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Abstract

In the present contribution, we construct a virtual element (VE) discretization for the problem of miscible displacement of
ne incompressible fluid by another, described by a time-dependent coupled system of nonlinear partial differential equations.
ur work represents a first study to investigate the premises of virtual element methods (VEM) for complex fluid flow problems.
e combine the VEM discretization with a time stepping scheme and develop a complete theoretical analysis of the method

nder the assumption of a regular solution. The scheme is then tested both on a regular and on a more realistic test case.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Virtual element methods; Miscible fluid flow; Porous media; Polygonal meshes

1. Introduction

The virtual element method (VEM) was introduced in [1,2] (see also [3]) as a generalization of the finite element
ethod (FEM) that allows to use general polygonal and polyhedral meshes. Since its recent birth in 2013, VEM

njoyed a rapid growth in the mathematics and engineering communities. Among the large number of papers in the
iterature, we here cite only [4–16] as representatives, see also the references therein.

In the realm of diffusion problems, virtual elements have been developed for linear model diffusion–convection–
eaction equations in primal and mixed forms [1,3,17–21], see also [22,23]. It was soon recognized that the flexibility
f VEM in terms of meshing could lead to appealing advantages in the presence of complex geometries, such as for
iscrete fracture network simulation [24–26] and, more in general, in the presence of fractures in porous 3D media
27,28]. Nevertheless, although in other frameworks (such as solid mechanics) VEM have indeed proven themselves
lso on tough nonlinear problems, to the best knowledge of the authors, virtual elements have never been developed
nd tested for more complex diffusion models. Since VEM have indeed been hardly tested (with very promising
utcomes) on linear diffusion problems with complex geometries, as often encountered in geophysical flows,
eveloping a VEM also for more complex (and realistic) flow models becomes a key step towards a competitive
ethodology for applications.
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In the present contribution, we consider the miscible displacement of one incompressible fluid by another in a
eservoir, described by a time-dependent coupled system of nonlinear partial differential equations, that is a basic
but meaningful) model instrumental to applications such as oil recovery and environmental pollution [29–35]. One
ust note that, on this and similar models, there already exists a large literature with many competitive schemes,

dopting for instance finite elements [31,36–38], discontinuous Galerkin methods [39–44], and finite volumes
32,45,46] and also other more recent polytopal technologies [47–49]. The aim of the present paper is to make

first study on the premises of VEM in this framework (by proposing a numerical scheme, giving a theoretical
ackbone to it, and finally testing it numerically). Incompressible miscible displacements in porous media arising
rom geophysical real-life problem may pose severe constraints to the creation of the computational grids, since their
eometry may give rise to distorted and badly shaped grid elements. We believe that the VEM is suited for such kind
f mesh complexity. Indeed, it can handle arbitrary shaped polygons, it is robust with respect to the mesh features
nd to element distortion. Moreover the proposed VEM discretization produces conforming velocity/concentration
olutions, that is an important difference with respect to other competitive polytopal technologies, such as for
nstance the discontinuous Galerkin methods.

From the mathematical viewpoint, the above model yields a nonlinear time-dependent coupled problem for
oncentration, velocity and pressure, also with potential issues of stability (at the discrete level) due to possible
onvection-dominated regimes. We propose a continuous (H 1 conforming) approximation for the concentration

variable, thus leading to nodal virtual elements [1,17], and an H (div) conforming approximation of the Darcy
velocity, thus leading to face virtual elements [18,50]. For the pressure, we adopt a standard piecewise discontinuous
polynomial space. Due to the presence of the non-linear coefficients coupling the two set of equations, we make
use of projection operators to approximate such terms and of stabilization factors that are suitably chosen. We
combine the VEM discretization in space with a simple discretization procedure in time, that is a backward Euler
approximation that is explicit in the coefficient terms. As a consequence, the system to be solved at each time step is
linear and decoupled, leading to a cheap procedure. Extending the proposed scheme to different time discretization
procedures would be, on the basis of the work presented here, quite trivial.

After proposing the method, we develop an error analysis under the assumption of a regular solution. Although
such regularity conditions are unrealistic in most cases of interest, we believe that the derived results are still critical
in order to give a theoretical backbone to the method. They serve the purpose of showing that the method indeed
delivers a solution with the potential to yield the correct approximation order whenever this is feasible (given the
approximability of the target solution by the discrete space). No time step size condition is needed in the analysis.
Finally, we test the proposed scheme in three different ways. We firstly consider a problem with known regular
solution inspired from [51], in order to validate the convergence properties of the method also in practice and to
test some other practical aspect such as the possibility of having different time step sizes for the two different
equations. In the second test, we show the potential of the “local refinement” that one can achieve with VEM, in
particular, we assess the robustness of the VEM technology in presence of meshes with many hanging nodes and
edges with different size. Then, we consider a more realistic test, taken from [52], in order to have a qualitative
comparison with the expected benchmark solution from the literature. In this third test, there is also the risk of
overshoots and undershoots in the discrete solution due to strong convection. We here deal with this aspect by
introducing in our scheme a modification borrowed from [53], that is recognized in [54] to be one of the best
choices in practice. From the present first theoretical and numerical studies, we believe the VEM is promising and
has the possibility to become, after further developments, a competitive scheme for complex flow problems.

The structure of the paper is the following: In Section 2, we introduce the continuous problem, in strong and
weak forms. In Section 3, we describe the proposed virtual element discretization, in space and time. In Section 4,
we develop the theoretical convergence analysis of the scheme. In Section 5, we show the numerical results. Finally,
in the Appendix, we briefly describe the extension of the method to the three-dimensional case.

2. Problem description

We consider the miscible displacement of one incompressible fluid by another in a porous medium. This problem
can be formulated in terms of a system of partial differential equations, where a parabolic diffusion–convection–
reaction type equation is nonlinearly coupled with an elliptic system, see also [30–33].

We need to introduce some notation and conventions to be adopted throughout the paper. We denote by N
and N the sets of all natural numbers without and including zero, respectively. Moreover, we employ the standard
0
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otation for Sobolev spaces, norms, and seminorms. More precisely, for a given bounded Lipschitz domain D ⊂ R2,
∈ N ∪ {∞}, and p ∈ N, we define by W k,p(D) the space of all L p integrable functions over D whose weak

derivatives up to order k are again L p integrable. Sobolev spaces with fractional order can be defined for instance
via interpolation theory [55]. For p = 2, we write H k(D) := W k,2(D), and we use (·, ·)k,D , | · |k,D , and ∥ · ∥k,D , to

enote the corresponding inner product, seminorm, and norm, respectively. The standard L2 inner product over D
s written as (·, ·)0,D with corresponding norm ∥ · ∥0,Ω . Further, Pk(D) is the space of polynomials up to order k,
nd [Pk(D)]2 the corresponding vector valued space. Additionally, | · | is the standard Euclidean norm for scalars
nd vectors. Finally, throughout the paper, η denotes a generic constant, possibly varying from one occurrence to
he other, but independent of the mesh size and, apart from Theorem 2, also independent of the variables.

.1. Continuous problem

Let Ω ⊂ R2 be a polygonal bounded, convex domain, describing a reservoir of unit thickness. Given a time
nterval J := [0, T ], for T > 0, we are interested in finding u = u(x, t), representing the Darcy velocity (volume
f fluid flowing cross a unit across-section per unit time), the pressure p = p(x, t) in the fluid mixture (that we
ssume having zero mean value), and the concentration c = c(x, t) of one of the fluids (amount of the fluid per
nit volume in the fluid mixture), with (x, t) ∈ ΩT := Ω × J , such that⎧⎪⎪⎨⎪⎪⎩

φ
∂c
∂t

+ u · ∇c − div(D(u)∇c) = q+(̂c − c)

div u = G

u = −a(c)(∇ p − γ (c)),

(1)

here φ = φ(x) is the porosity of the medium, q+
= q+(x, t) and q−

= q−(x, t) are the (non negative) injection
nd production source terms, respectively, ĉ = ĉ(x, t) is the concentration of the injected fluid, and

G := q+
− q−. (2)

oreover, D(u) ∈ R2×2 is the diffusion tensor given by

D(u) := φ
[
dm I + |u|(dℓE(u) + dt E⊥(u))

]
, (3)

ith matrices

E(u) :=

(
ui u j

|u|
2

)
i, j=1,2

=
uuT

|u|
2 , E⊥(u) := I − E(u),

and molecular diffusion coefficient dm , longitudinal dispersion coefficient dℓ, and transversal dispersion coefficient
dt . Further, γ (c) in (1) describes the force density due to gravity (typically written as γ (c) = γ0(c)ρ with γ0(c)

eing the density of the fluid and ρ the gravitational acceleration vector), and a(c) = a(c, x) is the scalar valued
unction given by

a(c) :=
k
µ(c)

,

where k = k(x) represents the permeability of the porous rock, and µ(c) is the viscosity of the fluid mixture, which
can be modeled by

µ(c) = µ(0)
(

1 +

(
M

1
4 − 1

)
c
)−4

, in [0, 1],

with mobility ratio M :=
µ(0)
µ(1) . Note that µ can be set to µ(0) for c < 0, and to µ(1) for c > 1. We also highlight that,

in the literature, k is sometimes assumed to be a tensor. The following analysis can be straightforwardly generalized
to that case.

Assuming impermeability of ∂Ω , the system (1) is closed by requiring no-flow boundary conditions of the form

{
u · n = 0 on ∂Ω × J

D(u)∇c · n = 0 on ∂Ω × J,
(4)
3
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nd initial condition

c(x, 0) = c0(x) in Ω , (5)

here 0 ≤ c0(x) ≤ 1 is an initial concentration.
By use of the divergence theorem, the boundary conditions (4) directly imply the following compatibility

ondition for q+ and q−:∫
Ω

q+(x, t) dx =

∫
Ω

q−(x, t) dx,

or every t ∈ J .
We highlight that, in the forthcoming theoretical analysis, we will always assume sufficient regularity of the

xact solution and the involved functions, such as q+, q−, ĉ, et cetera, as better motivated in the corresponding
ection. Moreover, we will make use of the following assumptions.

First of all, we suppose that the functions a and φ are positive and uniformly bounded from below and above,
.e. there exist positive constants a∗, a∗, φ∗, and φ∗, such that

a∗ ≤ a(z, x) ≤ a∗, φ∗ ≤ φ(x) ≤ φ∗, (6)

or all x ∈ Ω and z = z(t). For the sake of readability, we define

A(z)(x) := a−1(z, x).

dditionally, we will make use of the following relation of the diffusion and dispersion coefficients, which was
bserved in laboratory experiments:

0 < dm ≤ dt ≤ dℓ. (7)

Finally, we recall that the source terms q+ and q− are, as usual, assumed to be non-negative functions.
Existence of weak solutions to this model problem was shown in [56] for γ (c) = 0. An extension of this result

o 3D spatial domains, including the presence of γ (c) and various boundary conditions was discussed in [57].

.2. Weak formulation of the continuous problem

Here, we fix the basic notation and the functional setting.
To this purpose, given Ω as above, we first introduce the Sobolev space

H (div;Ω ) := {v ∈ [L2(Ω )]2
: div v ∈ L2(Ω )}.

hen, we define the velocity space V , the pressure space Q, and the concentration space Z by

V := {v ∈ H (div;Ω ) : v · n = 0 on ∂Ω}

Q := L2
0(Ω ) := {ϕ ∈ L2(Ω ) : (ϕ, 1)0,Ω = 0}

Z := H 1(Ω ),

(8)

espectively. These spaces are endowed, respectively, with the following norms:

∥u∥
2
V := ∥u∥

2
0,Ω + ∥ div u∥

2
0,Ω , ∥q∥

2
Q := ∥q∥

2
0,Ω , ∥z∥2

Z := ∥z∥2
1,Ω := ∥∇z∥2

0,Ω + ∥z∥2
0,Ω .

Note that div V = Q.
As usual in the framework of parabolic problems, we use the notation

u(t)(x) := u(x, t), p(t)(x) := p(x, t), c(t)(x) := c(x, t). (9)

or 0 ≤ a ≤ b, we further introduce

∥v∥L2(a,b;V ) :=

(∫ b

a
∥v(t)∥2

V dx
) 1

2

, ∥v∥L∞(a,b;V ) := ess sup
t∈[a,b]

∥v(t)∥V ;

nalogously for p and c.
4



L. Beirão da Veiga, A. Pichler and G. Vacca Computer Methods in Applied Mechanics and Engineering 375 (2021) 113649

f

N

T

w
a
b
w

i

f

F

W

c

Having this, the continuous problem reads as follows: find c ∈ L2(0, T ; Z )∩C0([0, T ]; L2(Ω )), u ∈ L2(0, T ; V ),
and p ∈ L2(0, T ; Q), such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

M
(
∂c(t)
∂t

, z
)

+ (u(t) · ∇c(t), z)0,Ω + D(u(t); c(t), z) =
(
q+ (̂c − c)(t), z

)
0,Ω

A(c(t); u(t), v) + B(v, p(t)) = (γ (c(t)), v)0,Ω

B(u(t), q) = − (G(t), q)0,Ω

(10)

or all v ∈ V , q ∈ Q, and z ∈ Z , for almost all t ∈ J and with initial condition c(0) = c0, where

M(c, z) := (φ c, z)0,Ω , D(u; c, z) := (D(u)∇c,∇z)0,Ω , (11)

A(c; u, v) := (A(c)u, v)0,Ω , B(v, q) := − (div v, q)0,Ω .

ote that c ∈ L2(0, T ; Z ) ∩ C0([0, T ]; L2(Ω )) implies ∂c
∂t ∈ L2(0, T ; Z ′), see e.g. [58, Thm. 11.1.1].

