTU, 1-cyclohexylamine, rt. 168 

All reactions were monitored by thin-layer chromatography (TLC). After completion of the 169 

reaction, the solvent was evaporated to dryness and the isolated solid was purified by column 170 

chromatography on silica gel. A detailed description of the synthetic methods and the complete 171 

structural, spectroscopic, and analytical data for all compounds are provided in the experimental part. 172 

 173 

Biological Evaluation. All the compounds were tested by radioligand binding assay in order to 174 

measure their CB2R affinity profile (reported as Ki value) and their selectivity by testing the affinity 175 

at the other cannabinoid receptor subtype, CB1R (reported as % displacement at 1M). Compounds 176 

exhibiting the best pharmacodynamic profile in terms of CB2R affinity (4, 10a, 11a, 12c  and 14) for 177 

each R1 sub-group were also evaluated for the functional behavior (agonism or antagonism) through 178 



cAMP-based assays. Only in the case of the R1= 2-thienyl we decided to test 12a instead of 12c as to 179 

fix R2 as a pentyl chain for all the sub-groups. Moreover, the modulation of the pro- and anti-180 

inflammatory cytokines production was also investigated to exert the ability of the best compounds, 181 

4 and 10a, to modulate the inflammatory cascade proper of the above mentioned diseases. 182 

Computational Studies. Compounds 4 and 10a were subjected to molecular docking simulations. 183 

This study employed as protein structures both the available X-ray solved crystals of CB2R that are 184 

the complex with the agonist (PDB code: 6KPC, released in 2020)4 and the complex with the 185 

antagonist (5ZTY, released in 2019).71 186 

 187 

RESULTS AND DISCUSSION 188 

As reported in Table 1, the designed series of N-adamantyl-anthranil amides returned interesting 189 

results in terms of affinity and selectivity towards CB2R. All the compounds are very selective 190 

towards CB2R, showing very poor affinity for CB1R.  191 

 192 

Table 1. Chemical Structure and CB1R/CB2R Affinity Values of the N-adamantyl-anthranil 193 

amide Derivatives derivatives 4–21 and 25. 194 

                                                     195 

Compounds R1 R2 R3 

CB2R, 

Ki,a nM ± 

SEM or %@ 

1µM 

 

CB1R, 

Ki,
b nM ± 

 SEM or %@ 

1µM 

 

CB1R, 

Ki nM ± SEM 

or %@ 1µMb 
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4 H Pentyl Adamantyl 55.7 ±10.2 31% 

5 H Hexyl Adamantyl 485.2 ±15.0 6% 

6 H Heptyl Adamantyl 922.5 ±77.0 4% 

7 Br Pentyl Adamantyl 455.7 ±20.0 5% 

8 Br Hexyl Adamantyl 26%±1 17% 

9 Br Heptyl Adamantyl 16% ±3 8% 

10a Phenyl Pentyl Adamantyl 47.8 ±7.6 5% 

10b Phenyl Hexyl Adamantyl 209.4 ±25 35% 

10c Phenyl Heptyl Adamantyl 1180±220 22% 

11a 3-pyridyl Pentyl Adamantyl 330±50 1% 

11b 3-pyridyl Hexyl Adamantyl 6500±820 9% 

11c 3-pyridyl Heptyl Adamantyl 31% 16 % 

12a 2-thienyl Pentyl Adamantyl 2600±480 15% 

12b 2-thienyl Hexyl Adamantyl 465±88 32% 

12c 2-thienyl Heptyl Adamantyl 160±28 7% 

13 4-fluorophenyl Pentyl Adamantyl 89.5 ±15.0 754 ±68 

14 3-fluorophenyl Pentyl Adamantyl 71.0±12.2 42% 

15 4-methoxyphenyl Pentyl Adamantyl 148.1 ±17 23% 

16 3-methoxyphenyl Pentyl Adamantyl 25 % 28% 

17 4-carboxamide Pentyl Adamantyl 19% 14 % 



18 3-carboxamide Pentyl Adamantyl 21% 3 % 

19 4-methylcarboxylate Pentyl Adamantyl 12% 6% 

20 4-methylphenyl Pentyl Adamantyl 128.6 16% 

21 3-methylphenyl Pentyl Adamantyl 37% 14% 

25 Phenyl Pentyl Cyclohexyl 21% 3% 

Rimonabant     9.8 ±1.7 

GW405833    6.9±1.3  

AM10257    0.08 ± 0.01  

aCannabinoid CB2R competition binding experiments were carried out with 0.6 nM [3H]-196 

CP55940; bCannabinoid CB1R competition binding experiments were carried out with 1.25 nM [3H]-197 

CP55940. 198 

 199 

 The model compounds of the series 4, presenting a hydrogen as R1, a pentyl chain as R2
 and an 200 

adamantly as R3, showed high affinity for CB2R (Ki = 55.7 nM) and excellent selectivity in the respect 201 

of CB1R. Indeed, no affinity towards CB1 R was observed showing a percentage of radioligand 202 

displacement around 31% at 1 μM. Among derivatives bearing an aromatic ring as R1, we evaluated 203 

compounds bearing the phenyl, pyridyl and thienyl substituent. Also, in this case we obtained 204 

interesting results in terms of CB2R affinity and selectivity in the respect of CB1R: compound 10a 205 

bearing a phenyl as R1 and a pentyl chain as R2 showed high affinity for CB2R (Ki =47.8 nM) and 206 

outstanding selectivity in the respect of CB1R showing a percentage of radioligand displacement 207 

around 5 % at 1 μM.   208 

Considering the R2 substitution, a decreased affinity was always observed in derivatives bearing an 209 

increase in the chain length; this finding was observed in each R1 subgroup, except for the 2-thienyl 210 

derivatives series, where an opposite trend was observed (12a R2= pentyl, CB2R Ki= 2600 nM vs 12c 211 

R2= heptyl CB2R Ki= 160 nM).  212 



However, the best results in terms of CB2R affinity were obtained when R2 linked to the aniline 213 

nitrogen was the pentyl chain. 214 

Regarding the R1 substituent, the most interesting findings were obtained when R1= H and R1= 215 

Phenyl in the derivatives bearing as arm 2 a pentyl chain (4 and 10a), while the introduction of a 216 

bromine was deleterious (7–9). The introduction of other heterocyclic rings, such as 3-pyridyl (11a–217 

11c) or 2-thiophenyl (12a–12c), is well tolerated even if the same CB2R affinity observed for the 218 

compound 10a (R1=phenyl, R2= pentyl R3= adamantyl CB2R Ki= 47.8 nM) was not observed 219 

anymore. For this reason, we decided to decorate the phenyl ring in R1, and to assess the effects of 220 

easy to add electron-withdrawing (R1= CONH2, COOEt, F) and electron-donating (R1= CH3, OCH3) 221 

substituents, leaving unchanged the pentyl chain and the adamantyl carboxamide at R2 and R3, 222 

respectively. Disappointingly, this attempt failed in improving the affinity of the lead compound 10a 223 

and only in the case of para - and meta -fluorine derivatives 13 and 14 good affinity values (Ki= 89.5 224 

nM and 71.0 nM, respectively) were observed. However, 13 and 14 were the least selective of the 225 

series (CB1R Ki= 754 nM for compound 13 and for 14, a percentage of radioligand displacement 226 

around 42% at [1 μM] was observed). Well tolerated was, also, the introduction of a methoxy (15, 227 

CB2R Ki= 148.1 nM) or a methyl group (20, CB2R Ki= 128.6 nM) in the para position of the phenyl 228 

in R1, even if they showed less affinity than 10a. As above mentioned, we kept unchanged arm 3 as 229 

an adamantyl carboxamide in agreement to previous structure-affinity relationship studies 230 

demonstrating the pivotal role of this group on CB2R affinity.29,76–79 To further confirm the robustness 231 

of the choice of the N-adamantyl carboxamide as arm 3, we synthesized compound 25 bearing a 232 

cyclohexyl carboxamide. As expected, a total loss of the CB2R affinity was observed, being the 233 

cyclohexyl ring less prone to establish hydrophobic interactions.  234 

Functional Assay. cAMP assays have been performed on the derivatives of each R1 subgroup 235 

showing the best CB2R affinity (4, 10a, 11a, 12c  and 14, Ki= 55.7, 47.8, 330, 160 and 71.6 nM, 236 

respectively), to evaluate their functional behavior (agonism or antagonism). Only in the case of the 237 

R1= 2-thienyl we decided to test 12a (CB2R Ki= 2600 nM), instead of 12c (CB2R Ki= 160 nM) to 238 



compare ligands with a fixed R2 as a pentyl chain for all the sub-groups.  As depicted in Figure 5, the 239 

assay demonstrated a different functional profile for the five ligands: 4, 11a, 12a 12c and 14 were 240 

found to be a CB2R full agonists [being able to block the cAMP production induced by forskolin-241 

derivative NKH-477 (Figure 5)], while compound 10a was not able to exert this activity. Therefore, 242 

10a was tested in presence of the CB2R agonist JWH-133 to verify its ability to reverse an agonist-243 

mediated cAMP reduction, thus confirming a CB2R antagonist profile (Figure 2).  244 

Table 2 reports the activity for all the tested compounds and the EC50 and the Emax values  for the 245 

agonists; Figure 2 reports the dose-response curves for the two most promising compounds 4 and 246 

10a. 247 

Table 2. CB2R functional activity of the best CB2R ligands. 248 

Compound CB2R profile EC50, M, (Emax, %) 

