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Abstract

Summary: While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc
methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for
the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional anno-
tation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that,
by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary
patterns in the genome of SARS-CoV-2.

Availabilityand implementation: Galaxy

http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker:
https://hub.docker.com/r/laniakeacloud/galaxy_corgat.

Contact: matteo.chiara@unimi.it or graziano.pesole@uniba.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent outbreak of COVID-19 has underlined the importance of
rapid and effective sharing of molecular data for combating the
spread of human pathogens and tracing possible routes of infection.
At present, more than 200 000 genomic SARS-CoV-2 sequences
have been deposited in dedicated repositories (Shu and McCauley,
2017) along with associated metadata. Harnessing this wealth of in-
formation to identify functionally relevant genomic changes and/or
recognizing the emergence of novel viral strains is of pivotal import-
ance in the fight against COVID-19. Currently tools for functional
annotation of genomic sequences have not been specifically devised
for the analysis of SARS-CoV-2, e.g. do not take into account the
unusual mechanisms of transcription and post-translational process-
ing of coronaviruses gene products (Sawicki et al., 2007).
Additionally, while a wealth of resources and datasets for the fine-
grained annotation of functional genomic elements are currently
available, including: detailed studies of transcriptional mechanisms
(Kim et al., 2020), conserved regulatory sequences (Sawicki et al.,
2007), sites under evolutionary selection (http://hyphy.org/covid/),
predicted epitopes (Kiyotani et al., 2020) and non-coding secondary
structure elements, are available, these are not normally

incorporated in the functional annotation of SARS-CoV-2 genomic
variants. To overcome these limitations, we propose a novel, highly
effective and user friendly approach for the functional annotation of
SARS-CoV-2 genomes: CorGAT - the Coronavirus Genome
Analysis Tool. By integrating a curated selection of datasets and
resources, CorGAT provides a richer and more detailed annotation
of SARS-CoV-2 variants when compared with other state of the art
methods. To illustrate its advantages, we apply CorGAT to the com-
plete collection of 57 558 currently available SARS-CoV-2 genomic
sequences, and derive relevant insights concerning the evolution of
this novel pathogen.

2 Implementation

CorGAT has been made available as a collection of Perl script and
annotation files at https://github.com/matteo14c/CorGAT/tree/
Revision_V1. A user friendly version of the software is available in
the form of a standalone Galaxy (Afgan et al., 2018) implementa-
tion, based on the Laniakea@ReCaS Galaxy on-demand service
(Tangaro et al., 2020) at http://corgat.cloud.ba.infn.it/galaxy. A
Docker container image can be obtained from https://hub.docker.
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com/r/laniakeacloud/galaxy_corgat. A complete account of the
resources used for the annotation of the SARS-CoV-2 genomes, and
of their integration in CorGAT is presented in the Supplementary
Materials. A detailed user manual is available at https://corgat.read
thedocs.io/. Functional annotation files incorporated in CorGAT are
updated on a monthly basis, to cope with the constant increase in
publicly available data and genomic sequences of SARS-CoV-2.
CorGAT has a modular architecture (see Supplementary Materials),
allowing the rapid inclusion of novel or even custom types of anno-
tations, simply by editing plain text files.

3 Results

To demonstrate the application of CorGAT, we compared the func-
tional annotation of the complete collection of 20 045 genetic var-
iants derived from 57 558 genomic sequences of SARS-CoV-2 (see
Supplementary Materials) by CorGAT, with the annotations by
SNPeff (Cingolani et al., 2012) and by the Variant Annotation
Integrator (Hinrichs et al., 2016). Simple statistics concerning the
number and types of variants are reported in Supplementary Table
S1. As outlined in Supplementary Table S2, all the tools herein con-
sidered provided highly consistent annotations of functional effects
of variants associated with protein coding genes, thus confirming
that CorGAT attains the same level of sensitivity as the other meth-
ods. However, as illustrated in Supplementary Table S3, CorGAT
provides additional layers of annotation that are not provided by
other methods, for a total of 14753 single distinct annotations.
These include 33 variants associated with regulatory elements (tran-
scription regulatory sequences, TRS), 69 variants associated to con-
sensus cleavage sites (Kiemer et al., 2004) in the ORF1a and
ORF1ab polyproteins, 1164 variants associated with sites under se-
lection according to Hyphy (Kosakovsky Pond et al., 2020) and 161
variants in conserved secondary structure elements (Supplementary
Table S3). According to our analyses, a highly significant reduction
of missense substitutions is observed at sites predicted to be under
negative selection (Fisher P-value < 2.2e-16), compared to the back-
ground of all the substitutions in protein coding genes. Nevertheless,
229 missense substitutions alter highly conserved amino acid resi-
dues that are predicted to be under negative selection. Furthermore,
analysis of genetic variants associated with functional non-coding
elements in the genome of SARS-CoV-2 highlight some potentially
interesting patterns. While the 50 and 30 UTRs are the most variable
regions of the genome, TRS and secondary structure elements in
general are considerably less variable, and show levels of conserva-
tion comparable to protein coding genes (Supplementary Table S4).
This is well exemplified by the TRS-L element, which is the single
most conserved region in the 50 UTR (Supplementary Fig. S1).
Strikingly, the s2m element in the 30 UTR (Tengs et al., 2013) exhib-
its more of variability and recurrent indels than other annotated
functional elements (Supplementary Tables S4 and S5).
Interestingly, our functional annotation (see Supplementary
Materials), indicates that several observed substitutions might result
in substantial changes to s2m structure consistent with change or
loss of s2m function in SARS-CoV-2 (Chiara et al., 2020). We

conclude, that CorGAT constitutes a useful addition to the collec-
tion of tools for the functional characterization of SARS-CoV-2
genomes.

Acknowledgements

The authors thank ELIXIR-Italy for providing the computing and bioinfor-

matics facilities. We gratefully acknowledge the authors, originating and sub-

mitting laboratories of the sequences from GISAID’s EpiFluTM Database on

which this research is based.

Funding

This work was supported by the Italian Ministero dell’Università e Ricerca:
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