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A B S T R A C T

Issue classification aims to recognize whether an issue reports a bug, a request for enhancement or support.
In this paper we use pre-trained models for the automatic classification of issues and investigate how the
quality of data affects the performance of classifiers. Despite the application of data quality filters, none of
our attempts had a significant effect on model quality. As root cause we identify a threat to construct validity
underlying the issue labeling.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
. Introduction

Issue trackers are used to manage requests for change, such as
ug fixing or product improvement, and requests for support. An issue
eport usually includes an identifier, a description, the author, the
tatus (e.g., open, assigned, closed), a thread of comments, and a label
uch as bug, enhancement or support. However, submitters frequently
isclassify labels by confounding improvement requests as bugs, and

ice versa (Antoniol et al., 2008). Herzig et al. (2013) report that
3.8% of all issue reports are incorrectly categorized as shown in
n extensive investigation covering more than 7000 issues across 5
rojects. Automatic classification of issues could be helpful in support-
ng effective issue management and prioritization, thus justifying the
nterest of the research community on this topic (Pandey et al., 2017).

Previous studies have proposed supervised approaches to address
he task of automatically predicting the label that should be assigned
o a new issue. Early studies leveraged traditional machine learning in
ombination with text-based features (Antoniol et al., 2008). Neural-
etwork-based approaches to distributional semantics, also known as
ord embeddings (Levy and Goldberg, 2014; Mikolov et al., 2013),
ave received increasing attention and are now regarded as the state of
he art for several natural language processing (NLP) tasks, including
ext categorization. Kallis et al. (2021, 2019) proposed Ticket Tagger, a
achine learning classifier trained on GitHub data, which leverages the

extual content of an issue title and body, whose vectorial representa-
ion is based on fastText (Joulin et al., 2017). Among recent advances,
ERT (Bidirectional Encoder Representations from Transformers) has
merged as a robust approach for task-agnostic pre-training of language
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models (Devlin et al., 2019). It outperformed the state of the art in
several NLP tasks, including issue classification.

In this paper, we report how we exploited pre-trained language
models for automatic issue labeling. Hence, our first research question
can be formulated as follows:

RQ1: To what extent we can leverage pre-trained language models to
enhance the state of the art in automatic issue labeling?

To address our first research question, we performed an empirical
study in the scope of the NLBSE’22 tool competition (Kallis et al., 2022).
The goal of the challenge was to build a classifier for automatic issue
report classification. The organizers provided a dataset including more
than 800 K issue reports, extracted from GitHub open-source software
projects and labeled by their authors as either bug, enhancement, or
question (Kallis et al., 2021, 2019). The participants were invited to
use the dataset to train and evaluate machine learning (ML) models for
the automatic classification of issues. To solve the task, we proposed
two models based on supervised learning that leverage the information
available at the time of issue writing, that is the title and body of the
issue and the issue-author association (e.g., collaborator, owner, etc.).
We experimented with the fine-tuning of BERT (Devlin et al., 2019) and
its variants ALBERT (Lan et al., 2020) and RoBERTa (Liu et al., 2019).
To combine text and author information, we also trained a multilayer
perceptron (MLP) classifier that leverages the BERT-based embedding
of the issue with a one-hot encoding representation of the author-issue
relation. Both ML models outperformed the baseline.

As a follow-up of the challenge – after analyzing misclassified cases
– we focused on investigating the relationship between data and model
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quality as part of our study’s second goal. The error analysis suggests
that one of the main causes of issue misclassification is the presence
of inconsistencies in the labeling rationale or the presence of issues
tagged with more than one label, which might introduce noise in the
model training. In fact, the issues in the dataset were collected using
only a time-based criterion for inclusion. Conversely, previous work
on GitHub mining suggests that a series of proxies could be used as
indicators for data quality, such as the project star count (Biswas et al.,
2019; Munaiah et al., 2016). Hence, we formulate the second research
question as follows:

RQ2: To what extent the performance of a model can be improved by
improving the quality of the training data?