4  Agonist 0.56 (77.16) 

10a  Antagonist - 

11a Agonist 10.42 (98.13%) 

12ca Agonist 4.135.60 

(75.089.97%) 

14 Agonist 5.25 (86.56%) 

JWH-133 Agonist 168.6 (97.50) 

 249 

 250 
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Figure 2. In vitro Biological evaluation of the CB2R functional profile. Concentration-response 251 

curves of the two best compounds 4 and 10a in the cAMP assay. The curves show the effect of 252 

increasing concentrations of compounds on NKH-477-induced cAMP levels in stable CHO cells 253 

expressing the human CB2R. Data are reported as means ± SEM of three independent experiments 254 

conducted in triplicate and normalized for NKH-477 considered as 100% of response.  255 

Computational Studies.  With the aim to unveil the molecular rationale behind the experimental 256 

data measured for 4 and 10a, characterized by the best CB2R affinity (55.7 and 47.8 nM respectively) 257 

but different functional profile (agonist or antagonist respectively), retrospective docking studies 258 

were carried out. As CB2R target for docking, the two recently X-ray solved structures of CB2R 259 

complexed with an antagonist (PDB code: 5ZTY, released in 2019)71 and an agonist (PDB code: 260 

6KPC, released in 2020)4 were employed .  261 

Noteworthy, the latter was recently proved to be appropriate for reliable docking simulations80 262 

based on data returned by three benchmark datasets.  263 

A preliminary visual inspection of the binding sites (5ZTY vs 6KPC) reveals a substantial overlap 264 

with a significant difference concerning the orientation of the indole ring of the W258 side-chain only 265 

(compare Figures 3A vs 3B). On the other hand, this observation is consistent with the available 266 

literature81 putting forward the conformation of W258 side-chain as crucial for discerning CB2R 267 

agonists from antagonists. Figures 3A and 3B show the top-scored docking poses experienced by 10a 268 

within the antagonist and agonist binding sites, respectively. On one hand, 10a can extend its arm 1, 269 

which is a phenyl, to establish pi-pi interactions with both W258 and F117 residues of the antagonist 270 

CB2R binding site (5ZTY). On the other, 10a flips its arm 1 with arm 2 (i.e., the phenyl with pentyl) 271 

to fit the agonist CB2R binding site (6KPC) due to the steric hindrance of W258; the strength of this 272 

different posing is however supported by the occurrence of a pi-pi interaction engaged by arm 1 with 273 

F183. These diverse posing reflect different MM-GBSA binding energies (-120.28 kcal/mol vs -274 

116.84 kcal/mol for 10a in 5ZTY and 6KPC, respectively). Taken as a whole, this analysis would 275 



suggest that compound 10a might act as a CB2R antagonist. This hypothesis is further supported by 276 

the evidence that the detected binding mode in 5ZTY is consistent with that of the cognate antagonist 277 

ligand AM10257 (Figure 4).  278 

Unlike 10a, 4 returns similar top-scored docking poses in 5ZTY and 6KPC. Nevertheless, the slightly 279 

different orientations of both F117 and F87 allow 4 establishing two well-oriented pi-pi interactions 280 

only when the protein structure complexed with an agonist is taken into account (Figure 3D). This 281 

observation is supported by the computed MM-GBSA binding energies, being equal to -98.57 282 

kcal/mol when 5ZTY is used as protein structure and -108.82 kcal/mol when 6KPC is employed. As 283 

a result, the performed docking simulations indicate that, despite their very similar chemical structure, 284 

4 and 10a might be responsible for opposite CB2R activities. 10a, indeed, behaves, within the CB2R 285 

pocket, as the antagonist AM10257, establishing key interactions with W258 and F117,71 while 4 286 

perfectly reproduces the binding mode of the agonist AM12033, being able to establish a pi-pi 287 

interaction with F87 in a cavity position distant from W258.71,81 288 



 289 

Figure 3. Top-scored docking poses returned by docking simulations performed on 10a (A, B) and 4 290 

(C, D). 291 

Figure 4. Alignment between the top-scored docking pose returned by docking simulations 292 

performed on 10a  (ASF136) (red) and the co-x antagonist ligand AM10257 (orange) Ligands and 293 



important residues are rendered as sticks, whereas the 5ZTY (green) and 6KPC (violet) proteins are 294 

represented as a cartoon. Pi-pi interactions are indicated by solid blue lines. For the sake of clarity, 295 

only polar hydrogen atoms are shown. 296 

 297 

Cytokines production. In order to study the potential of our ligands for the treatment of 298 

pathologies etiologically related to inflammation (e.g, cancer, neurodegeneration but also obesity or 299 

NAFLD), we tested the impact of the two compounds 4 and 10a, displaying the highest CB2R affinity 300 

and opposite profile as CB2R agonist and antagonist, respectively, on the production of the pro-301 

inflammatory (TNF-, IFN-, IL-1 and IL-6) and anti-inflammatory (IL-4 and IL-10) cytokines, in 302 

monocytes and macrophages, in basal and LPS-activated state. The induced effects were also 303 

compared to that of the CB2R reference agonist CB6582 and antagonist JTE907,83 as well as in co-304 

administration assays where, the agonist 4 and the antagonist 10a were co-incubated with the CB2R 305 

antagonist JTE907 and agonist CB65, respectively.  306 

Preliminary studies (data not shown) led us to use for each reference compound 10M as test 307 

concentration since at this dose CB65 exerted its maximal effect on cytokines production and JTE097 308 

was not active. 309 

Figure 5 reports the activity exerted by the CB2R agonist 4, at 1 and 10M (2- and 10-fold its 310 

EC50), alone and in the presence of the CB2R antagonist JTE907 (10 M) in order to define the CB2R 311 

contribution in the observed effect. The effect induced by compound 4 was also compared to that of 312 

the CB2R reference agonist CB65 (10M). 313 

As depicted in panel A, in resting monocytes, compound 4 decreased the production of the pro-314 

inflammatory cytokines (TNF-, IFN-, IL-1 and IL-6) and increased the production of the anti-315 

inflammatory ones (IL-10 and IL-4) in a dose-dependent manner. The observed behavior at 10M 316 

was comparable (even if with a lower extent) to that of the CB2R reference agonist CB65. More 317 

specifically, CB65 induced a 60% reduction in TNF-, IL-1 and IL-6 and 40% reduction in IFN- 318 

production, while compound 4 at 10 M induced a 50% reduction in TNF-, IFN-, IL-1 and 40% 319 



reduction in IL-6 production. As for the anti-inflammatory cytokines, CB65 and compound 4 at 10 320 

M led to a comparable increase in IL-4 and IL-10 production. The same trend was detected and 321 

more evident in activated-monocytes, incubated with both the CB2R agonists CB65 and 4 at 10M, 322 

as depicted (Figure 5, panel B). 323 

The activity of both CB65 and 4 was reverted by the CB2R inverse agonist JTE907, thus 324 

unequivocally demonstrating the CB2R-mediated effect. 325 

In resting macrophages, CB65 and compound 4 showed a comparable decreased production of the 326 

pro-inflammatory cytokines (50-60% reduction) and an increased production of the anti-327 

inflammatory cytokines (Figure 5, panel C), while the effect was more pronounced in activated-328 

macrophages (Figure 5, panel D).  Both CB65 and compound 4 induced a 70-80% reduction in the 329 

pro-inflammatory cytokines and significant increased IL-4 and IL-10 production. Also in these cases, 330 

the effect of both the CB2R agonists was reverted by JTE907. 331 
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Figure 5. Cytokine levels in human monocytes (A, B) and macrophages (C, D) in resting (basal) and 332 

activated (LPS) conditions by treatment with the CB2R agonist reference compound CB65 (10 M) 333 

and the CB2R agonist compound 4 (at 1 and 10 M), alone and in the presence of the CB2R 334 

antagonist JTE907 (10M). 335 
aTHP-1 cells, treated or not with 0.01 µM PMA for 48 h to differentiated them into macrophages, 336 

were incubated for additional 24 h in the absence or presence of 10 µg/ml LPS, without (CTRL) or 337 

with the CB2R ligands 4 and CB65, in the absence and in the presence of the CB2R antagonist 338 

JTE907. Cytokines levels were measured with an ELISA coupled with qRT-PCR. Each bar represents 339 

the mean ± SEM of two experiments performed in triplicate. Two-Way ANOVA followed by Tukey 340 

post-hoc test was applied. Significance of symbols as follows: 1 symbol=p<0.05; 2 symbols= p<0.01; 341 

3 symbols =p<0.001; 4 symbols=p<0.0001. Legend for symbols as follows: * indicates vs CTR; ° 342 

indicates vs each compound with JTE907. 343 

 344 

 345 

Figure 6 reports the impact of the CB2R antagonist, compound 10a, alone and in the presence of 346 

the CB2R reference agonist CB65, on the cytokines production. As evident in all the panels 347 

compound 10a, analogously to the CB2R reference antagonist JTE907, has an impact on the 348 

cytokines production opposite to that of the agonist compound 4, and -importantly - it   reversed the 349 

effects induced by the CB2R agonist CB65, both in monocytes and macrophages in resting and 350 

activated condition. 351 

These findings support the different CB2R activity profile of the two new compounds 4 and 10a as 352 