For the sake of readability, we suppressed (t) in (11). From now on, we will use the convention that by writing
u, we mean in fact u(t); similarly for the other functions depending on space and time. In general it will be clear
from the context whether u represents u(t) for a fixed t ∈ J , i.e. as a function of space only, or for varying x and
t , as a function of both space and time.

Moreover, we will use the following alternative form for the concentration equation:

M
(
∂c
∂t
, z
)

+ Θ(u, c; z) + D(u; c, z) =
(
q+ ĉ, z

)
0,Ω , (12)

where

Θ(u, c; z) :=
1
2

[
(u · ∇c, z)0,Ω + ((q+

+ q−) c, z)0,Ω − (u, c ∇z)0,Ω

]
.

his version is obtained from the original one in (10) by rewriting the convective term as

(u · ∇c, z)0,Ω =
1
2

[
(u · ∇c, z)0,Ω − (G, c z)0,Ω − (u, c ∇z)0,Ω

]
,

here we first integrated by parts, then employed the fact that ∇·u = G, together with the definition of G in (2), and
fterwards combined this term with (q+ c, z)0,Ω from the right hand side of (10). This representation was inspired
y the theory of VEM for general elliptic problems [6] and helps to ensure that properties of the continuous bilinear
ill be preserved after discretization.
In the rest of this section, we summarize some properties of the forms M(·, ·), A(·, ·, ·) and D(·; ·, ·), all defined

n (11), which will be needed later on.
To start with, for M(·, ·), it directly holds with the Cauchy–Schwarz inequality and (6)

M(c, z) ≤ φ∗
∥c∥0,Ω∥z∥0,Ω , M(z, z) ≥ φ∗∥z∥2

0,Ω ,

or all c, z ∈ Z .
Concerning A(·; ·, ·), again employing (6), for all c ∈ L∞(Ω ) and u, v ∈ [L2(Ω )]2, we have

A(c; u, v) ≤
1
a∗

∥u∥0,Ω∥v∥0,Ω .

urther, if c ∈ L2(Ω ), u ∈ [L∞(Ω )]2 and v ∈ [L2(Ω )]2, it holds true that

A(c; u, v) ≤ ∥A(c)∥0,Ω∥u∥∞,Ω∥v∥0,Ω .

e also have the coercivity bound

A(c; v, v) ≥
1
a∗

∥v∥2
0,Ω

for all c ∈ L∞(Ω ) and v ∈ [L2(Ω )]2, from which, after defining the kernel

K := {v ∈ V : B(v, q) = 0 ∀q ∈ Q}, (13)

oercivity of A(c; ·, ·) on K in the norm ∥ · ∥ follows.
V

5
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Regarding D(·; ·, ·), the following continuity properties can be shown. Firstly, for all u ∈ [L∞(Ω )]2 and
c, z ∈ H 1(Ω ), we have

D(u; c, z) ≤ φ∗
[
dm + ∥u∥∞,Ω (dℓ + dt )

]
∥∇c∥0,Ω∥∇z∥0,Ω , (14)

which follows directly from the Cauchy–Schwarz inequality, the definition of D(u) in (3), and the fact that
|E(u)v| ≤ |v| and |E⊥(u)v| ≤ |v| for all v ∈ R2. Moreover, for all u ∈ [L2(Ω )]2 and c, z ∈ H 1(Ω ) with
∇c ∈ L∞(Ω ), we have the bound

D(u; c, z) ≤ ∥D(u)∥0,Ω∥∇c∥∞,Ω∥∇z∥0,Ω ≤ ηD(1 + ∥u∥0,Ω )∥∇c∥∞,Ω∥∇z∥0,Ω , (15)

with matrix norm ∥D(u)∥0,Ω :=

(∑2
i, j=1 ∥Di, j (u)∥2

0,Ω

) 1
2 , and some positive constant ηD depending only on dm ,

ℓ, and dt . In addition, coercivity of D(u; ·, ·) for all u ∈ [L∞(Ω )]2, with respect to ∥ · ∥0,Ω , follows from

(D(u)µ,µ)0,Ω = (φ dm µ,µ)0,Ω + (φ |u| (dℓE(u) + dt E⊥(u))µ,µ)0,Ω

≥ φ∗ dm ∥µ∥
2
0,Ω + (φ |u|(dℓ − dt )E(u)µ,µ)0,Ω + (φ |u|dt µ,µ)0,Ω

≥ φ∗

(
dm ∥µ∥

2
0,Ω + dt ∥|u|

1
2µ∥

2
0,Ω

) (16)

for all µ ∈ [L2(Ω )]2, where we also employed (6) and (7).

3. The virtual element method

In this section, we derive a virtual element formulation for the model problem (10). To this purpose, we firstly
fix the concept of polygonal decompositions of Ω in Section 3.1, and then, we introduce a set of discrete spaces,
discrete bilinear forms, and projectors in Section 3.2. Having these ingredients, we state a semidiscrete formulation
which is continuous in time and discrete in space in Section 3.3. The fully discrete formulation is the subject of
Section 3.4.

3.1. Polygonal decompositions

Let Th be a discretization of Ω into polygons K . We denote by Eh the set of all edges of Th , and, for a given
element K ∈ Th , by EK the set of edges belonging to K . Furthermore, nK is the number of edges of K , hK is the
diameter of K , and h := maxK∈Th hK . For a given edge e ∈ Eh , we write he for its length. Having this, we make
the following assumptions on Th : there exists ρ0 > 0 such that, for all h > 0 and for all K ∈ Th ,

D1) K is star-shaped with respect to a ball of radius ρ ≥ ρ0hK ;
D2) he ≥ ρ0hK for all e ∈ EK .

Note that these two assumptions imply that the number of edges of each element is uniformly bounded. Additionally,
we will require quasi-uniformity:

D3) for all h > 0 and for all K ∈ Th , it holds hK ≥ ρ1h, for some positive uniform constant ρ1.

Given Th , we define, for all s > 0, the broken Sobolev spaces on Th as

H s(Th) := {v ∈ L2(Ω ) | v|K ∈ H s(K ) ∀K ∈ Th},

ogether with the corresponding broken seminorms and norms

|v|2s,Th
:=

∑
K∈Th

|v|2s,K , ∥v∥2
s,Th

:=

∑
K∈Th

∥v∥2
s,K . (17)

emark 3.1. Both assumptions (D1) and (D2) are standard in the virtual element literature. While condition (D1)
is quite critical in the following analysis, assumption (D2) could be possibly avoided by following steps similar
to [59–61], at the expense of making the proofs even more lengthy and technical. Finally, assumption (D3) (that
an be found also in many FEM papers on the same subject) is only needed to prove bound (62).
6
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.2. Discrete spaces and projectors

Here, we introduce the local discrete VE spaces corresponding to V , Q and Z in (8), a set of local projectors
mapping from these VE spaces into spaces made of polynomials, and finally, the related global counterparts.

3.2.1. Local discrete spaces
Let K ∈ Th and let k ∈ N0 be a given degree of accuracy. Then, the local velocity and pressure VE spaces are

defined by [18,62]

V h(K ) := {v ∈ H (div; K ) ∩ H (rot; K ) : v · n|e ∈ Pk(e) ∀e ∈ EK ,

div v ∈ Pk(K ), rot v ∈ Pk−1(K )}

Qh(K ) := {q ∈ L2(K ) : q ∈ Pk(K )}.

(18)

hese spaces are coupled with the preliminary local concentration space

Z̃h(K ) := {z ∈ H 1(K ) : z|∂K ∈ C0(∂K ), z|e ∈ Pk+1(e) ∀e ∈ EK , ∆z ∈ Pk−1(K )}. (19)

oreover, it is important to observe that [Pk(K )]2
⊂ V h(K ) and Pk+1(K ) ⊆ Z̃h(K ). Associated sets of local degrees

f freedom are given as follows:

• for V h(K ), a set of degrees of freedom {dofV h (K )
j }

dimV h (K )
j=1 is defined by

1.
1
|e|

∫
e
v · n pk ds ∀pk ∈ Pk(e) ∀e ∈ EK

2.
1

|K |
1
2

∫
K

(div v) pk dx ∀pk ∈ Pk(K )/R

3.
1

|K |

∫
K
v · x⊥ pk−1 dx ∀pk−1 ∈ Pk−1(K ),

(20)

with x⊥
:= (x2,−x1)T , where we assume the coordinates to be centered at the barycenter of the element;

• for Qh(K ), we consider {dofQh (K )
j }

dimQh (K )
j=1 with

1
|K |

∫
K

q pk dx ∀pk ∈ Pk(K ); (21)

• for Z̃h(K ), we take {dofZ̃h (K )
j }

dimZ̃h (K )
j=1 with

1. pointwise values at the vertices: z(v)

2. on each edge e ∈ EK , the values of z at the k internal Gauß–Lobatto points

3.
1

|K |

∫
K

z qk−1 dx ∀qk−1 ∈ Pk−1(K ).

(22)

In all three cases, unisolvency is provided. More precisely, for V h(K ), this was proven in e.g. [62], for Qh(K ) it
is immediate, and for Z̃h(K ), see e.g. [1].

Notice that the discrete velocities and the discrete concentrations (cf. (18) and (19) respectively) are not known
in closed form but are defined implicitly as the solutions of suitable PDEs inside the polygon. We recall that on a
simple polygon K both systems of differential equations are well posed (assuming the compatibility of the boundary
and the divergence data). We also highlight that V h(K ) endowed with (20) mimics the Raviart–Thomas element,
but in fact those two elements only coincide in the special case of triangles and k = 0. Analogously the lowest
order version of Z̃h(K ) coincides with the standard P1 (resp. Q1) on triangles (resp. quads).

Remark 3.2. We note that, for k = 0, one obtains the lowest order local VE spaces. More precisely, in this
case, the velocity space V h(K ) consists of all rotation-free vector fields with constant divergence and edgewise
constant normal traces, the pressure space Qh(K ) only contains the constant functions, and the concentration space
Z̃h(K ) is made of all harmonic functions that are linear on each edge. This motivates the choice of the present
polynomial degrees for the spaces. However, in general, it is also possible to choose a degree of accuracy k for
1

7
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V h(K ) and Qh(K ), and another strictly positive one k2 for Z̃h(K ); see e.g. [31] for FEM. The following analysis
an be extended easily to such more general case just by keeping track of the different polynomial degrees.

emark 3.3. In order to really have a set of degrees of freedom in the computer code, one clearly needs to choose
basis for the polynomial test spaces appearing in (20) and (22). We here assume to take the classical choice, that

s any monomial basis {m1,m2, . . . ,mℓ} of the polynomial space satisfying ∥mi∥L∞ ≃ 1, i = 1, 2, . . . , ℓ, where
he L∞ norm has to be taken over the corresponding edge or bulk.

.2.2. Local projections
For the construction of the method, we will need some tools to deal with VE functions due to the lack of their

xplicit knowledge in closed form. These tools will be provided in the form of local operators mapping VE functions
nto polynomials. To this purpose, following [1,2], we introduce the subsequent projectors.

he projector Π0,K
k : [L2(K )]2

→ [Pk(K )]2 is defined as the L2 projector onto vector valued polynomials of degree
t most k in each component: Given f ∈ [L2(Ω )]2,

(Π0,K
k f , pk)0,K = ( f , pk)0,K ∀ pk ∈ [Pk(K )]2. (23)

t can be shown, see [17], that this operator is computable for functions in V h(K ) only by knowing their values at
he degrees of freedom (20). Moreover, one has computability also for functions of the form ∇zh with zh ∈ Z̃h(K ).
his can be seen by using integration by parts:∫

K
(Π0,K

k ∇zh) · pk ds =

∫
K

∇zh · pk ds = −

∫
K

zh div pk  
∈Pk−1(K )

ds +

∫
∂K

zh pk · n ds,

or all pk ∈ [Pk(K )]2, where the right hand side is computable by means of (22).

he projector Π ∇,K
k+1 : H 1(K ) → Pk+1(K ) is given, for every z ∈ H 1(K ), by⎧⎨⎩

(∇Π ∇,K
k+1 z,∇ pk)0,K = (∇z,∇ pk)0,K ∀pk+1 ∈ Pk+1(K )

1
|∂K |

∫
∂K

Π ∇,K
k+1 z ds =

1
|∂K |

∫
∂K

z ds,

where the second identity is needed to fix the constants. Computability of this mapping for functions in Z̃h(K ) was
shown in [1,2].

3.2.3. Discrete space for concentrations
The space introduced in (19) was a preliminary space, useful to introduce the main idea of the construction.

Nevertheless, we will here make use of a more advanced space for the discrete concentration variable. Indeed, one
can use the operator Π ∇,K

k+1 to pinpoint the local enhanced space

Zh(K ) := {z ∈ H 1(K ) : z|∂K ∈ C0(∂K ), z|e ∈ Pk+1(e) ∀e ∈ EK , ∆z ∈ Pk+1(K ),∫
K

z pk dx =

∫
K

(Π ∇,K
k+1 z) pk dx ∀pk ∈ Pk+1/Pk−1(K )},

where Pk+1/Pk−1(K ) is the space of polynomials in Pk+1(K ) which are L2(K ) orthogonal to Pk−1(K ). It can be
hown that the space Zh(K ) has the same dimension and the same degrees of freedom (22) as Z̃h(K ), see [63,64].