Prior research already explored the influence of data quality on
model quality by means of manual label verification (Wu et al., 2022).
Nevertheless, manual annotation is a laborious and time-consuming
task. This study investigates the efficacy of operationalizing data qual-
ity criteria in the form of filters that can be automatically applied on
training data. To address our second research question, we define a
number of data quality criteria based on previous research in this field.
We operationalize them into a set of filters that we then apply on the
former GitHub dataset to progressively filter out uncertain data. In
addition, we include a new dataset of Jira issues (Montgomery et al.,
2022) that already meets these data quality criteria.

The main contributions of this work are as follows:

• We propose and assess supervised classifiers for GitHub issue la-
beling that leverage pre-trained language models. The best model
achieves a performance of F1 = .8591 using textual information
only extracted from the issue body and title.

• We investigate the impact of data quality on our automatic issue
classifiers. We found that neither the most popular nor the most
mature projects generate better predictions of issue labeling. We
speculate that the negative result in improving the issue classi-
fication is caused by conceptual inconsistencies in the labeling,
which make any subsequent data cleanup action useless.

• We build and distribute a lab package to verify, replicate, and
build upon the present study. The replication material is available
on GitHub (Colavito et al., 2022b).

The remainder of this paper is structured as follows. In Section 2, we
report the background on word embeddings and pre-trained language
models (i.e., BERT and its variants) and we discuss the importance
of ensuring data quality when building ML models. In Section 3, we
present the datasets used in our experiments; then, in Section 4, we
describe the methodology of our study. In Section 5, we address our
first research question by reporting the results of the model perfor-
mance evaluation conducted on the test set and comparing it with the
baseline approach. As a further contribution of this study, we report
the results of an error analysis carried out on the misclassified cases.
In Section 6, we address our second research question by reporting
the impact of data quality filters on the classification performance
based on the GitHub and Jira datasets (see Sections 6.1 and 6.2,
respectively). We discuss our findings in Section 7, where we also
summarize recent related work on issue classification. The paper is
concluded in Section 8.

2. Background and related work

2.1. Text embedding

Effectively modeling semantics of natural language has been a
subject of study for computational linguistics since long. In line with the
meaning-is-use assumption, – i.e., the semantics of words can be inferred
by its contextual use – and thanks to the recent availability and accessi-
bility of higher computational power resources, recent studies led to the
development and release of robust pre-trained, task-agnostic language
models that successfully achieve state-of-the-art performance in many
2

natural language processing (NLP) applications. In particular, word
embeddings (Levy and Goldberg, 2014; Mikolov et al., 2013), have
been used to address several NLP tasks, including text categorization,
achieving state-of-the-art performance.

Among others, BERT (Bidirectional Encoder Representations from
Transformers) represents the most recent advancement of research in
the NLP field. BERT was proposed by Devlin et al. (2019) for the
pre-training of language models using deep bidirectional transformers.
Since its introduction, BERT outperformed state-of-the-art approaches
in several NLP tasks, thus representing a disruptive innovation in
computational linguistic research. Differently from previous language
models, which provide context-free embedding of words (see, for exam-
ple Word2Vec (Mikolov et al., 2013)), BERT generates representations
of words based on their context. BERT is task-agnostic and can be
easily embedded in a text classifier thanks to transfer learning and fine-
tuning of the parameters of the pre-trained model originally released by
Google. One of the main advantages of using a BERT-based classifier
is the possibility of leveraging transfer learning to adapt a pre-trained
language model originally obtained by exploiting a huge corpus of unla-
beled documents. Compared to model pre-training, the fine-tuning step
is less expensive albeit able to outperform task-specific architectures for
several NLP tasks (Devlin et al., 2019), while still enabling the training
of robust task-specific classifiers.

Since its release, alternative versions of BERT-based language mod-
els have been proposed to address some of the limitations of the original
model (Liu et al., 2019; Lan et al., 2020; Sanh et al., 2019). Sanh et al.
(2019) released DistilBERT, a model trained with half of the BERT
parameters to reduce the time needed to train the language model.
Liu et al. (2019) replicated the original study by Devlin et al. and
retrained the BERT model by introducing modifications to improve
the accuracy. Specifically, they trained the Robustly-optimized BERT
(RoBERTa) for a longer time, with more epochs and a bigger batch size,
thus obtaining a more robust pre-trained language model. Differently,
to build ALBERT (Lan et al., 2020), Lan et al. leveraged factorized
embeddings to reduce overfitting during the fine-tuning of NLP models.