CB2R agonist and antagonist, respectively. 353 

 354 
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Figure 6. Cytokine levels in human monocytes (A, B) and macrophages (C, D) in resting (basal) and 356 

activated (LPS) conditions by treatment with the CB2R agonist reference compound CB65 (10 M) 357 

alone and in the presence of the CB2R antagonist JTE907 (10M) and in the presence of the CB2R 358 

antagonist compound 10a (at 1 and 10 M). 359 
aTHP-1 cells, treated or not with 0.01 µM PMA for 48 h to differentiated them into macrophages, 360 

were incubated for additional 24 h in the absence or presence of 10 µg/ml LPS, without (CTRL) or 361 

with the CB2R ligands 10a and CB65, in the absence and in the presence of the CB2R agonist CB65 362 

and CB2R antagonist JTE907, respectively. Cytokines levels were measured with an ELISA coupled 363 

with qRT-PCR. Each bar represents the mean ± SEM of two experiments performed in triplicate.  364 



Two-Way ANOVA followed by Tukey post-hoc test was applied. Significance of symbols as follows: 365 

1 symbol=p<0.05; 2 symbols= p<0.01; 3 symbols =p<0.001; 4 symbols=p<0.0001. Legend for 366 

symbols as follows: * indicates vs CTR; ° indicates vs CB65. 367 

 368 

Statistical analysis. All data in the text and figures are provided as means ± SEM. The results were 369 

analysed by Two-way ANOVA test, using Graph-Pad Prism (Graph-Pad software, San Diego, CA, 370 

USA). p < 0.05 was considered significant. 371 

CONCLUSION 372 

In this work, we rationally designed and synthesized new N-adamantyl-anthranil amide derivatives 373 

and evaluated their affinity and selectivity profiles towards CB2R. Our derivatives displayed affinity 374 

in the nanomolar range for human CB2R as well as an excellent selectivity. Based on the “three-arms 375 

pose interactions” hypothesis, our efforts aimed to find suitable substituents to optimize affinity and 376 

selectivity. We found that the CB2R binding site can be effectively targeted if: a hydrogen atom (4) 377 

or a phenyl ring (10a) is employed as arm 1; a pentyl chain is present as arm 2; and an adamantly 378 

carboxamide represents arm 3.  379 

Based on a combined experimental/computational study, we explain how the CB2R 380 

agonism/antagonism switch of our N-adamantyl-anthranil amide derivatives is causatively related to 381 

the chance of making pi-pi interactions with W258 side-chain. Molecular docking provided a 382 

molecular rationale by highlighting the importance of substituents on arm 1.  383 

To achieve this aim, comparative docking simulations were performed on both the recently 384 

published CB2R crystal structures, one complexed with an agonist and the other with an antagonist 385 

and we were able to understand the functional activity of our compounds evidencing how the 386 

introduction of a phenyl ring on arm 1 could be responsible for an agonism/antagonism switch 387 

resulting from the establishment of pi-pi interactions with W258. 388 

Therefore, we also remark the reduced production of the pro-inflammatory cytokines induced by 389 

CB2R agonist compound 4 that could be considered as a new therapeutic option for diseases 390 

characterized by a strong inflammatory response such as COVID-19. Moreover, the identification of 391 



compound 10a as CB2R antagonist opens a new scenario in the development of CB2R antagonist as 392 

tools to give new piece of information about the application of also this class of CB2R ligands. 393 

EXPERIMENTAL SECTION  394 

Chemistry. High analytical grade chemicals and solvents were purchased from commercial 395 

suppliers. When necessary, solvents were dried by standard techniques and distilled. After extraction 396 

from aqueous phases, the organic solvents were dried with anhydrous sodium sulphate. Thin layer 397 

chromatography (TLC) was performed on aluminum sheets precoated with silica gel 60F254 (0.2 398 

mm) (E. Merck, Darmstadt, Germany). Chromatographic spots were visualized by UV light. 399 

Purification of crude compounds was carried out by flash column chromatography on silica gel 60 400 

(Kieselgel 0.040–0.063 mm; E. Merck) or gravitational chromatography column on silica gel 60 401 

(Silicagel 0,063-0,200 mm, E. Merck) or by preparative TLC on silica gel 60 F254 glass plates. 402 

Melting points (mp) were determined with a capillary apparatus (Büchi 540). 1H NMR spectra were 403 

recorded in DMSO-d6 or CDCl3 at 300 MHz on a Varian Mercury 300 instrument or on a 500-404 

vnmrs500 spectrometer (500 MHz). 13C NMR (126 MHz) were recorded on a 500-vnmrs500 405 

spectrometer (500 MHz) on novel final compounds. Chemical shifts (δ scale) are reported in parts 406 

per million (ppm) relative to the central peak of the solvent. Coupling constant (J values) are given 407 

in Hertz (Hz). Spin multiplicities are given as s (singlet), br s (broad singlet), d (doublet), t (triplet), 408 

dd (double doublet), dt (double triplet), q (quartet), quint (quintet) or m (multiplet). LRMS (ESI) was 409 

performed with an electrospray interface ion trap mass spectrometer (1100 series LC/MSD trap 410 

system: Agilent, Palo Alto, CA, USA). In all cases, spectroscopic data agree with compounds and 411 

assigned structures. The purity of target compounds listed in table ST1 in the supplementary material 412 

was assessed by HPLC. Analytical HPLC analyses were performed on an Agilent 1260 Infinity 413 

(Agilent Technologies, Palo Alto, CA, USA) equipped with a quaternary pump (G1311C), a 414 

membrane degasser, an autosampler (G1329B), a diode-array detector (DAD) (G1315D). Data 415 

analyses were processed by HP ChemStation system (Agilent Technologies). The analytical column 416 



was a reversed phase column (Phenomenex Kinetex C-18, 5 μm, 100 Å, 150 × 4.6 mm). All 417 

compounds were dissolved in the mobile phase at a concentration of about 1 mg/mL and injected 418 

through a 5 mL loop. Isocratic elution was conducted at a flow rate of 1 mL/min with MeOH/H2O 419 

(85:15, v/v), unless otherwise stated. UV signal was detected at 266 nm, 294 nm, and 330 nm. All 420 

compounds showed >96% purity.  421 

Synthesis of 2-amino-5-bromobenzoic acid 1. The methyl-2-amino-5-bromobenzoate (0.23 g, 1.0 422 

mmol) is dissolved in a 1:1 solution of NaOH (2N) (8 mL) and absolute EtOH (8 mL). The reaction 423 

mixture is left at room temperature and under magnetic stirring for 4 hours. The solution is then 424 

acidified with HCl (3N) until a precipitate is formed (pH = 4/5). The product is recovered by filtration 425 

and washed with water at pH = 4. The product is extracted with CH2Cl2 (DCM) (3x10 mL), and the 426 

organic phases are combined and dried over Na2SO4. The solvent is removed under reduced pressure 427 

obtaining 2-amino-5-bromobenzoic acid 1. Yield: 90%. 1H NMR (300 MHz, DMSO-d6) δ: 8.58 (s 428 

br, 2H), 7.72 (d, J = 2.9 Hz, 1H), 7.33 (dd, J1 = 9.0, J2 = 2.9 Hz, 1H), 6.71 (d, J = 9.0 Hz, 1H). ESI-429 

MS: m/z 214 [M-H]- .  430 

 General procedure for the synthesis of N-(adamantan-1-yl)-2-aminobenzammides 2 and 3. 431 

The appropriate anthranilic acid (17.0 mmol) was placed in a reaction flask, previously dried under 432 

argon, and dissolved in anhydrous DMF (50.0 mL). DIPEA (9.0 mL) was added at 0 °C, and the 433 

mixture is left under magnetic stirring at 0 °C for 10 minutes. HBTU (9.67 g, 25.5 mmol) was added 434 

to the solution and the mixture is left at room temperature for 2 hours. Then,1-adamantylamine (3.86 435 

g, 25.5 mmol) was added to the solution. The system was left under stirring overnight at room 436 

temperature. The solvent was evaporated, and brine (20 mL) was added to the residue that was 437 

extracted with methylene chloride (3x 20 mL). The organic layer was washed with HCl 1N (3x20 438 

mL), then with a saturated solution of NaHCO3 (3x20 mL) and brine (3x20 mL). The organic layer 439 

was dried over anhydrous Na2SO4, filtered and evaporated. The resulting crude product was purified 440 

by gravitational gradient chromatography column (n-hexane/ethyl acetate: 9/1 to 8/2) obtaining the 441 

desired intermediate.  442 



N-(adamantan-1-yl)-2-aminobenzammides 2. Yield: 71%. 1H NMR (300 MHz, CDCl3) δ= 7.25 443 

(s,1H), 7.17 (t, J = 5.2 1H), 6.66-6.61 (m, 2H), 5.70 (s br, 1H), 5.39 (s br, 2H), 2.15–2.09 (m, 9H), 444 

1.75–1.69 (m, 6H). ESI-MS: m/z 293 [M+Na]+.  445 

N-(adamantan-1-yl)-2-amino-5-bromobenzamide 3. Yield: 77%. 1H-NMR (300 MHz, CDCl3) 446 

δ: 7.34 (d, J = 2.2 Hz, 1H), 7.24 (dd, J = 8.7 Hz, 2.2 Hz, 1H), 6.54 (d, J = 8.7 Hz 1H), 5.62 (s br, 1H), 447 

5.39 (s br, 2H),  2.17–2.05 (m, 9H), 1.76–168 (m, 6H). ESI-MS: m/z 371 [M+Na]+. 448 

General procedure for the synthesis of N-adamantyl-anthranilamide derivatives 4–9. In a 449 

dried reaction flask, the appropriate intermediate 2 or 3 (0.37 mmol) was suspended in anhydrous 450 