The advantage of the space Zh(K ), when compared to Z̃h(K ), is that also the L2 projector Π 0,K
k+1 : L2(K ) →

k+1(K ) onto polynomials of degree at most k + 1, defined analogously to (23), is computable [2]
Finally, we state the following approximation result for the three projectors above [17, Lemma 5.1]:

emma 3.1. Given K ∈ Th , let ψ and ψ be sufficiently smooth scalar and vector valued functions, respectively.
hen, it holds, for all k ∈ N0,

∥ψ − Π 0,K
k ψ∥ℓ,K ≤ ζ hs−ℓ

K |ψ |s,K , 0 ≤ ℓ ≤ s ≤ k + 1

∥ψ − Π0,K
k ψ∥ℓ,K ≤ ζ hs−ℓ

K |ψ |s,K , 0 ≤ ℓ ≤ s ≤ k + 1

∥ψ − Π ∇,K
k ψ∥ℓ,K ≤ ζ hs−ℓ

K |ψ |s,K , 0 ≤ ℓ ≤ s ≤ k + 1, s ≥ 1,

here ζ > 0 only depends on the shape-regularity parameter ρ in assumption (D1), and k.
0

8
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.2.4. Global discrete spaces and projectors
The global discrete spaces are defined via their local counterparts:

V h := {v ∈ V : v|K ∈ V h(K ) ∀K ∈ Th}

Qh := {q ∈ Q : q|K ∈ Qh(K ) ∀K ∈ Th}

Zh := {z ∈ Z : z|K ∈ Zh(K ) ∀K ∈ Th}

with the obvious sets of global degrees of freedom.
In addition to the broken Sobolev norm (17), we introduce, for all uh ∈ V h ,

∥uh∥
2
V h

:=

∑
K∈Th

∥uh∥
2
V,K :=

∑
K∈Th

[
∥uh∥

2
0,K + ∥ div uh∥

2
0,K

]
.

Moreover, we will denote by Π0
k, Π ∇

k+1 and Π 0
k+1, the global projectors which are defined elementwise as the

corresponding local ones in Sections 3.2.2 and 3.2.3.
The sets of global degrees of freedom {dofV h

j }
dimV h
j=1 , {dofQh

j }
dimQh
j=1 , and {dofZh

j }
dimZh
j=1 are obtained by coupling the

local counterparts given in (20), (21), and (22), respectively.

3.3. Semidiscrete formulation

Our aim in this section is to find a semidiscrete formulation for (10) which is continuous in time and discrete
in space. To this purpose, we employ the same notation for the numerical approximants uh , ph , and ch , as in (9)
for u, p, and c, namely

uh(t)(x) := uh(x, t), ph(t)(x) := ph(x, t), ch(t)(x) := ch(x, t),

where the dependence on (t) will be again suppressed in the sequel.
A semidiscrete variational formulation for (10) can then be written in an abstract way as follows: for almost

every t ∈ J , find uh ∈ V h , ph ∈ Qh , and ch ∈ Zh , such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mh

(
∂ch

∂t
, zh

)
+ Θh(uh, ch; zh) + Dh(uh; ch, zh) =

(
q+ ĉ, zh

)
h

Ah(ch; uh, vh) + B(vh, ph) = (γ (ch), vh)h

B(uh, qh) = − (G, qh)0,Ω

(24)

or all vh ∈ V h , qh ∈ Qh , and zh ∈ Zh , and the initial condition

ch(0) = c0,h := Ihc0

is satisfied, where Ihc0 is the VEM interpolant of c0 in Zh , and where the involved forms and terms in (24) are
specified in the forthcoming lines.

Starting from the continuous problem (10), by simply replacing the continuous functions by their discrete
counterparts, most of the resulting terms cannot be computed any more, owing to the fact that VE functions are
not known explicitly in closed form. Thus, these terms need to be substituted by computable versions in the spirit
of the VEM philosophy. To this purpose, the following replacements were made:

• The term M
(
∂ch
∂t , zh

)
in the concentration equation was replaced by

Mh

(
∂ch

∂t
, zh

)
:=

∑
K∈Th

MK
h

(
∂ch

∂t
, zh

)
, (25)

where the local contributions are given as

MK
h (ch, zh) :=

∫
K
φ (Π 0,K

k+1 ch) (Π 0,K
k+1 zh) dx

+ νK
M(φ)SK

M

(
(I − Π 0,K

k+1 )ch, (I − Π 0,K
k+1 )zh

)
,

(26)

with SK
M(·, ·) denoting a stabilization term with certain properties and a constant νK

M(φ), both described in

Section 3.3.1.

9
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b

• Next, the term Θ(uh, ch; zh) was substituted by

Θh(uh, ch; zh) :=
1
2

[
(uh · ∇ch, zh)h + ((q+

+ q−) ch, zh)h − (uh ch,∇zh)h

]
, (27)

where

(uh · ∇ch, zh)h :=

∑
K∈Th

∫
K
Π0,K

k uh · Π0,K
k (∇ch)Π 0,K

k+1 zh dx

((q+
+ q−) ch, zh)h :=

∑
K∈Th

∫
K

(q+
+ q−)Π 0,K

k+1 ch Π
0,K
k+1 zh dx

(uh ch,∇zh)h :=

∑
K∈Th

∫
K
Π0,K

k uh Π
0,K
k+1 ch · Π0,K

k (∇zh) dx .

The above (consistent) choice for Θh ensures the coercivity of the bilinear form also at the discrete level.
• Moreover, the term D(uh; ch, zh) was replaced by

Dh (uh; ch, zh) :=

∑
K∈Th

DK
h (uh; ch, zh) (28)

with local contributions

DK
h (uh; ch, zh) :=

∫
K

D(Π0,K
k uh)Π0,K

k (∇ch) · Π0,K
k (∇zh) dx

+ νK
D (uh) SK

D

(
(I − Π ∇,K

k+1 )ch, (I − Π ∇,K
k+1 )zh

)
,

(29)

where SK
D (·, ·) is a stabilization term with certain properties and a constant νK

D (uh), both described in
Section 3.3.1.

• Concerning
(
q+ ĉ, zh

)
0,Ω , this term was approximated by(

q+ ĉ, zh
)

h :=

∑
K∈Th

[∫
K

q+ ĉΠ 0,K
k+1 zh dx

]
.

• Regarding the mixed problem, the term A(ch; uh, vh) was substituted by

Ah(ch; uh, vh) :=

∑
K∈Th

AK
h (ch; uh, vh) (30)

with local forms

AK
h (ch; uh, vh) :=

∫
K

A(Π 0,K
k+1 ch)Π0,K

k uh · Π0,K
k vh dx

+ νK
A(ch) SK

A((I − Π0,K
k )uh, (I − Π0,K

k )vh),
(31)

where, similarly as before, SK
A(·, ·) is a stabilization term and νK

A(ch) a constant, both described in Section 3.3.1.
• Finally, the term (γ (ch), vh)0,Ω was replaced by

(γ (ch), vh)h :=

∑
K∈Th

[∫
K
γ (Π 0,K

k+1 ch) · Π0,K
k vh dx

]
.

At this point, we highlight that the bilinear form B(·, ·) needs not to be substituted since it is computable for VE
functions due to the choice of degrees of freedom (20). Furthermore, the right hand side term (G, qh)0,Ω remains
unchanged.

Remark 3.4. Note that we here use the convention that terms which are written in caligraphic letters, such as
Mh , Dh and Ah , include a stabilization term, whereas those in non-caligraphic fashion and those of the form (·, ·)h
with subscript h do not. In general, the terms of the type (·, ·)h are approximations of the corresponding (possibly
weighted) L2 scalar products (·, ·)0,Ω , obtained by introducing projections onto polynomials for all virtual functions,
ut not for the data terms that are known exactly.
10
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.3.1. Construction of the stabilizations
Here, we specify the assumptions on the stabilizations SK

M(·, ·) : Zh × Zh → R, SK
D (·, ·) : Zh × Zh → R, and

SK
A(·, ·) : V h × V h → R, in (25), (28), and (30), respectively.

We require that these terms represent computable, symmetric, and positive definite bilinear forms that satisfy,
for all K ∈ Th , the following property: there exist positive constants MM

0 , MM
1 , MD

0 , MD
1 , MA

0 , MA
1 , which are

independent of h and K , such that

MM
0 ∥zh∥

2
0,K ≤ SK

M(zh, zh) ≤ MM
1 ∥zh∥

2
0,K ∀zh ∈ Zh ∩ ker(Π 0,K

k+1 )

MD
0 ∥∇zh∥

2
0,K ≤ SK

D (zh, zh) ≤ MD
1 ∥∇zh∥

2
0,K ∀zh ∈ Zh ∩ ker(Π ∇,K

k+1 )

MA
0 ∥vh∥

2
0,K ≤ SK

A(vh, vh) ≤ MA
1 ∥vh∥

2
0,K ∀vh ∈ V h ∩ ker(Π0,K

k ).

(32)

Note that continuity follows immediately from the properties:

SK
M(zh, z̃h) ≤

(
SK
M(zh, zh)

) 1
2
(
SK
M(z̃h, z̃h)

) 1
2 ≤ MM

1 ∥zh∥0,K ∥z̃h∥0,K

for all zh, z̃h ∈ Zh ∩ ker(Π 0,K
k+1 ); analogously for the other forms. In practice, under mesh assumptions (D1)–(D2),

one can take the following scaled stabilizations corresponding to the degrees of freedom:

SK
M(ch, zh) = |K |

dimZh (K )∑
j=1

dofZh (K )
j (ch) dofZh (K )

j (zh)

SK
D (ch, zh) =

dimZh (K )∑
j=1

dofZh (K )
j (ch) dofZh (K )

j (zh)

SK
A(uh, vh) = |K |

dimV h (K )∑
j=1

dofV h (K )
j (uh) dofV h (K )

j (vh).

(33)

egarding the constants appearing in front of the stabilizations in (25), (28), and (30), respectively, we pick:

νK
M(φ) =

⏐⏐⏐Π 0,K
0 φ

⏐⏐⏐ , νK
D (uh) = νK

M(φ)(dm + dt |Π
0,K
0 uh |), νK

A(ch) = |A(Π 0,K
0 (ch))|, (34)

here Π 0,K
0 : L2(K ) → P0(K ) and Π0,K

0 : [L2(K )]2
→ [P0(K )]2 are the L2 projectors onto scalar and vector

alued constants, respectively. The values appearing in (34) are positive constants that are introduced in order to
ake into account the material amplitudes in the stabilizations. Since the amplitudes of some material coefficients
epend on the solution (the problem is nonlinear), such values are taken in accordance, and turn out to depend on
he discrete solution.

.3.2. Well-posedness of the semidiscrete problem
We firstly define the constants

ν−

M := min
K∈Th

νK
M, ν+

M := max
K∈Th

νK
M.

nalogously, we introduce ν−

D, ν+

D, ν−

Am and ν+

A. Recalling (3) and (6), it is easy to check the following
mesh-uniform) bounds for the above constants:

φ∗ ≤ ν−

M ≤ ν+

M ≤ φ∗ , (a∗)−1
≤ ν−

A ≤ ν+

A ≤ a−1
∗

φ∗dm ≤ ν−

D ≤ ν+

D ≤ φ∗(dm + (dℓ + dt )∥uh∥∞,Ω ).

Then, similarly as for their continuous counterparts, the following continuity and coercivity properties for Mh(·, ·)
Dh(·; ·, ·), and Ah(·; ·, ·), defined in (25), (28), and (30), respectively, hold true.

emma 3.2. For Mh(·, ·), it holds, for all ch, zh ∈ Zh ,

Mh(ch, zh) ≤ max{φ∗, ν+

MMM
1 }∥ch∥0,Ω∥zh∥0,Ω

− M 2 (35)

Mh(zh, zh) ≥ min{φ∗, νMM0 }∥zh∥0,Ω .

11
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oncerning Dh(·; ·, ·), this form satisfies, for all uh ∈ V h and ch, zh ∈ Zh ,

Dh(uh; ch, zh) ≤
[
φ∗
(
dm + η∥uh∥∞,Ω (dℓ + dt )

)
+ ν+

DMD
1

]
|ch |1,Th

|zh |1,Th

Dh(uh; zh, zh) ≥ min{φ∗dm, ν
−

DMD
0 }|zh |

2
1,Th

.
(36)

egarding Ah(·; ·, ·), for all ch ∈ Zh and uh, vh ∈ V h , it yields

Ah(ch; uh, vh) ≤ max
{

1
a∗

, ν+

AMA
1

}
∥uh∥0,Ω∥vh∥0,Ω

Ah(ch; vh, vh) ≥ min
{

1
a∗
, ν−

AMA
0

}
∥vh∥

2
0,Ω .

(37)

hus, Ah(ch; ·, ·) is coercive on the kernel

Kh := {vh ∈ V h : B(vh, qh) = 0 ∀qh ∈ Qh} ⊂ K (38)

ith respect to ∥ · ∥V h , where K is given in (13).

roof. The continuity bound in (35) follows directly by using

Mh(ch, zh) ≤ Mh(ch, ch)
1
2 Mh(zh, zh)

1
2 , (39)

and then estimating

Mh(ch, ch) ≤ φ∗
∥Π 0,K

k+1 ch∥
2
0,K + ν+

MMM
1 ∥(I − Π 0,K

k+1 )ch∥
2
0,K

≤ max{φ∗, ν+

MMM
1 }

(
∥Π 0,K

k+1 ch∥
2
0,K + ∥(I − Π 0,K

k+1 )ch∥
2
0,K

)
= max{φ∗, ν+

MMM
1 }∥ch∥

2
0,K ,

where the Pythagorean theorem was applied in the last equality. For the coercivity bound, one can use (6), (32),
and the Pythagorean theorem.