2.2. Automatic classification of issues

Issue tracking systems allow users to report the problems of a soft-
ware product by entering a brief textual summary, typically composed
of a title and an optional description. They can be standalone tools,
such as Jira,1 or tools integrated in code hosting platforms like GitHub.2

While this kind of software solution lowers the entry barrier and
brings more novice external contributors, it complicates the work of
maintainers, as several issues of various types and quality are typically
submitted (Bissyandé et al., 2013; Panichella et al., 2014; Fan et al.,
2017). Maintainers can utilize customized labeling to mark and orga-
nize issue reports. Labels can provide quick hints about issues, such as
what kind of topic an issue is about, what development task the issue
is related to, or what priority the issue has. Labels are then helpful
for project management because they can act as both a classification
and filtering mechanism (Cánovas Izquierdo et al., 2015; Liao et al.,
2018). However, the labeling mechanism on GitHub is rarely used by
contributors (Kallis et al., 2019; Bissyandé et al., 2013) and maintainers
have to spend a lot of effort for manually labeling issues (Fan et al.,
2017).

Previous studies presented several approaches to automatically cat-
egorize issues posted in tracking systems. Antoniol et al. (2008) show
that machine learning models may be used to distinguish between bugs
and other types of issues. Six alternative issue categories are introduced
by Herzig et al. (2013): bug, feature request, improvement request,
documentation request, and others. Zhou et al. (2014) merge structured

1 https://www.atlassian.com/en/software/jira
2 https://GitHub.com
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and unstructured free-text data to train a classifier that can accurately
determine if a bug report is indeed a bug or another type of issue.

More recently, researchers started using deep learning and, in
particular, pre-trained language models, such as BERT and its vari-
ants (Wang et al., 2021; Izadi et al., 2022).

Lately, Kallis et al. (2021, 2019) proposed Ticket Tagger, a machine
learning classifier that predicts the label to assign to issues trained
on GitHub data. Specifically, Ticket Tagger leverages only the textual
content of an issue title and body, whose vectorial representation is
based on fastText (Joulin et al., 2017), an open-source tool released by
Facebook AI research. Ticket Tagger was identified by the NLBSE tool
competition organizers as the baseline system, and all participants were
invited to compare the performance of the proposed systems with it.

2.3. Data quality

Data cleaning, i.e., the process of removing data quality problems,
is an activity of uttermost importance in any ML workflow because per-
formance can suffer considerably if models are trained on bad-quality
data (Halevy et al., 2009; Kästner, 2021). However, data cleaning
is among the most time-consuming chores in the data science prac-
tice (Sambasivan et al., 2021); according to a survey administered to
80 practitioners in the field, such task accounts for about 60% of the
work accomplished by data scientists every day (Press, 2016).

To help practitioners timely detect data quality issues and fix them,
researchers have started designing systems for the automatic detection
and restoration of potential problems in data. For instance, Hynes et al.
(2017) built the ‘Data Linter’, i.e., an open-source tool aimed at finding
various data-related issues in ML pipelines. Similarly, Rekatsinas et al.
(2017) developed HoloClean, a semi-automated data repairing frame-
work; while Data Linter detects problems based on data-patterns and
heuristics, HoloClean is powered by a weakly supervised ML approach
based on statistical learning and inference. Both tools are optimized
to work with structured datasets, although data cleaning is strongly
advised also in the case of unstructured text data (Jain et al., 2020).

As regards the data quality of GitHub projects, notwithstanding the
plethora of opportunities that GitHub provides for archival studies,
some researchers reported a number of potential threats that their
colleagues need to take into account when mining data from this
platform (Kalliamvakou et al., 2014a; Gousios and Spinellis, 2017;
AlMarzouq et al., 2020). In particular, besides enumerating the exciting
promises of mining GitHub, Kalliamvakou et al. (2014a) provided
evidence of 9 issues (perils) that might hinder the quality of data
scraped from the website or gathered from its API: for instance, most
of the publicly available projects are personal, they contain only a few
commits, and are typically inactive; moreover, many repositories are
not used for software development, since several users leverage GitHub
as a free storage service or web hosting platform.