THF (10 mL). The appropriate aliphatic aldehyde (0.8 mmol) was added and the mixture was left 451 

under magnetic stirring 3 h at room temperature. Later, NaBH(OAc)3 (0.16 g, 0.74 mmol) was added 452 

at 0 °C to the mixture and the solution is left under magnetic stirring overnight at room temperature. 453 

After the addition of methanol (MeOH) (5 mL), the solvent was removed under reduced pressure. 454 

The resulting residue was purified by gradient gravitational column chromatography (eluent: n-455 

hexane/ethyl acetate: 9.5/0.5 to 9 /1) to obtain the final compounds 4–9. 456 

N-(adamantan-1-yl)-2-(pentylamino)benzamide 4. Yield: 47%. mp: 122-123 °C. 1H NMR (500 457 

MHz, CDCl3) δ: 7.27-7.23 (m, 2H), 6.65 (d, J = 8.0 Hz 1H), 6.53 (td, J = 6.5, 1.1 Hz 1H), 5.69 (s br, 458 

1H), 3.11( q, J = 5.5 Hz, 2H) 2.18–2.08 (m, 9H), 1.75–1.65 (m, 8H), 1.41–1.32 (m, 4H), 0.91 (t, J = 459 

7.0 Hz 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.46, 149.51, 132.18, 127.26, 116.79, 114.17, 111.44, 460 

52.12, 43.15, 41.75, 36.40, 29.50, 29.43, 28.94, 22.49, 14.02. ESI-MS: m/z 363 [M+Na]+. 461 

N-(adamantan-1-yl)-2-(hexylamino)benzamide 5. Yield: 32%. mp: 103-104°C. 1H NMR (500 462 

MHz, CDCl3) δ: 7.27-7.24 (m, 3H), 6.65 (d, J = 8.1 Hz, 1H), 6.53 (td, J = 6.9, 1.1 Hz, 1H), 5.69 (s 463 

br, 1H), 3.11 (q, J = 4.5 Hz, 2H) 2.15–2.06 (m, 9H), 1.75–1.62 (m, 8H); 1.42–1.28 (m, 2H), 1.30–464 

1.34 (m, 4H),  0.89 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.45, 149.51, 132.18, 465 

127.25, 116.80, 114.17, 111.44, 52.12, 43.18, 41.75, 36.40, 31.62, 29.50, 29.20, 26.94, 22.58, 14.03.  466 

ESI-MS: m/z 377 [M+Na]+. 467 



N-(adamantan-1-yl)-2-(heptylamino)benzamide 6. Yield: 36%. mp: 94-95 °C. 1H NMR (500 468 

MHz, CDCl3) δ: 7.27-7.24 (m, 3H), 6.65 (d, J = 8.5 Hz, 1H), 6.53 (td, J = 6.9, 1.1 Hz, 1H), 5.69 (s 469 

br, 1H), 3.11 (q, J = 4.5 Hz, 2H) 2.15–2.06 (m, 9H), 1.75–1.68 (m, 8H), 1.42–1.28 (m, 8H), 0.88 (t, 470 

J = 7.0 Hz 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.45, 149.51, 132.18, 127.25, 116.80, 114.17, 471 

111.45, 52.12, 43.17, 41.75, 36.40, 31.76, 29.50, 29.23, 29.08, 27.21, 22.60, 14.08.  ESI-MS: m/z 472 

391 [M+Na]+. 473 

N-(adamantan-1-yl)-5-bromo-2-(pentylamine)benzamide 7. Yield: 51%. mp: 143-144°C. 1H 474 

NMR (500 MHz, CDCl3) δ: 7.33 (d, J = 2.5 Hz, 1H), 7.30 (dd, J = 8.5, 2.5  Hz, 1H), 7.72 (s br, 1H) 475 

6.52 (d, J = 9.0 Hz, 1H), 5.62 (s br, 1H), 3.07 (q, J = 7.2 Hz, 2H), 2.12–2.09 (m, 9H), 1.72–1.62 (m, 476 

8H), 1.39–1.33 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 168.10, 148.37, 477 

134.65, 129.68, 118.46, 113.18, 105.41, 52.46, 43.19, 41.65, 36.34, 29.47, 29.35, 28.76, 22.44, 13.99.  478 

ESI-MS: m/z 441 [M+Na]+ . 479 

N-(adamantan-1-yl)-5-bromo-2-(hexylamine)benzamide 8. Yield: 70%. mp: 110-111°C. 1H 480 

NMR (500 MHz, CDCl3) δ: 7.33 (d, J = 2.4 Hz, 1H), 7.30 (dd, J1  = 8.8, 2.4  Hz, 1H), 7.72 (s br, 1H) 481 

6.52 (d, J = 8.5 Hz, 1H), 5.61 (s br, 1H), 3.07 (q, J = 7.6 Hz, 2H), 2.12–2.09 (m, 9H), 1.72–1.60 (m, 482 

8H), 1.42–1.28 (m, 6H), 0.89 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 168.11, 148.37, 483 

134.65, 129.67, 118.46, 113.18, 105.39, 52.46, 43.21, 41.65, 36.34, 31.57, 29.47, 29.03, 26.86, 22.55, 484 

14.00.  ESI-MS m/z 431 [M-H]-. 485 

N-(adamantan-1-yl)-5-bromo-2-(heptylamine) benzamide 9. Yield: 89%. Mp: 102-103°C. 1H-486 

NMR (500 MHz, CDCl3) δ:  7.33 (d, J = 2.4 Hz, 1H), 7.30 (dd, J  = 8.8, 2.4 Hz, 1H), 6.55 (d, J = 9.0 487 

Hz, 1H), 5.63 (s br, 1H), 3.07 (t, J = 7.5 Hz, 2H), 2.12–2.09 (m, 9H), 1.74–1.59 (m, 8H), 1.42–1.26 488 

(m, 8H), 0.88 (t, J = 7.0 Hz, 3H).  13C-NMR (126 MHz, CDCl3) δ: 168.03, 148.10, 134.68, 129.68, 489 

118.65, 113.49, 52.49, 41.64, 36.34, 31.72, 29.47, 29.03, 29.00, 27.12, 22.58, 14.07. ESI-MS: m/z 490 

469 [M+Na]+.  491 

General procedure for the synthesis of substituted derivatives of N-adamantyl-anthranil amide 492 

10–21. Intermediates 3 or 4 or 5 (0.22 mmol) and the appropriate boronic acid (0.34 mmol) are 493 



suspended in a solution of dioxane (2.4 ml) and K2CO3 2M (0.6 ml). After purging the solution with 494 

N2 for 10 minutes, Pd(PPh3)4 (0.025 g, 0.022 mmol) was added and the mixture was refluxed for 495 

about 2–4 hours. Then, the solvent was removed under reduced pressure and the resulting residue 496 

was purified by a flash column chromatography:  for compounds 10a, 10b and 10c: n-hexane/ ethyl 497 

acetate  9/1); compounds 11a, 11b and 11c (eluent: n-hexane/ethyl acetate  9/1 to 7.5/2.5); compounds 498 

12a, 12b and 12c (eluent: n-hexane/ ethyl acetate 9.5/0.5); compounds 13 and 14 (eluent: n-499 

hexane/ethyl acetate 9.8/0.2 to 9.5/0.5); compounds 15 and 16 (eluent: n-hexane/ ethyl acetate 500 

9.8/0.2); compounds 17 and 18 (eluent: methylene chloride/ethyl acetate 9/1 to 7/3); compound 19 501 

(eluent: n-hexane/ ethyl acetate 9.8/0.2 to 9.5/0.5); compounds 20 and 21 (eluent: n-hexane/ethyl 502 

acetate 9.8/0.2) 503 

N-(adamantan-1-yl)-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 10a. Yield: 50%. mp: 504 

140-141°C. 1H NMR (500 MHz, CDCl3) δ: 7.57–7.52 (m, 3H), 7.48 (d, J = 1.5 Hz 1H), 7.41 (t, J = 505 

7.5 Hz, 2H), 7.29 (m, 2H), 6.85 (s br, 1H), 5.79 (s br, 1H), 3.18 (t, J = 9.8 Hz, 2H), 2.17–2.09 (m, 506 

9H), 1.76–1.68 (m, 8H), 1.43–1.35 (m, 4H),  0.90 (t, J = 7.5 Hz,  1H). 13C-NMR (126 MHz, CDCl3) 507 

δ: 169.44, 148.72, 140.88, 130.86, 128.73, 127.37, 126.20, 125.94, 117.37, 111.84, 52.29, 43.26, 508 

41.74, 36.40, 29.51, 29.42, 28.95, 22.49, 14.02. ESI-MS: m/z 439 [M+Na]+. 509 

N-(adamantan-1-yl)-4-(hexylamino)-[1,1'-biphenyl]-3-carboxamide 10b. Yield: 32%. mp: 137-510 

138 °C. 1H-NMR (500 MHz, CDCl3) δ: 7.51 (dd, J = 8.0, 1.5 Hz,  3H), 7.46 (d, J = 1.5 Hz 1H), 7.41 511 

(t, J = 8.0 2H), 7.30–7.28 (m, 1H), 6.73 (d, J = 8.0 Hz 1H), 5.75 (s br, 1H), 3.17 (q, J = 5.0 Hz, 2H), 512 

2.16–2.10 (m, 9H), 1.76–1.65 (m, 8H), 1.45–1.39 (m, 2H), 1.36–1.29 (m, 4H), 0.90 (t, J = 7.0 Hz, 513 