Regarding the continuity estimate for Dh(·; ·, ·), by using a splitting of the form (39), together with an estimate
as in (14), one can deduce at the local level

DK
h (uh; ch, ch) ≤ φ∗

(
dm + η∥Π0,K

k uh∥∞,Ω (dℓ + dt )
)

∥Π0,K
k (∇ch)∥2

0,K

+
(
ν+

DMD
1

)
∥∇(I − Π ∇,K

k+1 )ch∥
2
0,K

≤

[
φ∗

(
dm + η∥Π0,K

k uh∥∞,Ω (dℓ + dt )
)

+ ν+

DMD
1

]
|ch |

2
1,Th

.

(40)

By application of a polynomial inverse estimate [65, Lemma 4.5.3], the continuity of the L2 projector, and the
Hölder inequality, we further estimate

∥Π0,K
k uh∥∞,K ≤ η h−1

K ∥Π0,K
k uh∥0,K ≤ η h−1

K ∥uh∥0,K ≤ η∥uh∥∞,K . (41)

fter inserting (41) into (40), taking the splitting into account, and summing over all elements, the stated bound
ollows. Concerning the coercivity bound for Dh(·, ·), one can proceed similarly as in (16) for the consistency part,
nd employ (32) for the stabilization term, to obtain elementwise

DK
h (uh; zh, zh) ≥ min{φ∗dm, ν

−

DMD
0 }

[
∥Π0,K

k ∇zh∥
2
0,K + ∥∇(I − Π ∇,K

k+1 )zh∥
2
0,K

]
.

We now note that the definitions of Π ∇,K
k+1 and Π0,K

k easily yield

∥∇(I − Π ∇,K
k+1 )zh∥0,K ≥ ∥(I − Π0,K

k )∇zh∥0,K . (42)

The estimate then follows with (42), the Pythagorean theorem and summation over all elements.
The estimates for Ah(·; ·, ·) are derived in a similar fashion as those for Mh(·, ·), using (6). The coercivity on

Kh follows from the fact

Kh ≡ {vh ∈ V h : div vh = 0} ⊂ K,

owing to the definition of V (K ) in (18). □
h

12



L. Beirão da Veiga, A. Pichler and G. Vacca Computer Methods in Applied Mechanics and Engineering 375 (2021) 113649

i
f

s

3

t
(
M
s
h
p
s

w
o
d
b
“
f
i

L
f

Well-posedness of problem (24) can be shown by combining the results in [20] for parabolic problems with those
n [17,50] for mixed problems, using Lemma 3.2. More precisely, in the spirit of the two-step strategy applied in [31]
or FEM, one can first show that for any given ch(t) ∈ L∞(Ω ), t ∈ J , the mixed problem

Ah(ch; uh, vh) + B(vh, ph) = (γ (ch), vh)h

B(uh, qh) = − (G, qh)0,Ω

admits a unique solution by applying the techniques in [17,50], and then, by using the Gronwall lemma and
Picard–Lindelöf (see e.g. [66, Ch.1.10]), that ch(t) is uniquely determined by the discrete concentration equation

Mh

(
∂ch

∂t
, zh

)
+ Θh(uh, ch; zh) + Dh(uh; ch, zh) =

(
q+ ĉ, zh

)
h ,

ee also [20]. We do not write here the details since we focus directly on the fully discrete case, see the next section.

.4. Fully discrete formulation

Here, our goal is to formulate a fully discrete version of (24). To start with, we introduce a sequence of time steps
n = nτ , n = 0, . . . , N , with time step size τ . Next, we define un

:= u(tn), pn
:= p(tn), cn

:= c(tn), Gn
:= G(tn),

q+)n
:= q+(tn), and ĉ n

:= ĉ(tn) as the evaluations of the corresponding functions at time tn , n = 0, . . . , N .
oreover, we denote by Un

≈ uh(tn), Pn
≈ ph(tn), and Cn

≈ ch(tn), the approximations of the semidiscrete
olutions at those times when using a time integrator method I. The error generated by a fully discrete scheme
as two components: the error due to the VEM spatial discretization depending on the mesh size h, and the error
roduced by the numerical scheme I depending on the time step size τ . Then we expect that for sufficiently regular
olution (u, p, c) one has

∥un
− Un

∥0,Ω + ∥pn
− Pn

∥0,Ω + ∥cn
− Cn

∥1,Ω ≤ C1 hk+1
+ C2τ

s (43)

here s is the order of the method I, and C1 and C2 are two h and τ independent constants. Since the novelty
f the present paper is the VEM discretization, we focus mainly on the spatial source of error. Among many time
iscretization schemes, in order to detail the behavior of the method, we here make a computationally cheap choice
y choosing a backward Euler method that is explicit in the nonlinear terms. As a consequence, we obtain two
smaller” linear systems at each time step, instead of a single larger nonlinear system (as one would obtain with a
ully coupled implicit backward Euler scheme). However, accordingly with (43), more advanced higher order time
ntegrator scheme can be adopted as well.

The fully discrete system consequently reads as follows:

• for n = 0: Given c0,h ∈ Zh , solve

Ah(c0,h; Un, vh) + B(vh, Pn) = (γ (c0,h), vh)h

B(Un, qh) = −
(
Gn, qh

)
0,Ω

(44)

for all vh ∈ V h and qh ∈ Qh .
• for n = 1, . . . , N : Solve first the concentration equation for Cn:

Mh

(
Cn

− Cn−1

τ
, zh

)
+ Θh(Un−1

; Cn, zh) + Dh(Un−1
; Cn, zh) =

(
(q+)n ĉ n, zh

)
h , (45)

for all zh ∈ Zh , where C0
:= c0,h . Then, solve the mixed problem for Un and Pn:

Ah(Cn
; Un, vh) + B(vh, Pn) = (γ (Cn), vh)h

B(Un, qh) = −
(
Gn, qh

)
0,Ω ,

(46)

for all vh ∈ V h and qh ∈ Qh .

emma 3.3. Given τ > 0, provided that Gn, (q+)n, Pn,Cn
∈ L∞(Ω ), γ (Cn) ∈ [L2(Ω )]2, and Un

∈ [L∞(Ω )]2,
or all n = 0, . . . , N, the formulation (44)–(46) is uniquely solvable.
13
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roof. Similarly as for the semidiscrete case, well-posedness of (44) and (46) follows by using the tools of [17,50].
egarding (45), we firstly rewrite that equation as

Mh
(
Cn, zh

)
+ τ

[
Θh(Un−1

; Cn, zh) + Dh(Un−1
; Cn, zh)

]
= τ

(
(q+)n ĉ n, zh

)
h + Mh

(
Cn−1, zh

)
.

(47)

e observe that all of the terms are continuous with respect to the norm ∥ · ∥1,Th . More precisely, for Mh(·, ·) and
h(Un−1

; ·, ·), continuity follows from Lemma 3.2 and the definition of the broken H 1 norm. Next, for the term
nvolving (q+)n , we simply apply the Cauchy–Schwarz inequality and the stability of the L2 projector. Finally, for
he term with Θh , we estimate

Θh(Un−1
; Cn, zh) =

1
2

[(
Un−1

· ∇Cn, zh
)

h + ((q+
+ q−) Cn, zh)h −

(
Un−1Cn,∇zh

)
h

]
≤ η

[
∥Un−1

∥∞,Ω (|Cn
|1,Th

+ ∥Cn
∥0,Ω ) + ∥q+

+ q−
∥∞,Ω∥Cn

∥0,Ω
]
∥zh∥1,Th ,

here we also employed an inverse inequality as in (41). Thus, by the Lax–Milgram lemma, it only remains to
how that the left hand side of (47) is coercive with respect to ∥ · ∥1,Th . This is however a direct consequence of

Θh(Un−1
; zh, zh) =

1
2

((q+
+ q−) zh, zh)h ≥ 0,

owing to the fact that q+ and q− are non-negative, and the coercivity bounds (35) and (36). □

Note that both problems (45) and (46) represent linear systems of equations which are decoupled from each
other in the sense that, firstly, given ĉ n and (q+)n , one can determine Cn with knowledge of Un−1 only, and then
one can use Cn to compute Un and Pn . The quantity Pn does in fact not influence the calculation of Cn directly,
but rather takes the role of a Lagrange multiplier and derived variable. This decoupling, combined with the fact
that the systems to be solved at each time step are linear, makes the method quite cheap per iteration.

4. Error analysis for the fully discrete problem

The error analysis is performed in two steps: firstly, we estimate the discretization errors for the velocity and
pressure, ∥un

− Un
∥0,Ω and ∥pn

− Pn
∥0,Ω , respectively, and then, in the second step, the concentration error

cn
− Cn

∥0,Ω . In the following analysis, we assume all the needed regularity of the exact solution. Although such
igh regularity will not often be available in practice, the purpose of the following analysis is to give a theoretical
ackbone to the proposed scheme and to investigate its potential accuracy in the most favorable scenario.

.1. An auxiliary result

The subsequent technical lemma will serve as an auxiliary result in the derivation of the error estimates and will
e used in several occasions.

emma 4.1. Let r, s, t ∈ N0. Denote by Π 0
r and Π0

s , the elementwise defined L2 projectors onto scalar and vector
alued polynomials of degree at most r and s, respectively. Given a scalar function σ ∈ H mr (Th), 0 ≤ mr ≤ r + 1,
et κ(σ ) be a tensor valued piecewise Lipschitz continuous function with respect to σ . Further, let σ̂ ∈ L2(Ω ),
nd let χ and ψ be vector valued functions. We assume that κ(σ ) ∈ [L∞(Ω )]2×2, χ ∈ [H ms (Th) ∩ L∞(Ω )]2,
∈ [L2(Ω )]2, and κ(σ )χ ∈ [H mt (Th)]2, for some 0 ≤ ms ≤ s + 1 and 0 ≤ m t ≤ t + 1. Then,

(κ(σ )χ ,ψ)0,Ω − (κ(Π 0
r σ̂ )Π0

sχ ,Π
0
tψ)0,Ω

≤ η
[
hmt |κ(σ )χ |mt ,Th

+ hms |χ |ms ,Th
∥κ(σ )∥∞,Ω + (hmr |σ |mr ,Th

+ ∥σ − σ̂∥0,Ω )∥χ∥∞,Ω

]
∥ψ∥0,Ω .

roof. We firstly write

(κ(σ )χ ,ψ)0,Ω − (κ(Π 0
r σ̂ )Π0

sχ ,Π
0
tψ)0,Ω

0 0 0 0 0 0 0 (48)

= [(κ(σ )χ ,ψ)0,Ω − (κ(Πr σ )Πsχ ,Πtψ)0,Ω ] + ((κ(Πr σ ) − κ(Πr σ̂ ))Πsχ ,Πtψ)0,Ω .

14
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T
e

hen, for the first part on the right hand side of (48), we recall that Π0
t is an L2 projection and derive, on each

lement K ∈ Th ,

(κ(σ )χ ,ψ)0,K − (κ(Π 0,K
r σ )Π0,K

s χ ,Π0,K
t ψ)0,K

= [(κ(σ )χ ,ψ)0,K − (Π0,K
t (κ(σ )χ ),ψ)0,K ]

+ [(Π0,K
t (κ(σ )χ ),ψ)0,K − (Π0,K

t (κ(σ )Π0,K
s χ ),ψ)0,K ]

+ [(Π0,K
t (κ(σ )Π0,K

s χ ),ψ)0,K − (Π0,K
t (κ(Π 0,K

r σ )Π0,K
s χ ),ψ)0,K ]

≤ η
[
hmt |κ(σ )χ |mt ,K + hms |χ |ms ,K ∥κ(σ )∥∞,K + hmr |σ |mr ,K ∥Π0,K

s χ∥∞,K
]
∥ψ∥0,K ,

where in the last step we used Lemma 3.1 and the fact that κ is Lipschitz continuous with respect to σ . The term
∥Π0,K

s χ∥∞,K is estimated as in (41). Concerning the second part on the right hand side of (48), we have, for each
K ∈ Th ,

((κ(Π 0
r σ ) − κ(Π 0

r σ̂ ))Π0
sχ ,Π

0
tψ)0,K ≤ ∥κ(Π 0

r σ ) − κ(Π 0
r σ̂ )∥0,K ∥Π0

sχ∥∞,K ∥Π0
tψ∥0,K

≤ ∥σ − σ̂∥0,K ∥χ∥∞,K ∥ψ∥0,K ,

where we used again the Lipschitz continuity of κ , the continuity properties of the L2 projectors, and the bound (41).
The assertion of the lemma follows after combining the estimates and summing over all elements. □

Note that the above lemma can be easily transferred to the cases where σ , κ(σ ), χ , and ψ are scalar, and to
vector valued σ , χ and scalar κ(σ ), ψ .

In the special case of χ = 1 and vector valued κ , an adaptation of Lemma 4.1 gives

(κ(σ ),ψ)0,Ω − (κ(Π 0
r σ̂ ),Π0

tψ)0,Ω ≤ η
[
hmt |κ(σ )|mt ,Th

+ hmr |σ |mr ,Th
+ ∥σ − σ̂∥0,Ω

]
∥ψ∥0,Ω . (49)

4.2. Error bounds: velocity and pressure

We consider the mixed problem

Ah(Cn
; Un, vh) + B(vh, Pn) = (γ (Cn), vh)h

B(Un, qh) = −
(
Gn, qh

)
0,Ω ,

(50)

where Cn
∈ Zh is the numerical solution of the concentration equation (45) for n = 1, . . . , N , and C0

= c0,h .
The goal is to derive an upper bound for ∥un

− Un
∥0,Ω and ∥pn

− Pn
∥0,Ω with respect to ∥cn

− Cn
∥0,Ω . For the

analysis, we basically follow the ideas of [17,50] with the major differences that, here, Ah(Cn
; ·, ·) is not consistent

with respect to [Pk(K )]2 due to presence of Cn , and, additionally, the right hand side of (50) is inhomogeneous.