3H). 13C-NMR (126 MHz, CDCl3) δ: 169.43, 148.73, 140.88, 134.65, 130.86, 128.73, 127.33, 126.20, 514 

125.94, 117.33, 111.82, 52.28, 43.26, 41.73, 36.39, 31.62, 29.50, 29.22, 26.93, 22.59, 14.03. ESI-515 

MS: m/z 453 [M+Na]+. 516 

N-(adamantan-1-yl)-4-(heptylamino)-[1,1'-biphenyl]-3-carboxamide 10c. Yield: 55%. mp: 517 

133-134°C. 1H NMR (500 MHz, CDCl3) δ: 7.50 (dd, J = 8.5, 1.5 Hz, 3H), 7.46 (d, J = 1.5 Hz, 1H), 518 

7.41 (t, J = 8.5 Hz, 2H), 7.30-7.28 (m, 1H), 6.74 (d, J = 8.5 Hz, 1H), 5.75 (s br, 1H), 3.16 (t, J = 7.0 519 



2H), 2.18–2.07 (m, 9H), 1.76-1.65 (m, 8H), 1.44-1.29 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H). 13C-NMR 520 

(126 MHz, CDCl3) δ: 169.41, 140.86, 130.86, 128.74, 126.21, 125.93, 111.87, 109.99, 52.29, 41.73, 521 

36.39, 31.76, 29.68, 29.47, 29.23, 29.08, 27.19, 22.61, 14.08. ESI-MS: m/z 443 [M-H]-. 522 

N-(adamantan-1-yl)-2-(pentylamino)-5-(pyridin-3-yl)benzamide 11a. Yield: 42%. mp: 108-523 

109 °C. 1H NMR (500 MHz, CDCl3) δ: 8.78 (s, 1H), 8.50 (d, J = 2.0 Hz, 1H), 7.70 (dt, J = 8.5, 2.0 524 

Hz, 1H), 7.48 (dd, J=8.5, 2.0 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.34-7.30 (m, 2H), 6.75 (d, J = 8.5 525 

Hz, 1H),  5.76 (s br, 1H), 3.16 (q, J = 4.5 Hz, 2H), 2.18–2.10 (m, 9H), 1.76–1.67 (m, 6H), 1.44–1.34 526 

(m, 4H), 0.92 (t, J = 7.0 Hz, 3H).  13C-NMR (126 MHz, CDCl3) δ: 169.16, 149.26, 147.47, 147.29, 527 

136.30, 133.24, 130.74, 125.94, 123.56, 123.48, 117.54, 112.04, 52.41, 43.16, 41.72, 36.37, 29.49, 528 

29.39, 28.87, 22.47, 14.01. ESI-MS: m/z 416 [M-H]-. 529 

N-(adamantan-1-yl)-2-(hexylamino)-5-(pyridin-3-yl)benzamide 11b. Yield: 86%. mp: 104-105 530 

°C. 1H NMR (500 MHz, CDCl3) δ: 8.76 (s, 1H), 8.50 (d, J = 2.0 Hz, 1H), 7.70 (dt,  J2  = 8.5, 2.0 Hz, 531 

1H), 7.48 (dd,  , J1  = 8.5, 2.0 Hz, 1H), 7.44 (d, J = 2.0 1H), 7.36-7.30 (m, 2H), 6.75 (d, J = 8.5 Hz, 532 

1H),  5.76 (s br, 1H), 3.15 (q, J = 4.5 Hz, 2H), 2.18–2.06 (m, 9H), 1.76–1.64 (m, 8H), 1.45–1.39 (m, 533 

2H), 1.34–1.20 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.16, 149.25, 534 

147.45, 147.27, 136.30, 133.25, 130.74, 125.94, 123.55, 123.49, 117.56, 112.05, 52.41, 43.19, 41.71, 535 

36.37, 31.59, 29.49, 29.14, 26.89, 22.57, 14.02.  ESI-MS m/z 432 [M+H]+. 536 

N-(adamantan-1-yl)-2-(heptylamino)-5-(pyridin-3-yl)benzamide 11c. Yield: 47%. mp: 76-537 

77°C. 1H NMR (500 MHz, CDCl3) δ: 8.76 (d, J = 2.0 1H), 8.50 (dd, Hz, J = 4.5, 2.0 Hz, 1H), 7.78 538 

(dt, J = J= 8.5, 2,0 Hz, 1H), 7.48 (dd, J = 8.5, 2 Hz, 1H), 7.45 (d, J = 2.0 1H), 7.34-7.29 (m, 2H), 6.75 539 

(d, J = 8.5 Hz, 1H),  5.75 (sbr, 1H), 3.16 (q, J = 6.0 Hz, 2H), 2.17–2.09 (m, 9H), 1.76–1.65 (m, 8H), 540 

1.44–1.24 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.16, 149.25, 147.45, 541 

147.28, 136.30, 133.26, 130.74, 125.92, 123.55, 123.48, 117.56, 112.05, 52.42, 43.19, 41.71, 36.37, 542 

31.75, 29.49, 29.17, 29.06, 27.17, 22.60, 14.07. ESI-MS: m/s 468 [M+Na]+. 543 

N-(adamantan-1-yl)-2-(pentylamino)-5-(thien-2-yl)benzamide 12a. Yield: 41%. mp: 142-143 544 

°C. 1H-NMR (500 MHz, CDCl3) δ: 7.49 (dd, J  = 9.0, 2.0 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.28 (s 545 



br, 1H), 7.17 (dd,  J =  4.5, 2.0 Hz 1H), 7.11 (dd, , J  = 4.5, 2.0 Hz 1H), 7.28 ( s br, 1H) 7.04–7.03 (m, 546 

1H), 6.67 (d, J = 6.5 Hz, 1H), 5.73 (s br, 1H), 3.15 (q, J = 4.0 Hz, 2H)   2.17–2.06 (m, 9H), 1.76–1.64 547 

(m, 8H), 1.41–1.33 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H).  13C-NMR (126 MHz, CDCl3) δ: 169.12, 148.84, 548 

144.66, 130.16, 127.85, 125.12, 122.94, 121.13, 121.02, 117.19, 111.73, 52.34, 43.20, 41.70, 36.38, 549 

29.50, 29.39, 28.90, 22.48, 14.01.ESI-MS: m/z  421 [M-H]-.  550 

N-(adamantan-1-yl)-2-(hexylamino)-5-(thien-2-yl)benzamide 12b. Yield: 36%. mp: 97-98 °C. 551 

1H-NMR (500 MHz, CDCl3) δ: 7.50 (dd,  J = 9.0, 2.0 Hz 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.17 (dd, J  = 552 

4.5, 2.0 Hz, 1H), 7.12 (dd, J = 4.5, 2.0 Hz, 1H), 7.05–7.03 (m, 1H), 6.73 (d, J = 6.5 Hz, 1H), 5.75 (s 553 

br, 1H), 3.15 (t, J = 7.5 Hz, 2H)   2.17–2.09 (m, 9H), 1.76–1.64 (m, 8H), 1.41 (quint,  J = 7.5 Hz, 554 

2H), 1.33–1.30 (m, 4H) 0.90 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 168.97, 148.29, 555 

144.49, 130.17, 127.88, 125.06, 123.12, 121.32, 52.42, 41.68, 36.37, 31.57, 29.68, 29.49, 29.03, 556 

26.86, 22.56, 14.01. ESI-MS: m/z = 459 [M+Na]+. 557 

N-(adamantan-1-yl)-2-(heptylamino)-5-(thien-2-yl)benzamide 12c. Yield: 42%. mp: 81-82 °C. 558 

1H-NMR (500 MHz, CDCl3) δ: 7.50 (dd, J  = 9.0, 2.0 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.31 (s br, 559 

1H), 7.17 (dd, J  =  4.5,  2.0 Hz,1H), 7.12 (dd, J=4.5, 2.0 Hz 1H), 7.05–7.03 (m, 1H), 6.69 (d, J = 6.5 560 

Hz, 1H), 5.74 (s br, 1H), 3.14 (t, J = 7.5 Hz, 2H), 2.17–2.09 (m, 9H), 1.76–1.64 (m, 8H), 1.43–1.28 561 

(m, 8H) 0.89 (t, J = 7.0 Hz, 3H).  13C-NMR (126 MHz, CDCl3) δ: 169.07, 148.64, 144.60, 130.16, 562 

129.15, 127.86, 125.10, 123.00, 121.20, 117.36, 111.95, 52.37, 43.39, 41.69, 36.38, 31.75, 29.50, 563 

29.15, 29.06, 27.16, 22.60, 14.08.  ESI-MS: m/z 473 [M+Na]+.  564 

N-(adamantan-1-yl)-4'-fluoro-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 13. Yield: 565 

55%. mp: 130-131°C.  1H NMR (500 MHz, CDCl3) δ: 7.46–7.42  (m, 3H), 7.40 (d, J = 2.0 Hz 1H), 566 

7.22 (s br, 1H), 7.09 (t, J = 8.5 Hz 1H), 6.73 (d, J = 8.5 Hz 1H), 5.74 (s br, 1H), 3.16 (t, J = 7.0 Hz, 567 

2H),  2.17–2.08 (m, 9H), 1.76–1.65 (m, 8H), 1.42–1.33 (m, 4H), 0.92 (t, J = 7.0 Hz 3H). 13C-NMR 568 

(126 MHz, CDCl3) δ: 169.32, 162.77, 160.81, 137.00, 130.73, 127.70, 127.64, 125.77, 115.61, 569 



115.44, 111.93, 52.34, 43.28, 41.73, 36.38, 29.49, 29.40, 28.91, 22.48, 14.02.  ESI-MS: m/z 457 570 

[M+Na]+. 571 

N-(adamantan-1-yl)-3'-fluoro-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 14. Yield: 572 

48%. mp: 122-123 °C. 1H NMR (500 MHz, CDCl3) δ: 7.48 (dd, J  = 9.0, 2.0 Hz, 1H), 7.44 (d, J = 2.0 573 

Hz 1H), 7.37–7.33 (m, 1H), 7.31 (s br, 1H), 7.28 (dt, J  =  9.0, 1.5 Hz, 1H), 7.19 (dt,  J  = 9.0, 1.5 Hz, 574 

1H), 6.95 (m, 1H), 6.72 (d, J = 8.5, 1H), 5.75 (s br, 1H), 3.16 (q, J = 4.5 Hz, 2H), 2.17–2.08 (m, 9 575 

H), 1.74–1.65 (m, 8H), 1.44–1.33(m, 4H), 0.93 (t, J = 7 Hz 3H), 13C-NMR (126 MHz, CDCl3) δ: 576 

169.28, 164.24, 162.29, 149.09, 143.16, 130.74, 130.17, 125.86, 121.64, 117.35, 112.92, 112.75, 577 

111.83, 52.37, 43.20, 41.72, 36.38, 29.50, 29.40, 28.91, 22.48, 14.02.  ESI-MS: m/z 457 [M+Na]+. 578 

N-(adamantan-1-yl)-4'-methoxy-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 15. Yield: 579 

42%. mp: 104-105°C. 1H NMR (500 MHz, CDCl3) δ: 7.56–7.12 (m, 1H), 7.43–7.42 (m, 1H), 7.42–580 

7.42 (m, 2H), 6.97–6.95 (m, 3H), 6.79 (s br, 1H), 5.77 (sbr, 1H), 3.84 (s, 3H), 3.16, (t, J  = 7.0 Hz 581 

2H); 2.16–2.08 (m, 9H), 1.73–1.70 (m, 8H), 1.41–1.35 (m, 4H), 0.92 (t, J = 7.0 Hz 3H). 13C-NMR 582 

(126 MHz, CDCl3) δ: 130.63, 128.68, 128.12, 127.71, 127.33, 126.71, 126.62, 125.51, 114.23, 583 

114.17, 114.14, 55.38, 55.33, 52.37, 41.71, 36.37, 29.49, 29.36, 28.78, 22.46, 14.01.  ESI-MS: m/z 584 

469 [M+Na]+.  585 

N-(adamantan-1-yl)-3'-methoxy-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 16. Yield: 586 

52%. mp: 99-100 °C. 1H NMR (500 MHz, CDCl3) δ: 7.51–7.41 (m, 2H), 7.35–7.21 (m, 3H), 7.11-587 

7.04  (m, 1H), 6.83 (dd, Hz, J = 8.0, 2.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.75 (s br, 1H), 3.86 (s, 588 

3H), 3.20-3,07 (m, 2H), 2.21–1.98 (m, 9H), 1.77–1.63 (m, 8H), 1.41–1.35 (m, 4H), 0.92 (t, J = 7.0 589 

Hz 3H), 13C-NMR (126 MHz, CDCl3) δ: 169.40, 159.95, 148.82, 142.42, 130.87, 129.72, 127.13, 590 

125.96, 118.78, 117.31, 112.29, 111.77, 111.21, 55.31, 52.30, 43.24, 41.72, 36.39, 29.53, 29.41, 591 

28.93, 22.49, 14.02.  ESI-MS: m/z 469 [M+Na]+. 592 

N-((adamantan-1-yl)-4-(pentylamino)-[1,1'-biphenyl]-3,4'-dicarboxamide 17. Yield: 40%. mp: 593 

152-153 °C. 1H NMR (500 MHz, CDCl3) δ: 7.86 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.54 594 

(dd, J = 8.5, 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.36 (s br, 1H) 6.75 (d, J = 8.5 Hz, 1H), 5.75 (s br, 595 



1H), 3.17 (q, J = 6.0 Hz,  2H), 2.17–2.09 (m, 9H), 1.78–1.68 (m, 8H), 1.43–1.26 (m, 4H), 0.90 (t, J 596 

= 7 Hz 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.24, 168.97, 151.90, 149.27, 144.43, 135.52, 130.85, 597 

130.58, 127.95, 125.97, 117.47, 111.89, 52.41, 43.18, 41.71, 41.47, 36.37, 29.49, 28.87, 22.41, 14.01.  598 

ESI-MS m/z 482 [M+Na]+. 599 

N-((adamantan-1-yl)-4-(pentylamino)-[1,1'-biphenyl]-3,3'-dicarboxamide 18. Yield: 40%. mp: 600 

150-151 °C. 1H NMR (500 MHz, CDCl3) δ: 7.99 (t, J = 2.0 Hz, 1H), 7.66 (t, J = 8.0, 2.0 Hz, 1H), 601 

7.53 (dd, J = 8.0, 2.0 Hz, 1H), 7.49–7.46 (m, 2H), 7.30 (s br, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5,75 (s 602 

br, 1H), 3.18-3.15 (m, 2H), 2.16–2.10 (m, 9H), 1.79–1.65 (m, 8H), 1.44–1.34 (m, 4H), 0.94 (t, J = 603 

7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.27, 169.25, 149.06, 141.53, 133.79, 130.86, 129.71, 604 

128.98, 126.05, 125.88, 125.34, 124.61, 117.50, 111.89, 52.42, 43.21, 41.69, 36.38, 29.50, 29.40, 605 

28.90, 22.48, 14.02.  ESI-MS m/z 482 [M+Na]+. 606 

Methyl 3'-((adamantan-1-yl)carbamoyl)-4'-(pentylamino)-[1,1'-biphenyl]-4-carboxylate 19. 607 

Yield: 58%. mp: 155-156°C. 1H NMR (500 MHz, CDCl3) δ: 8.19 (t, J = 1.5 Hz 1H), 7.93 (dt, , J  = 608 

7.5 1.5 Hz, 1H), 7.69 (dt, J  = 7.5, 1.5 Hz, 1H), 7.53 (dd, , J  = 9.0, 4.0 Hz, 1H), 7.49-7.40 (s br, 1H), 609 

7.48 (d, J = 4.0 Hz 1H), 7.30 (t, J = 4.0 Hz 1H), 6.74 (d, J = 9.0 Hz 1H), 5.75 (s br, 1H), 3.95 (s, 3H), 610 

3.16 (q, J  = 5.5 Hz, 2H), 2.16–2.11 (m, 9H), 1.74–1.67 (m, 8H), 1.43–1.35 (m, 4H), 0.93 (t, J = 7.0 611 

Hz 3H). 13C-NMR (126 MHz, CDCl3) δ: 169.29, 167.22, 149.01, 141.13, 130.86, 130.61, 130.56, 612 

128.78, 127.18, 126.12, 125.85, 117.47, 111.89, 109.99, 52.39, 52.17, 43.21, 41.70, 36.39, 29.51, 613 

29.40, 28.91, 22.48, 14.01.  ESI-MS: m/z 497 [M+Na]+. 614 

N-(adamantan-1-yl)-4'-methyl-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 20. Yield: 615 

33%. mp: 124-125 °C. 1H NMR (300 MHz, CDCl3) δ 7.48 (dd, J = 8.7, 2.3 Hz, 1H), 7.44 (d, J = 2.3 616 

Hz, 1H), 7.42 – 7.37 (m, 2H), 7.21 (d, J = 7.8 Hz, 2H), 6.72 (d, J = 8.7 Hz, 1H), 5.74 (s br, 1H), 3.15 617 

(q, J = 4.5 Hz, 2H), 2.38 (s, 3H), 2.15-2.08 (m, 9H), 1.76 – 1.66 (m, 8H), 1.42-1.38 (m, 4H), 0.92 (t, 618 

J = 7.2 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 169.43, 138.00, 135.94, 130.74, 129.44, 126.10, 619 

125.76, 52.28, 41.72, 36.39, 29.50, 29.41, 28.92, 22.49, 21.02, 14.03. ESI-MS m/z 453 [M+Na]+. 620 



N-(adamantan-1-yl)-3'-methyl-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 21. Yield: 621 

35%. mp: 109-110°C. 1H NMR (300 MHz, CDCl3) δ 7.49 (dd, J = 8.7, 2.1 Hz, 1H), 7.44 (d, J = 2.1 622 

Hz, 1H), 7.30 (d, J = 5.0 Hz, 3H), 7.10 (t, J = 5.0 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 5.75 (s br, 1H), 623 

3.16 (q, J = 4.5 Hz, 2H), 2.41 (s, 3H), 2.17-2.07 (m, 9H), 1.75 – 1.66 (m, 8H), 1.43 – 1.35 (m, 4H), 624 

0.92 (t, J = 7.0 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 169.42, 140.85, 138.34, 130.93, 128.66, 625 

127.03, 125.93, 123.38, 52.31, 41.72, 36.39, 29.68, 29.50, 29.41, 28.91, 22.49, 21.56, 14.02. ESI-MS 626 

m/z 453 [M+Na]+. 627 

Synthesis Methyl 4-amino-[1,1'-biphenyl]-3-carboxylate 22. The commercial available methyl 628 