Theorem 1. Given Cn
∈ Zh , let (Un, Pn) ∈ V h × Qh be the solution to (50). Let us assume that for the exact

solution (un, pn, cn) to (10) at time tn , it holds un
∈ [H k+1(Th)]2, pn

∈ H k+1(Th), and cn
∈ H k+1(Th). Furthermore,

we suppose that γ (c) and A(c) are piecewise Lipschitz continuous functions with respect to c ∈ L2(Ω ), and that
γ (cn), A(cn)un

∈ [H k+1(Th)]2. Then, the following error estimates hold for all k ∈ N0:

∥Un
− un

∥0,Ω ≤ ∥Cn
− cn

∥0,Ω ζ
n
1 (un) + hk+1 ζ n

2 (un, cn, γ (cn), A(cn)un)

∥Pn
− pn

∥0,Ω ≤ ∥Cn
− cn

∥0,Ω ζ
n
3 (un) + hk+1 ζ n

4 (un, cn, γ (cn), A(cn)un, pn),

where ζ n
1 –ζ n

4 are positive constants independent of h and depending only on the specified functions.

Proof. The estimate for ∥Un
− un

∥0,Ω can be obtained as follows:
By using the second equality in (50), we have div Un

= Π 0
k Gn (use that div Un

∈ Pk(K ) for every K ∈ Th),
where we recall that (Π 0

k )|K = Π 0,K
k . Define now the interpolant un

I ∈ V h via the degrees of freedom (20):

dofV h
i (un

I ) = dofV h
i (un), i = 1, . . . , dimV h .

Then, it holds [17, Eq. (28)]
n n k+1 n
∥u − uI ∥0,Ω ≤ η h ∥u ∥k+1,Th . (51)
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M
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oreover, one has div un
I = Π 0

k Gn . Thus, setting δn
:= Un

− un
I , it holds that δn

∈ Kh ⊂ K, where Kh and K were
efined in (38) and (13), respectively, therefore B(δn, q) = 0 for all q ∈ Q and ∥δn

∥V h = ∥δn
∥0,Ω . Owing to the

ssumptions on a(·) in (6) together with (37), we have, further using (50) with vh = δn
∈ Kh and (10),

α∥δn
∥

2
0,Ω ≤ Ah(Cn

; δn, δn) = Ah(Cn
; Un, δn) − Ah(Cn

; un
I , δ

n)

= (γ (Cn), δn)h − Ah(Cn
; un

I , δ
n)

=
[
(γ (Cn), δn)h − (γ (cn), δn)0,Ω

]
+ Ah(Cn

; un
− un

I , δ
n)

+

[
A(cn

; un, δn) − Ah(Cn
; un, δn)

]
=: T1 + T2 + T3.

(52)

The terms T1–T3 are bounded as follows:

• term T1: We use Eq. (49) with κ = γ , σ = cn , σ̂ = Cn , ψ = δn , r = k + 1, t = k, and mr = m t = k + 1,
and obtain

|T1| = |(γ (cn), δn)0,Ω − (γ (Π 0
k+1Cn),Π0

kδ
n)0,Ω |

≤ η
[
hk+1(|γ (cn)|k+1,Th

+ |cn
|k+1,Th

) + ∥cn
− Cn

∥0,Ω
]
∥δn

∥0,Ω .

• term T2: Owing to the continuity properties (37) of Ah(·; ·, ·) and the interpolation error estimate (51), it holds

|T2| = |Ah(Cn
; un

− un
I , δ

n)| ≤ η∥un
− un

I ∥0,Ω∥δn
∥0,Ω ≤ η hk+1

∥un
∥k+1,Th ∥δ

n
∥0,Ω .

• term T3: We have

|T3| = |A(cn
; un, δn) − Ah(Cn

; un, δn)|

≤ |(A(cn)un, δn)0,Ω − (A(Π 0
k+1Cn)Π0

kun,Π0
kδ

n)0,Ω |

+

⏐⏐⏐⏐⏐⏐
∑

K∈Th

νK
A(Cn) SK

A((I − Π0,K
k )un, (I − Π0,K

k )δn)

⏐⏐⏐⏐⏐⏐
=: T A

3 + T B
3 .

For the term T A
3 , we use Lemma 4.1 with κ = A, σ = cn , σ̂ = Cn , χ = un , ψ = δn , r = k + 1, s = t = k,

and mr = ms = m t = k + 1, to get

T A
3 ≤ η

[
hk+1(

|A(cn)un
|k+1,Th

+ |un
|k+1,Th

∥A(cn)∥∞,Ω + |cn
|k+1,Th

∥un
∥∞,Ω

)
+ ∥cn

− Cn
∥0,Ω∥un

∥∞,Ω

]
∥δn

∥0,Ω .

On the other hand, the term T B
3 can be bounded with (32), (6), and Lemma 3.1:

T B
3 ≤ η hk+1

|un
|k+1,Th

∥δn
∥0,Ω .

After plugging the bounds obtained for T1–T3 into (52), dividing by ∥δn
∥0,Ω , using the triangle inequality in the

form

∥Un
− un

∥0,Ω ≤ ∥δn
∥0,Ω + ∥un

− un
I ∥0,Ω ,

and employing (51), the convergence result follows.
The error estimate for the term ∥Pn

− pn
∥0,Ω follows easily by combining the above ideas with the argument

in [50, Theorem 6.1] and is therefore not shown. □

4.3. Error bounds: concentration

For fixed u(t) ∈ V and t ∈ J , we define the projector Pc : Z → Zh (that to each c ∈ Z associates Pcc ∈ Zh)
by

Γ (u(t);P c, z ) = Γ (u(t); c, z ),
c,h c h c h (53)
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or all zh ∈ Zh , where

Γc,h(u; c, zh) := Dh(u; c, zh) + Θh(u; c, zh) + (c, zh)h

Γc(u; c, zh) := D(u; c, zh) + Θ(u; c, zh) + (c, zh)0,Ω ,
(54)

with

(c, zh)h :=

∑
K∈Th

∫
K

c (Π 0,K
k+1 zh) dx .

Lemma 4.2. The projector Pc : Z → Zh given in (53) is well-defined under the assumption that u, q+, and q−

are bounded in L∞(Ω ) for all t ∈ J .

Proof. By the Lax–Milgram lemma, we have to show that the left hand side of (53) defines a continuous and
coercive bilinear form and that the right hand side is a continuous functional with respect to ∥ · ∥1,Th . Continuity
of the latter one is obtained by combining (14) with

Θ(u; c, zh) + (c, zh)0,Ω =
1
2

[
(u · ∇c, zh)0,Ω + ((q+

+ q−
+ 2)c, zh)0,Ω − (u c,∇zh)0,Ω

]
≤

1
2

[
∥u∥∞,Ω (|c|1,Th

+ ∥c∥0,Ω ) + ∥q+
+ q−

+ 2∥∞,Ω∥c∥0,Ω
]
∥zh∥1,Th .

By using (36) and performing similar computations as in the proof of Lemma 3.3, continuity of Γc,h follows:

Γc,h(u; c, zh) ≤ η ζ (u, q+, q−)∥c∥1,Th ∥zh∥1,Th , (55)

here ζ only depends on the specified functions. Regarding the coercivity of Γc,h , we first estimate

Θh(u; zh, zh) + (zh, zh)h =

∑
K∈Th

((
1
2

(q+
+ q−) + 1

)
Π 0,K

k+1 zh,Π
0,K
k+1 zh

)
0,K

≥ ∥Π 0
k+1zh∥

2
0,Ω ,

where we recall that (Π 0
k+1)|K = Π 0,K

k+1 for all K ∈ Th . Then, combining this result with (36) yields

Γc,h(u; zh, zh) ≥ η
[
|zh |

2
1,Th

+ ∥Π 0,K
k+1 zh∥

2
0,Ω

]
≥ η

[
|zh |

2
1,Th

+ ∥zh∥
2
0,Ω

]
,

with zh denoting the L2(Ω ) projection of zh onto P0(Ω ). Since zh coincides with the average of zh , one can use a
oincaré–Friedrichs inequality, see e.g. [67], to deduce

|zh |
2
1,Th

+ ∥zh∥
2
0,Ω ≥ C−1

p diam(Ω )−1
∥zh∥

2
1,Th

,

and consequently the coercivity of Γc,h . □

Lemma 4.3. We assume that u ∈ [H k+1(Th) ∩ L∞(Ω )]2, c ∈ H k+2(Th) ∩ W 1,∞(Th), q+, q−
∈ L∞(Ω ),

q+
+ q−)c ∈ H k+1(Th), u c ∈ [H k+1(Th)]2, u · ∇c ∈ H k+1(Th), and D(u)∇c ∈ [H k+1(Th)]2 for all t ∈ J .

hen, the following error bounds for c − Pcc, where Pcc is defined in (53), hold for all k ∈ N0:

∥c − Pcc∥1,Th ≤ hk+1 ξ1(c, u, q+, q−, D(u)∇c,∇c, (q+
+ q−)c, u · ∇c, u c),

∥c − Pcc∥0,Ω ≤ hk+2 ξ0(c, u, q+, q−, D(u)∇c,∇c, (q+
+ q−)c, u · ∇c, u c),

(56)

here the constants ξ1, ξ0 > 0 only depend on the listed terms and are independent of h.

roof. We focus on the error estimate in the broken H 1 norm at a fixed time t ∈ J . Firstly, we state the following
esult. Given c ∈ H k+2(Th), there exists an interpolant cI ∈ Zh such that the following bounds hold true (see for
nstance [59,60,68]):

k+2 k+1

∥c − cI ∥0,Ω ≤ η h ∥c∥k+2,Th , ∥c − cI ∥1,Th ≤ η h ∥c∥k+2,Th . (57)
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fter denoting ν := Pcc−cI , one obtains with the coercivity of Γc,h , see the proof of Lemma 4.2, and the definition
f Pcc in (53),

M∥ν∥2
1,Th

≤ Γc,h(u, ν, ν) = Γc,h(u,Pcc, ν) − Γc,h(u, cI , ν)

= [Γc(u, c, ν) − Γc,h(u, c, ν)] + Γc,h(u, c − cI , ν)
=: S1 + S2,

(58)

or a constant M > 0. By employing the definitions of Γc and Γc,h in (54), the term S1 is split as follows:

S1 = [D(u; c, ν) − Dh(u; c, ν)] + [Θ(u; c, ν) − Θh(u; c, ν)] + [(c, ν)0,Ω − (c, ν)h]

=: S A
1 + SB

1 + SC
1 .

For S A
1 , we have

S A
1 = [(D(u)∇c,∇ν)0,Ω − (D(Π0

ku)Π0
k(∇c),Π0

k(∇ν))0,Ω ]

+

∑
K∈Th

νK
D (u)SK

D ((I − Π ∇,K
k+1 )c, (I − Π ∇,K

k+1 )ν)

≤ η hk+1 [
|D(u)∇c|k+1,Th

+ |∇c|k+1,Th
(∥D(u)∥∞,Ω + 1) + |u|k+1,Th

∥∇c∥∞,Ω

]
|ν|1,Th

,

here in the inequality we applied Lemma 4.1 to estimate the first part on the right hand side of S A
1 , and made

se of the continuity properties (32) of SK
D (·, ·), the trivial continuity property of Π ∇,K

k+1 in the H 1 seminorm and its
pproximation properties (stated in Lemma 3.1) to estimate the stabilization term.

Next, for SB
1 , we compute

SB
1 =

1
2

{ [
(u · ∇c, ν)0,Ω − (Π0

ku · Π0
k(∇c),Π 0

k+1ν)0,Ω
]

+
[
((q+

+ q−)c, ν)0,Ω − ((q+
+ q−)Π 0

k+1c,Π 0
k+1ν)0,Ω

]
−
[
(u c,∇ν)0,Ω − (Π0

kuΠ 0
k+1c,Π0

k(∇ν))0,Ω
] }

≤ η hk+1[
|u · ∇c|k+1,Th

+ (|∇c|k+1,Th
+ |c|k+1,Th

)∥u∥∞,Ω + |c|k+1,Th
∥q+

+ q−
∥∞,Ω

+ |(q+
+ q−)c|k+1,Th

+ |u c|k+1,Th
+ |u|k+1,Th

(∥c∥∞,Ω + ∥∇c∥∞,Ω )
]
∥ν∥1,Th ,

where in the last inequality we used Lemma 4.1 with κ = id and σ = u for the first and third terms inside the
curly bracket, and κ = q+

+ q− and σ = 1 for the second one.
Finally, for SC

1 , it holds with the definition of the L2 projector and Lemma 3.1

SC
1 = ((I − Π 0

k+1)c, ν)0,Ω ≤ η hk+1
|c|k+1,Th

∥ν∥0,Ω .

On the other hand, for S2, we use the continuity of Γc,h in (55), together with the interpolation error estimate (57),
to derive

Γc,h(u; c − cI , ν) ≤ η ζ (u, q+, q−)∥c − cI ∥1,Th ∥ν∥1,Th ≤ η ζ (u, q+, q−)hk+1
∥c∥k+2,Th ∥ν∥1,Th .