2-aminobenzoate (1.00g, 4.4 mmol) and the phenylboronic acid (6.5 mmol 0,80g) were suspended in 629 

a solution of dioxane (24.0 mL) and K2CO3 2M (6.0 ml). N2  was bubbled in the solution, for 10 630 

minutes. Then, Pd(PPh3)4 (0.50g, 0.44 mmol) is added and the solution was heated at reflux for about 631 

2 hours.  The solvent was removed under reduced pressure and the resulting residue was purified by 632 

a flash column chromatography (eluent: n-hexane/ ethyl acetate 9.5/0.5 to 9/1) obtaining compound 633 

22.  Yield: 50%. 1H NMR (300 MHz, CDCl3) δ: 8.12 (s, 1H), 7.56–7.53 (m, 3H), 7.40 (t, J = 9.0 Hz, 634 

2H), 7.29 (d, J = 7.51 Hz, 1H), 6.75 (d, J = 6.0 Hz, 1H), 5.78 (sbr, 2H), 3.90 (s, 3H). ESI-MS m/z: 635 

250 [M+Na]+. 636 

 Synthesis of methyl 4-(pentylamino)-[1,1'-biphenyl]-3-carboxylate 23. In a reaction flask 637 

which was dried under argon, the intermediate 22 (0.40 g, 1.8 mmol) was suspended in anhydrous 638 

THF (20 ml). Pentanal (0.6 mL, 5.4 mmol) was added and the mixture was left under magnetic stirring 639 

for 3 hour at room temperature. The NaBH(OAc)3 (0.76 g, 3.6 mmol) was added at 0 °C to the mixture 640 

and the solution was left under magnetic stirring overnight at room temperature.  After the addition 641 

of methanol (10.0 ml) the solvent was removed under reduced pressure. The resulting residue was 642 

purified by flash gradient column chromatography (eluent: n-hexane/ ethyl acetate: 9.5/0.5 to 9 /1) to 643 

obtain compound 23. Yield: 79%. 1H NMR (500 MHz, CDCl3) δ: 8.19 (d, J = 2.0 Hz, 1H), 7.76 (s 644 

br, 1H), 7.63 (dd, J  = 8.0, 2.0 Hz, 1H), 7.56 (dd, J= 8.0, 2.0 Hz , 2H), 7.41 (t, J = 8.0 Hz, 2H), 7.27 645 



(t, J = 8.0 Hz 1H), 6.76 (d, J = 8.0 Hz, 1H), 3.89 (s, 3H), 3.23 (q, J = 6.5 Hz, 2H), 1.72 (quint, J = 6.5 646 

Hz, 2H), 1.47–1.39 (m, 4H), 0.95 (t, J = 7.0 Hz, 3H). ESI-MS: m/z 280 [M+Na]+. 647 

4-(pentylamino)-[1,1'-biphenyl]-3-carboxylic acid 24. Intermediate 23 (0.23 g, 0.8 mmol) is 648 

dissolved in a 1:1 solution of NaOH (2N) (6.3 mL) and EtOH absolute (6.3 mL). The reaction mixture 649 

is left under magnetic stirring at room temperature for 4 hours. The solution is then acidified with 650 

HCl (3N) until a precipitate is formed (pH = 4/5). The product is recovered by filtration, washing 651 

with water at pH = 4/5 and dried under vacuum obtaining the corresponding carboxylic acid 24. Yield: 652 

43%. 1H NMR (300 MHz, CDCl3) δ:  8.21 (d, J = 2.0 Hz, 1H), 7.63 (dd, J  = 7.5, 2.0 Hz, 1H), 7.57-653 

7.51 (m, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.28, 7.20 (m, 2H), 6.6 (d, J = 7.5 Hz, 1H), 3.21 (t, J = 7.0 Hz, 654 

2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.45–1.29 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H). ESI-MS: m/z 282 [M-655 

H]-. 656 

N-cyclohexyl-4-(pentylamino)-[1,1'-biphenyl]-3-carboxamide 25. Intermediate 24 (0.03 g, 0.11 657 

mmol) was placed in a reaction flask, previously dried under argon, and dissolved in anhydrous DMF 658 

(0.5 mL). DIPEA (0.06 mL) is added at 0 °C, and the mixture is left under magnetic stirring at 0 °C 659 

for 10 minutes in argon current. HBTU (0.062 g, 0.165 mmol) is added to the solution and the mixture 660 

is left at room temperature for 2 hours. Cyclohexylamine (0.033 g, 0.33 mmol) is added to the 661 

solution. The system is left under magnetic stirring overnight at room temperature and the solvent 662 

was removed under reduced pressure. The resulting crude was purified by flash gradient column 663 

chromatography (n-hexane/ ethyl acetate: 9.5/0.5 to 9/1) obtaining the final compound 25 Yield: 74%. 664 

mp: 113-114°C.  1H NMR (500 MHz, CDCl3) δ: 7.55–7.50  (m, 4H), 7.45–7.40 (m, 2H), 7.30–7.25 665 

(m, 1H), 6.80 (d, J = 7.5 Hz, 1H), 6.01  (s br, 1H), 3.99–3.90 (m, 1H),  3.18 (t, J = 7.0 Hz,  2H), 2.05-666 

2.02 (m, 2H), 1.78–1.65 (m, 6H), 1.43–1.37 (m, 4H), 1.28–1.18 (m, 4H), 0.92 (t, J = 7.0 Hz 3H). 13C-667 

NMR (126 MHz, CDCl3) δ: 168.86, 140.71, 131.29, 129.55, 128.77, 126.37, 126.26, 125.77, 120.42, 668 

115.32, 48.49, 43.69, 33.25, 29.38, 28.79, 25.57, 24.97, 22.47, 13.99. ESI-MS: m/z 387 [M+Na]+. 669 

Biological Evaluation. Materials. Cell culture reagents were purchased from Celbio s.r.l. (Milano, 670 

Italy) and culturePlate 96/wells plates from PerkinElmer Life Science; GW405833 and (R)-(þ)-WIN 671 



55,212-2 were purchased from TOCRIS (Milan, Italy) and Multiscreen HTS filter plates from Merck 672 

Millipore (Ireland). OptiPhase Supermix and [3H] -CP55940 were purchased from PerkinElmer Life 673 

Science. 674 

Cell cultures. CB2R-HEK293 and CB1R-HEK293 cells were grown in DMEM high glucose 675 

supplemented with 10% fetal bovine serum, 2 mM glutamine,100 U/mL penicillin,100 mg/mL 676 

streptomycin, 0.1 mg/mL G418, in a humidified incubator at 37 °C with a 5% CO2 atmosphere. 677 

Human monocyte THP-1 cells, obtained from ATCC (Manassas, VA) were seeded at 1 x 105 cells/ml 678 

for 48 h. To differentiate cells into macrophages, 0.01 µM PMA was added for 48 h. By microscope 679 

analysis, in these conditions 98% cells became adherent. To stimulate THP-1 monocytes and adherent 680 

cells, 10 µg/ml of LPS was added for 24 h, as reported in Dreskin, 2001. Cells were cultured in RPMI-681 

1640 medium supplemented with 10% fetal bovine serum, 2 mM glutamine,100 U/mL penicillin,100 682 

mg/mL streptomycin, in a humidified incubator at 37 °C with a 5% CO2 atmosphere.84 683 

Radioligand binding assay. Membrane preparations for CB1R and CB2R receptors assays. 684 

CB1R-HEK293 cells membranes were prepared by scratching the cells off the previously frozen cell 685 

culture dishes in Phosphate Buffered Saline (PBS, pH 7.4). The cell suspension was centrifuged at 686 

800xg for 15 min and the pellet resuspended and homogenized on ice for 1 min by a dounce 687 

homogenizer, and subsequently spun down for 5 min at 4 °C and 500 g. The supernatant was 688 

centrifuged for 20 min at 25,000 g and the obtained membrane pellets resuspended in buffer A (10 689 

mM NaHCO3, 10 mM EGTA, 10 mM EDTA, 1X protease inhibitors cocktail, pH = 7.4), centrifuged 690 

for 20 min at 25,000 g and the pellet resuspended in the required amount of 25 mM Tris-HCl buffer, 691 

5 mM MgCl2, 1 mM EDTA, pH 7.4. Aliquots of the membrane preparation were stored at -80°C until 692 

being used.29 693 

CB2R-HEK293 cells membranes were prepared by scratching the cells off the previously frozen 694 

cell culture dishes in ice-cold hypotonic buffer (5 mM Tris-HCl, 2 mM EDTA, pH 7.4). The cell 695 

suspension, firstly homogenized on ice for 1 min by an Ultra-Turrax (T25basic, 696 

IKALABORTECHNIK, Higashiosaka, Japan), was further homogenized for 1 min with a dounce 697 



homogenizer, and subsequently spun down for 10 min at 4 °C and 1000 g. The supernatant centrifuged 698 

for 60 min at 48,000 and the obtained pellets resuspended and homogenized in the required amount 699 

of 50 mM Tris-HCl buffer, pH 7.4. Aliquots of the membrane preparation were stored at -80 °C until 700 

use.29 701 

CB2R and CB1R Radioligand competition binding assays. Competition binding assays were 702 

performed as reported in Spinelli et al.29 CB2R-HEK293 membranes (50 g protein/well) were used 703 

as human CB2R  receptor source and the CB agonist [3H](-)-cis-3-[2-hydroxy-4-(1,1-704 

dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940), (PerkinElmer Italia 705 

SPA, Milano, Italy) as radioligand. After addition of 25 L of the test compounds at different 706 

concentrations (10-12-10-5M), 25 L of [3H]CP55,940 solution in assay buffer (at final concentration 707 

of 0.2 nM), and 100 L of membrane preparation to 100 L of assay buffer (50Mm Tris, 2,5mM 708 

EGTA, 5mM MgCl2, 0.1% fatty acid fere bovine serum albumine BSA, pH 7.4), the suspension was 709 

incubated for 90 min at 30 °C. Total binding was determined without the test compounds. Nonspecific 710 

binding was determined in the presence of 10 M GW405833, CB2R reference compound. The 711 

incubation was stopped by rapid filtration through a GF/C glass fibre filter (Merck Millipore, Ireland) 712 

presoaked for 30 min with 0.05% aq. Polyethyleneimine solution, using a 96-channel cell harvester 713 

(Merck Millipore, Ireland). The filter was washed three times with 100 L ice-cold washing buffer 714 

(50 mM Tris, 2,5 mM EGTA, 5 mM MgCl2, 1% BSA, pH 7.4),) and then dried for 1.5 h at 50 °C. 715 

Radioactivity on the filter was determined in a MicroBeta JET counter (Perkin- Elmer, Boston, MA, 716 

USA) after 6 h of preincubation with 100 l of scintillation cocktail (OptiPhase superMix, Perkin- 717 

Elmer). Data were obtained in three independent experiments, performed in triplicates. Data were 718 

analyzed using GraphPad Prism Version 7 (San Diego, CA, USA). For the calculation of Ki values, 719 

the Cheng-Prusoff equation and a Kd value of 1.5 nM ([3H]CP55,940 at CB2) were used. 720 

Cannabinoid CB1R  receptor competition binding experiments were carried out in a polypropilene 721 

well 20 µg of membranes from HEK 293-hCB1 cell line, 0.8 nM [3H]-CP55940 (164.9 Ci/mmol, 1 722 



mCi/mL, Perkin Elmer NET1051250UC) and studied and standard compounds were incubated. Non-723 

specific binding was determined in the presence of Surinabant 10 µM. The reaction mixture was 724 

incubated at 30 °C for 60 min, 200 µL were trasnfered to GF/C 96-well plate (Millipore, Madrid, 725 

Spain) pretreated with binding buffer (Tris-HCl 50 mM, EDTA 1 mM, MgCl2 5 mM, BSA 0.5%, pH 726 

¼ 7.4), after was filtered and washed four times with 250 µL wash buffer (Tris-HCl 50 mM, EDTA 727 

1 mM, MgCl2 5 mM, BSA 0.5%, pH ¼ 7.4), before measuring in a microplate beta scintillation 728 

counter (Microbeta Trilux, PerkinElmer, Madrid, Spain). Data were obtained in three independent 729 

experiments, performed in triplicates. 730 

Functional Activity at CB2R In Vitro. Gi-coupled cAMP modulation was measured following 731 

the manufacturer’s protocol (Eurofins, Fremont, CA) as previously reported.85 Briefly, CHO-K1 cells 732 

overexpressing the human CB2R were plated into a 96-well plate (30 000 cells/well) and incubated 733 

overnight at 37 °C, 5% CO2. Media was aspirated and replaced with 30 μL of assay buffer. Cells were 734 

incubated for 30 min at 37 °C with 15 μL of 3× dose−response solutions of samples prepared in the 735 

presence of a cell assay buffer containing 3× of 25 μM NKH-477 solution to stimulate adenylate 736 

cyclase and enhance basal cAMP levels. For those compounds showing an increase of cAMP levels, 737 

we further investigated their effect upon receptor activation by testing compounds in the presence of 738 

the JWH-133 selective agonist. Cells were pre-incubated with samples (15 min at 37 °C at 6× the 739 

final desired concentration) followed by 30 min incubation with the JWH-133 agonist challenge at 740 

the EC80 concentration (EC80 = 4 μM, previously determined in separate experiments) in the 741 

presence of NKH-477 to stimulate adenylate cyclase and enhance cAMP levels. For all protocols, 742 

following stimulation, cell lysis and cAMP detection were performed as per the manufacturer’s 743 

protocol. Luminescence measurements were performed using a GloMax Multi Detection System 744 

(Promega, Italy). Data are reported as means ± SEM of three independent experiments conducted in 745 

triplicate and were normalized considering the NKH-477 stimulus alone as 100% of the response. 746 

Data were analyzed using PRISM.9.3 software (GraphPad Software Inc, San Diego, CA).85 747 



Anti-inflammatory and pro-inflammatory cytochine detection. The amount of cytokines was 748 

measured in 5 µL of supernatants, derived from 1 x 104 cells, using the ProQuantum immunoassays 749 

kits fro TNF-α, IFN-γ, IL-1β, IL-6, IL-10, IL-4, IL-17A (ThermoFisher Scientific, Waltham, 750 

MA), according to the manufacturer’s instructions. The results were expressed as pg/ml based 751 

on the titration curved of each kits.  752 

Molecular docking simulations. Compounds 4 and 10a were docked on the recently published x-753 

ray structures of CB2R in complex with the antagonist AM10257 (PDB code: 5ZTY - resolution: 754 

2.80 Å)71 and the agonist AM12033 (PDB code: 6KPC - resolution: 3.20 Å).4 The retrieved .pdb files 755 

were pre-treated using the Protein Preparation Wizard (PPW) tool available from the Schrödinger 756 

suite.86 Such a tool allows adding missing hydrogen atoms, reconstructing incomplete side chains, 757 

assigning the ionization states at physiological pH, setting the orientation of any misoriented groups, 758 

removing water molecules, and optimizing the hydrogen bond network. Finally, using the OPLS4 759 

force field,87 a restrained minimization was performed. In both cases, a cubic grid was generated on 760 

the centroid of the cognate ligand. In doing that, we obtained an inner box of 10 Å × 10 Å × 10 Å 761 

irrespective of the considered protein structure, and an outer box of 25 Å × 25 Å × 25 Å (26 Å × 26 762 

Å × 26 Å) in 5ZTY (6KPC). Both the ligands, 4 and 10a, were subjected to LigPrep88a tool available 763 

from the Schrodinger Suite 2021-4, to build the 3D structures retaining the correct chirality specified 764 

in each SMILE string, desalt and generate all the tautomers and ionization states at a pH value of 7.0 765 

± 2.0. All docking simulations were performed using the default force field OPLS_200589 and the 766 

extra precision docking (XP) protocol with an expanded sampling, keeping the protein fixed and 767 

allowing conformational flexibility for the ligands. Importantly, such a protocol was validated by 768 

redocking the cognate ligands (RMSD = 0.55 Å for AM10257; RMSD = 0.71 Å for AM12033). 769 

MM-GBSA calculations. Following a protocol published elsewhere,90 we applied the molecular 770 

mechanics/generalized Born surface area approach (MM-GBSA);91 to the obtained top-scored 771 

docking poses to compute the binding free energies (ΔG) between protein and ligands. During this 772 



calculation, flexibility was allowed for all residues having at least one atom within a distance of 5 Å 773 

from the ligand.  774 
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ABBREVIATIONS 848 

CB2R, cannabinoid receptor type 2; CB1R, cannabinoid receptor type 1; ECS, endocannabinoid 849 

system; CNS, central nervous system; Ki, inhibitor constant; TRPV-1, receptor potential vanilloid 850 

type 1; GPR, G protein-coupled receptor; Δ9-THC, Δ9-tetrahydrocannabinol; COVID-19, 851 

Coronavirus disease 2019; LPS, lipopolysaccharide; DIPEA, N,N-diisopropylethylamine; DMF, 852 

dimethylformamide; HBTU, 3-[Bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide 853 

hexafluorophosphate; THF, tetrahydrofuran; DCM, dichloromethane; Rt, room temperature; cAMP, 854 

cyclic adenosine monophosphate; nM, nanomolar; μM, micromolar; PDB, code protein data bank; 855 

MM-GBSA, Molecular mechanics with generalised Born and surface area solvation; NKH-477, 856 

colforsin dapropate hydrochloride; EC50, maximal effective concentration; NAFLD, non-alcoholic 857 

fatty liver disease; TNF-α, tumor necrosis factor α, IFN-γ, interferon gamma; IL1-β ,interleukin 1 858 

beta; IL-6, interleukin 6; IL-4, interleukin 4; IL-10, interleukin 10; LPS, lipopolysaccharides; THP-859 

1, human monocytic cell line derived from an acute monocytic leukemia patient; ELISA, enzyme-860 

linked immunosorbent assay; qRT-PCR, real-time polymerase chain reaction; SEM, standard error 861 

of mean; ANOVA, analysis of variance; TLC, thin layer chromatography, DMSO-d6 ,  deuterated 862 

dimethyl sulfoxide; CDCl3, deuterated chloroform; MHz, megahertz; Hz, hertz; Ppm, parts per 863 

million; HPLC, high performance liquid chromatography; DAD, diode-array detector; NMR, nuclear 864 

magnetic resonance; J, coupling constant; mmol, millimole; µL, microliter; PBS, phosphate buffered 865 

saline; DMEM, Dulbecco's modified eagle medium; PMA, phorbol 12-myristate 13-acetate; EDTA, 866 

ethylenediaminetetraacetic acid; BSA, bovine serum albumin; PPW, protein preparation wizard; 867 



SMILE, simplified molecular input line entry specification; RMSD, root-mean-square deviation of 868 

atomic positions. 869 
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