The error bound in the broken H 1 norm follows by plugging first the estimates for S A
1 , SB

1 , and SC
1 into S1, then

those obtained for S1 and S2 into (58), using the definition of the H 1 norm, dividing by ∥ν∥1,Th , and using the
triangle inequality in the form

∥c − Pcc∥1,Th ≤ ∥c − cI ∥1,Th + ∥ν∥1,Th ,

together with the approximation properties (57) of the interpolant cI .
The L2 error bound can be derived by combining the above arguments with a standard duality argument as

in [20], also recalling the convexity of Ω ; it is omitted here. □

By differentiation of (53) in time and use of similar techniques as in the proof of Lemma 4.3, an analogous
result can be obtained for ∂

∂t (c − Pcc), summarized in the following corollary.
18
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orollary 1. Provided that the continuous data and solution are sufficiently regular in space and time, it holds ∂∂t
(c − Pcc)


1,Th

≤ hk+1 ξ1,t ,

 ∂∂t
(c − Pcc)


0,Ω

≤ hk+2 ξ0,t ,

here the constants ξ1,t , ξ0,t > 0 are independent of h.

Moreover, we will later on need the two subsequent bounds.

emma 4.4. Under sufficient smoothness of the continuous data and solution, it holds∂cn

∂t
−

Pccn
− Pccn−1

τ


0,Ω

≤ τ
1
2

∂2c
∂s2


L2(tn−1,tn ;L2(Ω))

+ τ−
1
2 hk+2

(∫ tn

tn−1

ξ 2
0,t ds

) 1
2

,

where ξ0,t can be found in Corollary 1.

Proof. We estimate∂c
∂t

−
Pccn

− Pccn−1

τ


0,Ω

≤

∂cn

∂t
−

cn
− cn−1

τ


0,Ω

+

Pccn
− Pccn−1

τ
−

cn
− cn−1

τ


0,Ω

=: (I ) + (I I ).

The term (I ) can be estimated exactly as for standard finite elements, see for instance [69]:

(I ) =

∂cn

∂t
−

cn
− cn−1

τ


0,Ω

≤

∫ tn

tn−1

∂2c
∂s2 (s)


0,Ω

ds ≤ τ
1
2

(∫ tn

tn−1

∂2c
∂s2 (s)

2

0,Ω
ds

) 1
2

,

here we also applied the Hölder inequality in the last step. Concerning (I I ), this term can be bounded as follows,
sing Corollary 1:

(I I ) =

Pccn
− Pccn−1

τ
−

cn
− cn−1

τ


0,Ω

=
1
τ


∫ tn

tn−1

∂

∂s
(Pcc − c)(s) ds


0,Ω

≤ τ−
1
2

(∫ tn

tn−1

 ∂∂s
(Pcc − c)(s)

2

0,Ω
ds

) 1
2

≤ τ−
1
2 hk+2

(∫ tn

tn−1

ξ 2
0,t ds

) 1
2

.

he statement of the lemma follows. □

emma 4.5. Provided that the continuous data and solution are sufficiently regular in space and time, it holds

∥un
− Un−1

∥0,Ω ≤ τ

∂u
∂t


L∞(tn−1,tn ;L2(Ω))

+ ∥Cn−1
− cn−1

∥0,Ω ζ
n−1
1 + hk+1 ζ n−1

2 ,

here ζ n−1
1 and ζ n−1

2 are the constants from Theorem 1.

roof. By using the triangle inequality, one obtains

∥un
− Un−1

∥0,Ω ≤
un

− un−1


0,Ω + ∥un−1
− Un−1

∥0,Ω .

he first term on the right hand side is estimated by

∥un
− un−1

∥0,Ω =


∫ tn

tn−1

∂u(s)
∂s

ds


0,Ω

≤ τ

∂u
∂t


L∞(tn−1,tn ;L2(Ω))

,

and the second one term is bounded with Theorem 1. □

Now, we have all the ingredients to bound ∥cn
− Cn

∥0,Ω .
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heorem 2. Let the mesh assumptions (D1)–(D3) be satisfied. Then, provided that the continuous data and
olutions are sufficiently regular, it yields

∥cn
− Cn

∥0,Ω ≤ η
[
∥c0,h − c0

∥0,Ω + hk+1 ϕ1 + τ ϕ2
]
,

here the regularity terms ϕ1, ϕ2 and the positive constant η now depend on u, c, q+, q−, ĉ, ∂u
∂t , ∂2u

∂t2 , ∂c
∂t , and ∂2c

∂t2

(and products of these functions).

Proof. We divide the proof intro three steps.

Step 1: writing the basic discrete evolution equation for the error. To start with, we write

Cn
− cn

= (Cn
− Pccn) + (Pccn

− cn) =: ϑn
+ ρn.

q. (56) gives a bound on ρn . In order to deal with ϑn , we use the continuous concentration equation (12) with
z = ϑn , the fully discretized version (45) with zh = ϑn , and the definition of the projector Pccn in (53) with
zh = ϑn:

Mh

(
ϑn

− ϑn−1

τ
, ϑn

)
+ Dh(Un−1

;ϑn, ϑn)

=

[
M
(
∂cn

∂t
, ϑn

)
0,Ω

− Mh

(
Pccn

− Pccn−1

τ
, ϑn

)]
+
[
Θh(un

;Pccn, ϑn) − Θh(Un−1
; Cn, ϑn)

]
+ [Dh

(
un

;Pccn, ϑn)
− Dh

(
Un−1

;Pccn, ϑn)]
+
[
(Pccn, ϑn)h − (cn, ϑn)0,Ω

]
+
[
((q+)n ĉ n, ϑn)h − ((q+)n ĉ n, ϑn)0,Ω

]
=: R1 + R2 + R3 + R4 + R5.

(59)

wing to the coercivity properties in (36), the second term on the left hand side of (59) can be estimated by

Dh(Un−1
;ϑn, ϑn) ≥ D∗

⏐⏐ϑn
⏐⏐2
1,Th

, (60)

ith some constant D∗ > 0 independent of h and Un−1.

tep 2: bounding the error terms R1–R5. The terms R1–R5 on the right hand side of (59) are estimated as follows:

• term R1: Using the definition of Mh(·, ·) in (25) together with (32) yields

R1 = M
(
∂cn

∂t
, ϑn

)
0,Ω

− Mh

(
Pccn

− Pccn−1

τ
, ϑn

)
=

[(
φ
∂cn

∂t
, ϑn

)
0,Ω

−

(
Π 0

k+1

(
φΠ 0

k+1

(
Pccn

− Pccn−1

τ

))
, ϑn

)
0,Ω

−

∑
K∈Th

νK
M(φ)SK

M

(
(I − Π 0,K

k+1 )
(
Pccn

− Pccn−1

τ

)
, (I − Π 0,K

k+1 )ϑn
)]

≤ η

[ φ ∂cn

∂t
− Π 0

k+1

(
φΠ 0

k+1

(
Pccn

− Pccn−1

τ

))
0,Ω

+

(I − Π 0
k+1)

(
Pccn

− Pccn−1

τ

)
0,Ω

]
∥ϑn

∥0,Ω

A B n

=: η[R1 + R1 ]∥ϑ ∥0,Ω .
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The term R A
1 is estimated by using the continuity of the L2 projector, the assumption (6) on φ, and the

approximation properties in Lemma 3.1:

R A
1 ≤

(I − Π 0
k+1)

(
φ
∂cn

∂t

)
0,Ω

+

Π 0
k+1

(
φ
∂cn

∂t
− φΠ 0

k+1

(
∂cn

∂t

))
0,Ω

+

Π 0
k+1

(
φΠ 0

k+1

(
∂cn

∂t
−

Pccn
− Pccn−1

τ

))
0,Ω

≤ η

[
hk+2

(⏐⏐⏐⏐φ ∂cn

∂t

⏐⏐⏐⏐
k+2,Th

+

⏐⏐⏐⏐∂cn

∂t

⏐⏐⏐⏐
k+2,Th

)
+

∂cn

∂t
−

Pccn
− Pccn−1

τ


0,Ω

]
.

Next, we estimate RB
1 with similar tools as for R A

1 :

RB
1 ≤

(I − Π 0
k+1)

(
Pccn

− Pccn−1

τ
−
∂cn

∂t

)
0,Ω

+

(I − Π 0
k+1)

∂cn

∂t


0,Ω

≤

Pccn
− Pccn−1

τ
−
∂cn

∂t


0,Ω

+ η hk+2
⏐⏐⏐⏐∂cn

∂t

⏐⏐⏐⏐
k+2,Th

.

Thus, we deduce with Lemma 4.4

R1 ≤ η

[
hk+2

(⏐⏐⏐⏐φ ∂cn

∂t

⏐⏐⏐⏐
k+2,Th

+

⏐⏐⏐⏐∂cn

∂t

⏐⏐⏐⏐
k+2,Th

)
+ τ−

1
2 hk+2

(∫ tn

tn−1

ξ 2
0,t ds

) 1
2

+ τ
1
2

∂2c
∂s2


L2(tn−1,tn ;L2(Ω))

]
∥ϑn

∥0,Ω

=:

[
hk+2 Rn,1

1 + τ−
1
2 hk+2 Rn,2

1 + τ
1
2 Rn,3

1

]
∥ϑn

∥0,Ω ,

(61)

with the obvious definitions for the regularity terms Rn,1
1 , Rn,2

1 , and Rn,3
1 .

• term R2: By the definition of Θh(·; ·, ·) in (27), the identity ϑn
= Cn

−Pccn , and the fact that (q+)n and (q−)n

are non-negative, it holds

Θh(un
;Pccn, ϑn) − Θh(Un−1

; Cn, ϑn)

=
1
2

[(
un

· ∇Pccn, ϑn)
h −

(
Un−1

· ∇Cn, ϑn)
h

]
−

1
2

(
(q+

+ q−)ϑn, ϑn)
0,Ω

−
1
2

[(
unPccn,∇ϑn)

h −
(
Un−1Cn,∇ϑn)

h

]
≤

1
2

[(
un

· ∇Pccn, ϑn)
h −

(
Un−1

· ∇Cn, ϑn)
h −

(
unPccn,∇ϑn)

h +
(
Un−1Cn,∇ϑn)

h

]
.

The above equation, after adding zero in the form

0 = (Un−1
· ∇ϑn, ϑn)h − (Un−1

· ∇ϑn, ϑn)h

= (Un−1
· ∇Cn, ϑn)h − (Un−1

· ∇Pccn, ϑn)h − (Un−1
· ∇ϑn,Cn)h + (Un−1

· ∇ϑn,Pccn)h

to the right hand side, can be equivalently expressed as

Θh(un
;Pccn, ϑn) − Θh(Un−1

; Cn, ϑn)

≤
1
2

[(
(un

− Un−1) · ∇Pccn, ϑn)
h −

(
(un

− Un−1)Pccn,∇ϑn)
h

]
=: R A

2 + RB
2 .

For R A
2 , we estimate

R A
=

1 (
(un

− Un−1)∇Pccn, ϑn)
≤

1
∥un

− Un−1
∥0,Ω∥Π0

∇Pccn
∥∞,Ω∥ϑn

∥0,Ω .
2 2 h 2 k
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We now use an inverse estimate [65, Lemma 4.5.3], the continuity of Π0,K
k , a triangle inequality, the assumption

that Th is quasi-regular, and Lemma 4.3, to deduce, for every K ∈ Th ,

∥Π0,K
k ∇Pccn

∥∞,K ≤ η h−1
K ∥Π0,K

k ∇Pccn
∥0,K ≤ η h−1

K ∥∇Pccn
∥0,K

≤ η h−1
K

(
∥∇Pccn

− ∇cn
∥0,K + ∥∇cn

∥0,K
)

≤ η
(
h−1

∥∇Pccn
− ∇cn

∥0,Th + ∥∇cn
∥∞,K

)
≤ η.

(62)

Recalling Lemma 4.5, the definitions of ϑn−1 and ρn−1, and Lemma 4.3, we get

∥un
− Un−1

∥0,Ω

≤ τ ∥∂u/∂t∥L∞(tn−1,tn ;L2(Ω)) + (∥ϑn−1
∥0,Ω + ∥ρn−1

∥0,Ω )ζ n−1
1 + hk+1 ζ n−1

2

≤ τ ∥∂u/∂t∥L∞(tn−1,tn ;L2(Ω)) + (∥ϑn−1
∥0,Ω + hk+2ξ n−1

0 )ζ n−1
1 + hk+1 ζ n−1

2 ,

(63)

thus implying

R A
2 ≤ η

[
hk+1 Rn,1

2 + τ Rn,2
2 + ∥ϑn−1

∥0,Ω Rn,3
2

]
∥ϑn

∥0,Ω ,

with the obvious definitions for the regularity terms Rn,1
2 , Rn,2

2 , and Rn,3
2 .

The term RB
2 can be bounded analogously to R A

2 , giving

RB
2 =

1
2

(
(Un−1

− un)Pccn,∇ϑn)
h ≤ η ∥un

− Un−1
∥0,Ω |ϑn

|1,Th
.

Using again the bound (63), one obtains

RB
2 ≤ η

[
hk+1 Rn,1

2 + τ Rn,2
2 + ∥ϑn−1

∥0,Ω Rn,3
2

]
|ϑn

|1,Th
.

Thus,

R2 ≤ η

[
hk+1 Rn,1

2 + τ Rn,2
2 + ∥ϑn−1

∥0,Ω Rn,3
2

] (
∥ϑn

∥0,Ω + |ϑn
|1,Th

)
.

• term R3: We use the definition of Dh(·; ·, ·) in (28), a standard Hölder inequality in the spirit of (15), the
estimate (62), the scaling properties of the stabilization in (32), the Lipschitz continuity of D(·; ·, ·), and νK

D
in (34), to deduce

R3 = Dh
(
un

;Pccn, ϑn)
− Dh

(
Un−1

;Pccn, ϑn)
= ((D(Π0

kun) − D(Π0
kUn−1))Π0

k(∇Pccn) · Π0
k(∇ϑn))0,Ω

+

∑
K∈Th

(νK
D (un) − νK

D (Un−1))SK
D

(
(I − Π ∇,K

k+1 )Pccn, (I − Π ∇,K
k+1 )ϑn

)
≤ η∥un

− Un−1
∥0,Ω |ϑn

|1,Th
.

Hence, with (63) we have

R3 ≤ η

[
hk+1 Rn,1

2 + τ Rn,2
2 + ∥ϑn−1

∥0,Ω Rn,3
2

]
|ϑn

|1,Th
.

• term R4: The use of Lemma 4.3 yields

R4 = −[(cn, ϑn)0,Ω − (Pccn, ϑn)h] = −[((I − Π 0
k+1)cn, ϑn)0,Ω + (Π 0

k+1(cn
− Pccn), ϑn)0,Ω ]

≤ η hk+2 [
|cn

|k+2,Th
+ ξ n

0

]
∥ϑn

∥0,Ω =: η hk+2 Rn,1
4 ∥ϑn

∥0,Ω

with the obvious definition of Rn,1
4 .

• term R5: The approximation properties in Lemma 3.1 yield

R5 = −
(
(I − Π 0

k+1)((q+)n ĉ n), ϑn)
0,Ω ≤ η hk+2

|(q+)n ĉ n
|k+2,Th

∥ϑn
∥0,Ω =: η hk+2 Rn,1

5 ∥ϑn
∥0,Ω

n,1
with the obvious definition of R5 .
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tep 3: deriving the error estimate at each generic nth time step. We now insert (60) and the bounds on R1–R5
into (59). Afterwards, we observe that all regularity terms {Rn,i

J } above only depend on the continuous solution and
can be assumed to be bounded uniformly in h. We only keep track of the terms Rn,2

1 and Rn,3
1 . This yields

1
τ
Mh

(
ϑn

− ϑn−1, ϑn)
+ D∗

⏐⏐ϑn
⏐⏐2
1,Th

≤ ∥ϑn−1
∥0,Ω∥ϑn

∥0,Ω ω
n
1 + ∥ϑn−1

∥0,Ω |ϑn
|1,Th

ωn
2 + ∥ϑn

∥0,Ωω
n
3 + |ϑn

|1,Th
ωn

4

= ∥ϑn
∥0,Ω

[
ωn

3 + ∥ϑn−1
∥0,Ω ω

n
1

]
+ |ϑn

|1,Th

[
ωn

4 + ∥ϑn−1
∥0,Ω ω

n
2

]
,

(64)

with the positive scalars

ωn
i ≤ η, i = 1, 2, ωn

3 ≤ η
(
τ + hk+1

+ τ−
1
2 hk+2 Rn,2

1 + τ
1
2 Rn,3

1

)
, ωn

4 ≤ η
(
τ + hk+1) . (65)

ext, we introduce, for all wh ∈ Zh , the discrete norm

∥wh∥
2
0,h := Mh(wh, wh). (66)

wing to Lemma 3.2, there exist positive constants c∗ and c∗, such that, for all wh ∈ Zh , it holds

c∗∥wh∥0,h ≤ ∥wh∥0,Ω ≤ c∗
∥wh∥0,h . (67)

eshaping (64), and employing (66) and (67), then gives

∥ϑn
∥

2
0,h + τD∗

⏐⏐ϑn
⏐⏐2
1,Th

≤ Mh(ϑn−1, ϑn) + τ∥ϑn
∥0,h

[
c∗ωn

3 + ∥ϑn−1
∥0,h(c∗)2ωn

1

]
+ τ |ϑn

|1,Th

[
ωn

4 + ∥ϑn−1
∥0,h c∗ωn

2

]
=: T1 + T2 + T3.

(68)

he terms T1 and T2 are bounded as follows:

T1 + T2 ≤ ∥ϑn
∥0,h

[
(1 + τη)∥ϑn−1

∥0,h + τc∗ωn
3

]
≤

1
2

(
∥ϑn

∥
2
0,h +

[
(1 + τη)∥ϑn−1

∥0,h + τc∗ωn
3

]2
)
,

(69)

here we used (39) and (66) in the first step. The term T3 is bounded as follows:

T3 ≤ τD∗|ϑ
n
|
2
1,Th

+
τ

4D∗

[
ωn

4 + ∥ϑn−1
∥0,h c∗ωn

2

]2

≤ τD∗|ϑ
n
|
2
1,Th

+
τ

2
η
[
(ωn

4 )2
+ ∥ϑn−1

∥
2
0,h

]2
.

(70)

ext, we plug (69) and (70) into (68), cancel the terms τD∗|ϑ
n
|
2
1,Th

, and manipulate the resulting inequality, to
obtain

∥ϑn
∥

2
0,h ≤

[
(1 + τη)∥ϑn−1

∥0,h + τc∗ωn
3

]2
+ τη

[
(ωn

4 )2
+ ∥ϑn−1

∥
2
0,h

]2
.

oreover, we estimate[
(1 + τη)∥ϑn−1

∥0,h + τc∗ωn
3

]2

= (1 + τη)2
∥ϑn−1

∥
2
0,h + 2τ

1
2 ∥ϑn−1

∥0,hτ
1
2 (1 + τη)c∗ωn

3 + τ 2(c∗)2(ωn
3 )2

≤
[
(1 + τη)2

+ τ
]
∥ϑn−1

∥
2
0,h +

[
τ (1 + τη)2

+ τ 2] (c∗)2(ωn
3 )2

≤ (1 + τη) ∥ϑn−1
∥

2
0,h + τη(ωn

3 )2.

ence,

∥ϑn
∥

2
0,h ≤ (1 + τη)∥ϑn−1

∥
2
0,h + τη

[
(ωn

3 )2
+ (ωn

4 )2] .
efining

γ n
:= (ωn

3 )2
+ (ωn

4 )2

nd solving the recursion then leads to

∥ϑn
∥

2
0,h ≤ (1 + τη)n

∥ϑ0
∥

2
0,h + τη

n∑
γ j

≤ η∥ϑ0
∥

2
0,h + τη

n∑
γ j ,
j=1 j=1
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here we recall that n ≤ T/τ with T the final time instant. With (67) the estimate in the L2 norm is a direct
consequence:

∥ϑn
∥

2
0,Ω ≤ η∥ϑ0

∥
2
0,Ω + τη

n∑
j=1

γ j . (71)

he initial term ∥ϑ0
∥

2
0,Ω is estimated by

∥ϑ0
∥0,Ω = ∥c0,h − Pcc0

∥0,Ω ≤ ∥c0,h − c0
∥0,Ω + ∥c0

− Pcc0
∥0,Ω ≤ ∥c0,h − c0

∥0,Ω + hk+2 ξ 0
0 , (72)

here we applied Lemma 4.3. Moreover, using (65), the fact that
∑n

j=1 τ ≤ T , and the definitions of R j,2
1 and R j,3

1
n (61), after some simple manipulations, we obtain

τη

n∑
j=1

γ j ≤ η

⎛⎝ n∑
j=1

τ (ω j
3)2

+

n∑
j=1

τ (ω j
4)2

⎞⎠
≤ η

⎡⎣ n∑
j=1

τ (τ + hk+1)2
+ (hk+2)2

n∑
j=1

(R j,2
1 )2

+ τ 2
n∑

j=1

(R j,3
1 )2

⎤⎦
≤ η

⎡⎣(τ + hk+1)2
+ (hk+2)2

n∑
j=1

(R j,2
1 )2

+ τ 2
n∑

j=1

(R j,3
1 )2

⎤⎦
≤ η

[
(τ + hk+1)2

+ (hk+2)2
∫ tn

0
ξ 2

0,t ds + τ 2
∫ tn

0

∂2c
∂s2 (s)

2

0,Ω
ds

]
.

(73)

he assertion of the theorem follows by combining (71) with (73) and (72). □

. Numerical experiments

In this section, we demonstrate the performance of the method on the basis of numerical experiments, focusing
n the lowest order case k = 0 which is expected to be the preferable one for practical application. To this purpose,
e firstly consider an ideal test case (Example 1), then we explore the potential of VEM for locally refined meshes

Example 2), and finally we discuss a more realistic test case (Example 3). The aim of the first test is to validate
also numerically) the convergence of the method on a problem with regular known solution, the goal of the second
est is to assess the VEM technology for meshes with many hanging nodes and edges with different size, and the
dea behind the third test is to check the method’s performance on a well-known benchmark that mimics a more
ealistic situation.

xample 1. Here, we study a generalized version of (1), given by⎧⎪⎪⎨⎪⎪⎩
φ
∂c
∂t

+ u · ∇c − div(D(u)∇c) = f

div u = g

u = −a(c)(∇ p − γ (c)),

(74)

endowed with the boundary and initial conditions in (4) and (5), respectively. We fix Ω = (0, 1)2 and pick the same
choice of parameters as in [51], namely T = 0.01, φ = 1, D(u) = |u| + 0.02, dm = 0.02, dℓ = dt = 1, c0 = 0,
γ (c) = 0, and a(c) = (c + 2)−1, where f and g are taken in accordance with the analytical solutions

c(x, y, t) = t2 [x2(x − 1)2
+ y2(y − 1)2]

u(x, y, t) = 2t2
(

x(x − 1)(2x − 1)
y(y − 1)(2y − 1)

)
p(x, y, t) = −

1
2

c2
− 2c +

17
6300

t4
+

2
15

t2.

(75)
Plots of the exact solution at the final time T are shown in Figs. 1 and 2.
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c
o

T

Fig. 1. Example 1. Exact concentration c (left) and pressure p (right) of Example 1, given by (75), at the final time T = 0.01.

Fig. 2. Example 1. Exact vector field u given by (75), at the final time T = 0.01.

We employ a sequence of regular Cartesian meshes and Voronoi meshes, as portrayed in Fig. 3. In addition to the
urrent version, we also test the method when replacing the stabilization terms in (26), (29), and (31) by alternative
nes:

νK
M(φ)SK

M

(
(I − Π 0,K

k+1 )ch, (I − Π 0,K
k+1 )zh

)
⇝ S̃K

M

(
(I − Π 0,K

k+1 )ch, (I − Π 0,K
k+1 )zh

)
νK

D (uh) SK
D

(
(I − Π ∇,K

k+1 )ch, (I − Π ∇,K
k+1 )zh

)
⇝ S̃K

D

(
uh; (I − Π ∇,K

k+1 )ch, (I − Π ∇,K
k+1 )zh

)
νK
A(ch) SK

A

(
(I − Π0,K

k )uh, (I − Π0,K
k )vh

)
⇝ S̃K

A

(
ch; (I − Π0,K

k )uh, (I − Π0,K
k )vh

)
.

he alternative (diagonal) stabilizations are given by

S̃K
M(ch, zh) = |K |

dimZh (K )∑
j=1

dM
j dofZh (K )

j (ch) dofZh (K )
j (zh)

S̃K
D (ch, zh) =

dimZh (K )∑
j=1

d D
j dofZh (K )

j (ch) dofZh (K )
j (zh)

S̃K
A(uh, vh) = |K |

dimV h (K )∑
dA

j dofV h (K )
j (uh) dofV h (K )

j (vh),

(76)
j=1
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Fig. 3. Example 1. Meshes: regular 8 × 8 Cartesian mesh (left); Voronoi mesh with 64 elements (right).

ith

dM
j := max

{
1

|K |

∫
K
φ (Π 0,K

k+1ϕ
K
j )2 dx, σνK

M(φ)
}

d D
j := max

{∫
K

D(Π0,K
k uh) |Π0,K

k (∇ϕK
j )|

2
dx, σνK

D (uh)
}

dA
j := max

{
1

|K |

∫
K

A(Π 0,K
k+1 ch) |Π0,K

k ψK
j |

2
dx, σνK

A(ch)
}
,

(77)

here {ϕK
j }

dimZh (K )
ℓ=1 and {ψK

j }
dimV h (K )
ℓ=1 denote the local canonical basis functions for Zh(K ) and V h(K ), and σ > 0

s a safety parameter. In the forthcoming experiments, we set σ = 1e−3. We highlight that these stabilizations
re in fact modifications of the so-called D-recipe, which was introduced in [3] and has already been successfully
pplied in some variants to other model problems, such as the Helmholtz problem [14]. The first entry inside the
ax is simply the “diagonal part” of the consistency term of the local approximate forms in (26), (29), and (31),

espectively, whereas the second terms correspond to the original stabilizations associated to the degrees of freedom
n (33) multiplied by σ , which acts as a positivity safeguard. Importantly, it is easy to check that the error analysis
an be easily extended to the new choice of stabilizations.

Due to the virtuality of the basis functions, we measure the following relative L2 errors:

∥c − Π 0
1 Cn

∥0,Ω

∥c∥0,Ω
,

∥u − Π0
0Un

∥0,Ω

∥Un
∥0,Ω

,
∥p − Π 0

0 Pn
∥0,Ω

∥p∥0,Ω
,

here Cn , Un , and Pn are the numerical solutions at the final time T .
The relative L2 discretization errors for the concentration are plotted in Fig. 4 in terms of the mesh size h for both

families of meshes and both variants of stabilizations. In order to better underline the expected linear convergence
of the method both in h and τ (see Theorem 2, recalling that k = 0), the time step τ is chosen proportional to h.
In other words, starting with the coarsest mesh and τ = T/5, each subsequent case is obtained by dividing both h
adopting a finer mesh) and τ by a factor of 2. Analogous plots are shown for the velocity and pressure variable
rrors in Figs. 5 and 6. In all cases, the linear convergence rates are in accordance with Theorems 1 and 2. For the
ressure discretization error, since the initial meshes are very coarse, we observe some pre-asymptotic regime when
mploying the original stabilizations in (33). This effect, however, is not present for the alternative stabilizations
n (76). Both variants lead to similar results for the concentration and velocity errors.

Since the concentration often evolves more rapidly than the velocity and pressure, it could be worth to consider
cheaper variant of the discrete scheme (44)–(46) where the discrete velocity–pressure pair is updated only every
time step (with R ∈ N). This leads to a smaller number of linear system resolutions (possibly with a small

eduction in accuracy) since only system (45) is solved at every time step, while (46) is solved only every R step.
n order to test this, we tried to run the same test above and compare the original version with the cheaper version
26
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(

T

Fig. 4. Example 1. Relative L2 errors for the concentration at the final time T on regular Cartesian meshes (left) and Voronoi meshes
(right). The original stabilization (33) and the D-recipe stabilization (76) are employed.

Fig. 5. Example 1. Relative L2 errors for the velocity field at the final time T on regular Cartesian meshes (left) and Voronoi meshes
right). The original stabilization (33) and the D-recipe stabilization (76) are employed.

Fig. 6. Example 1. Relative L2 errors for the pressure at the final time T on regular Cartesian meshes (left) and Voronoi meshes (right).
he original stabilization (33) and the D-recipe stabilization (76) are employed.
27
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ith R = 5. The difference in error was only at the fourth meaningful digit; we do not plot the graphs since these
would completely overlap the ones of the original method.

Example 2. The aim of the present test is to exploit the VEM capability of using locally refined meshes. We
consider the generalized equation (74) with the same problem parameters of Example 1. The boundary conditions
and the functions f and g are taken in accordance with the analytical solutions

c(x, y, t) = t2
[
1 − e−100(x2

+y2)
]

u(x, y, t) = 200t2

(
xe−100(x2

+y2)

ye−100(x2
+y2)

)
p(x, y, t) = −

1
2

c2
− 2c + η1t4

+ η2t2,

(78)

where the constants η1, η2 are such that p(·, t) ∈ L2
0(Ω ) for all t ∈ (0, T ).

Note that the analytical solutions are such that they present a corner layer centered in (0, 0) for all t ∈ (0, T ).
The idea is to exploit this feature of the analytical solutions and the possibility of the VEM technology of using
locally refined meshes.

We consider the family of locally refined meshes defined starting by a 4 × 4 uniform Cartesian mesh on [0, 1]2,
where the lower left square (corresponding to [0.25, 0.25]2) is refined into 4 × 4, 8 × 8, 16 × 16, and 32 × 32
uniform Cartesian meshes (see Fig. 7 for a sample of the adopted meshes).

In Fig. 7, we exhibit the relative L2 errors (against the total number of degrees of freedom) obtained with the
locally refined meshes and time step τ chosen proportionally to the diameter of the refined squares. In order to
assess the performance of the VEM technology on locally refined meshes, we also plot the results obtained with
the family of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 uniform Cartesian meshes on the whole domain [0, 1]2. In this
test, we use the diagonal stabilization (cf. (76)).

Notice that, excluding the concentrations where the errors appear to be dominated by the time discretization,
for the velocity and the pressure, we obtain better results with the locally refined meshes. Although, due to the
nature of the exact solution, these results are in accordance with the expectations, this test also serves the purpose
of showing the robustness of the proposed VEM scheme with respect to elements with many hanging nodes (the
last local refined mesh has 31 hanging nodes) which does not seem to deteriorate the accuracy of the scheme.
Therefore, this kind of efficient refinement is indeed a viable choice for the proposed technology. Another classical
situation in which flexible meshing would be useful is in the presence of jumping material data in accordance with
complicated patterns/inclusions.

Example 3. Next, we investigate the behavior of the method for Test 1 and Test 2 in [32,52].

The problem is given in the form (1) with boundary conditions (4) and initial condition (5) over the spatial domain
Ω = (0, 1000)2 ft2. Moreover, T = 3600 days and τ = 36 days. At the upper right corner, i.e. at [1000, 1000],
fluid with concentration ĉ = 1.0 is injected with rate q+

= 30 ft2/day, whereas at the lower left corner, i.e. at
[0, 0], material is absorbed with rate q−

= 30 ft2/day. Both wells are henceforth treated as Dirac masses, which
is admissible at the discrete level since the discrete functions are piecewise regular (which can be interpreted as
an approximation of the Dirac delta by a localized function with support within the corner element and unitary
integral). Furthermore, the following choices for the parameters are picked: φ = 0.1, dℓ = 50, dt = 5, c0 = 0,
γ (c) = 0, and a(c) = 80(1 + (M

1
4 − 1)c)4, where

Test A : dm = 10,M = 1; Test B : dm = 0,M = 41.

Whereas a(c) is constant for Test A, it changes rapidly across the fluid interface for Test B (which is in fact
ot covered by the theoretical analysis since dm = 0, but is interesting to study numerically) resulting in a much
aster propagation of the fluid concentration front along the diagonal direction (dℓ ≫ dt ). This effect is known as
acroscopic fingering phenomenon [70].
For this example, we used a regular 25 × 25 Cartesian mesh and we employed the more sophisticated stabilization

n (76). Since Test B is highly convection-dominated, pure application of our method leads to local disturbances
28
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i
p

Fig. 7. Example 2. Sample of the adopted refined meshes (upper left). Relative L2 errors for the concentration (upper right), relative L2

errors for the velocity field (lower left) and relative L2 errors for the pressure (lower right) at the final time T on regular Cartesian meshes
and on corner refined meshes.

in the form of overshoots and undershoots of the numerical solution for the concentration, typical in the context
of convection-dominated problem. To this purpose, for this test case, we employ the flux-corrected transport (FCT)
algorithm with linearization [53,71]. The FCT scheme with linearization for convection-dominated flow problems
operates in two steps: (1) advance the solution in time by a low-order overly diffusive scheme to suppress spurious
oscillations, (2) correct the solution using (linear) antidiffusive fluxes. In that way the computed solution does not
show spurious oscillations and layers are not smeared.

Due to the fact that no analytical solutions are available for Test A and Test B, we plot the numerical solutions
(and the corresponding contour plots) for the concentration after 3 and 10 years. These times correspond to n = 30
and n = 100, respectively. For visualization of the results, since the numerical solution is virtual, but the nodal
values are known, we simply add, inside each square, the barycenter with associated mean value of the nodal values,
then create a triangulation based upon these points, and finally interpolate the function values linearly inside each
triangle. In Figs. 8 and 9, the results for Test A are portrayed, and in Figs. 10 and 11, those for Test B. The results
are similar to those obtained in [32,52].

6. Conclusions

We presented a virtual element method for the miscible displacement of one incompressible fluid by another
n a reservoir, following a meaningful model instrumental to applications such as oil recovery and environmental

ollution. We combined our VEM discretization in space with a cheap but effective discretization scheme in time.
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Fig. 8. Example 3. Numerical solution for the concentration (left) and contour plot (right) after 3 years in Test A.

Fig. 9. Example 3. Numerical solution for the concentration (left) and contour plot (right) after 10 years in Test A.

Fig. 10. Example 3. Numerical solution for the concentration (left) and contour plot (right) after 3 years in Test B.

fter proposing the method, we developed an error analysis under the assumption of a regular solution, yielding a
heoretical backbone to the scheme. No time step size condition was needed in the analysis.

We firstly tested the proposed method on an academic example, thus validating also numerically the convergence
roperties of the scheme and assessing some additional practical aspects (such as the possibility of using locally
efined meshes that exploit the VEM flexibility). Afterwards, we considered a more realistic test case in order to
ave a qualitative comparison with the expected benchmark solution from the literature, in which we also introduced
modification in the method in order to deal with issues related to the convective nature of the problem. Although

ll the above developments are focused on the 2D case, we included an Appendix describing the extension to 3D

roblems.
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Fig. 11. Example 3. Numerical solution for the concentration (left) and contour plot (right) after 10 years in Test B.

From the presented theoretical and numerical studies, we believe that the VEM is promising and has the
ossibility to become, after further developments, a competitive scheme for complex flow problems. The added
alue, with respect to many competitors, is the possibility to easily handle arbitrarily shaped polytopal grids, which
ould be a critical point in geophysical real-life flow problems (that are well known to pose severe constraints to
he creation of the computational meshes and easily give rise to distorted and badly shaped grid elements). The
ext step in the development of our VEM methodology will be to tackle more complex problems in two and three
pace dimensions, where we can really test the advantages of the proposed formulation. This includes, for instance,
o solve problems with complex material data, as it happens in reservoir/basin simulation, and discrete fracture
etworks coupled with a diffusive matrix. Testing these cases, in collaboration with experts in the field, will be the
cope of future communications.
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ppendix. The three-dimensional case

The aim of this section is to present a brief discussion about the extension of the proposed method to the
hree-dimensional case, taking advantage of the ideas developed for the two-dimensional case combined with the
onstruction in [3,62].

From now on, we will denote with P a general polyhedron having ℓV vertices V , ℓe edges e and ℓ f faces f .
Moreover, for each polyhedron P and each face f of P , we denote with n f

P the unit outward normal vector to f ,
nd with h P , |P|, and | f | the diameter of P , the volume of P , and the area of f , respectively.

Let Th be a discretization of Ω into polyhedra P with h := maxP∈Th h P . For a given element P ∈ Th , F P and
P denote the sets of faces and edges belonging to P .

On each polyhedron P ∈ Th , the local velocity and pressure VE spaces are defined by

V h(P) := {v ∈ H (div; P) ∩ H (curl; P) : v · n f
P | f

∈ Pk( f ) ∀ f ∈ ∂P,

div v ∈ Pk(P), curl v ∈ Rk−1(P)}
2
Qh(P) := {q ∈ L (P) : q ∈ Pk(P)},
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here Rk−1(P) := curl ([Pk(P)])3. The local concentration space is defined (recursively) as

Z3D
h (P) := {z ∈ H 1(P) : z|∂P ∈ C0(∂P), z| f ∈ Zh( f ) ∀ f ∈ F P , ∆z ∈ Pk+1(P),∫

P
z pk dx =

∫
P

(Π ∇,P
k+1 z) pk dx ∀pk ∈ Pk+1/Pk−1(P)}.

We here summarize the main properties of the 3D spaces V h(P), Qh(P) and Z3D
h (P) (we refer [3,62] for a

eeper analysis).

• Dimensions. The dimensions of the 3D spaces V h(P), Qh(P) and Z3D
h (P) are

dimV h(P) = ℓ f
(k + 1)(k + 2)

2
+

k(k + 2)(k + 3)
2

dimQh(P) =
(k + 1)(k + 2)(k + 3)

6

dimZ3D
h (P) = ℓV + ℓe k + ℓ f

k(k + 1)
2

+
k(k + 1)(k + 2)

6
.

• Degrees of freedom (DoFs). The following linear operators constitute a set of DoFs:

– for V h(P), a set of degrees of freedom {dofV h (P)
j }

dimV h (P)
j=1 is defined by

1.
1

| f |

∫
f
v · n f

P pk d f ∀pk ∈ Pk( f ) ∀ f ∈ F P

2.
h P

|P|

∫
P

(div v) pk dx ∀pk ∈ Pk(P)/R

3.
1

|P|

∫
K
v · (x ∧ pk−1) dx ∀ pk−1 ∈ [Pk−1(P)]3,

(79)

with x := (x1, x2, x3)T , where we assume the coordinates to be centered at the barycenter of the element;
– for Qh(P), we consider {dofQh (P)

j }
dimQh (P)
j=1 with

1
|P|

∫
P

q pk dx ∀pk ∈ Pk(P); (80)

– for Z3D
h (P), we take {dof

Z3D
h (P)

j }
dimZ3D

h (P)
j=1 with

1. pointwise values at the vertices: z(v)

2. on each edge e ∈ E P , the values of z at the k internal Gauß–Lobatto points

3.
1

| f |

∫
f

z qk−1 d f ∀qk−1 ∈ Pk−1( f ) ∀ f ∈ F P

4.
1

|P|

∫
P

z qk−1 dx ∀qk−1 ∈ Pk−1(P) .

(81)

• Projections. The DoFs allow us to exactly compute the polynomial projections

Π ∇,P
k+1 : Z3D

h (P) → Pk−1(P) , Π 0,P
k+1 : Z3D

h (P) → Pk−1(P) ,

Π0,P
k : V h(P) → [Pk(P)]3 , Π0,P

k : ∇Z3D
h (P) → [Pk(P)]3 .

Once the above spaces with associated DoFs have been selected, the method design in the 3D setting follows
he lines of Sections 3.3 and 3.4 verbatim. In particular, the forms Mh , Θh , Dh , and Ah in (24) follow the same
onstructions dictated in (26), (27), (29), and (31), respectively, where, in accordance with Remark 3.3, in order to

et the 3D counterpart of the stability estimates (32), we take the following scaled stabilizations corresponding to
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t
he degrees of freedom:

S P
M(ch, zh) = |P|

dimZ3D
h (P)∑

j=1

dof
Z3D

h (P)
j (ch) dof

Z3D
h (P)

j (zh)

S P
D(ch, zh) = h P

dimZ3D
h (P)∑

j=1

dof
Z3D

h (P)
j (ch) dof

Z3D
h (P)

j (zh)

S P
A(uh, vh) = |P|

dimV h (P)∑
j=1

dofV h (P)
j (uh) dofV h (P)

j (vh).

Extending the theoretical results of the present paper to the 3D setting would not be particularly complicated.
Essentially, the same path can be followed, combined with the approximation estimates (and the de Rham complex
properties) of the above 3D virtual spaces, described in [62]. Delving into the details of such proofs is beyond the
scope of the present paper.
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