3. Datasets

We use two publicly available datasets of issues collected from
GitHub and Jira projects.

3.1. GitHub dataset

The GitHub dataset is the gold standard dataset distributed by the
NLBSE tool competition organizers (Kallis et al., 2022, 2021, 2019).
The issues in the dataset were extracted from the GitHub Archive3

sing Google BigQuery.4 The dataset consists of more than 800K GitHub
ssue reports extracted from open source software projects. Each issue
eceives a label, which represents the classification target. Possible class
alues are (i) bug, indicating that the issue contains a bug report,

3 https://www.gharchive.org/ (Last accessed: Dec. 2023)
4 https://cloud.google.com/bigquery/ (Last accessed: Dec. 2023)
3

(ii) enhancement, indicating that the issue contains suggestion for im-
provements or requests for new features, and (iii) question, assigned to
issues containing users’ questions about the software usage. In Table 1,
we present a sample of the GitHub dataset. The dataset is split into
train (90%) and test set (10%), with the same label distribution (see
Table 2). The label distribution is unbalanced, with the minority class
of questions (9%) being underrepresented compared to bugs (50%) and
enhancements (41%).

The organizers of the tool competition selected all the issues closed
during the first semester of 2021 (from January 1st 2021 to May 31st
2021) that contained any of the labels bug, enhancement, and question at
the issue closing time (Kallis et al., 2022). The dataset was distributed
as a CSV file containing raw data, i.e., no preprocessing was applied
to the text of the issues, which was shared in the original Markdown5

format. For each issue, the dataset includes the issue URL, the creation
date, the repository URL, the title and the body. Furthermore, the
dataset includes an attribute describing the issue-author association,
that is the role played by the author in the repository, with values in
{owner, contributor, member, collaborator, none, mannequin}.

Labels in the dataset are assigned based on what observed in
GitHub. In particular, labels in GitHub can be assigned by the user
who opened the issue or by repository maintainers. In case of multiple
labels, the organizers of the challenge used the most recent one as the
gold label.

3.2. Jira dataset

The Jira dataset (Montgomery et al., 2022) is built from 16 public
Jira repositories containing 1822 projects and 2.7 million issues. Each
Jira repository contains issues for multiple projects, e.g. 657 projects for
the Apache ecosystem. Issue labels in Jira are heterogeneous and vary
across projects. The authors of the dataset performed a thematic anal-
ysis to derive a unified set of themes and codes, which is used to label
the issues included in the dataset. Each original label in Jira is mapped
to a code (e.g., bug report) associated to a theme (e.g., maintenance).

From the set of codes defined by Montgomery et al. (2022), we
identify the ones whose semantics match the labels used in the GitHub
dataset, namely bug, enhancement, and question. By doing so, we aim at
enabling a fair comparison of the performance achieved by the classifier
on the two datasets. We report the selected codes and their mapping to
the classification labels in Table 3. In this study, we include only the
issues that can be mapped as either bug, enhancement, or question. The
resulting dataset, with label distribution and breakdown by project is
reported in Table 4.

90% of the Jira dataset is used as training set for our experiments.
The remaining 10% is kept out as test set. The split is stratified, in order
to preserve the label distribution.

4. Methodology

In the following, we describe the design of the empirical study we
performed to address our research questions.

To answer RQ1 (‘‘To what extent we can leverage pre-trained language
models to enhance the state of the art in automatic issue labeling?’’)
we implement a supervised approach by leveraging state-of-the-art
pre-trained language models based on transformers. Specifically, we
fine-tune BERT and its variants to address the issue classification task
of the challenge and we assess the performance of the classifier on the
GitHub dataset (see Section 4.4).

To address RQ2 (‘‘To what extent the performance of a model can
be improved by improving the quality of the training data?’’) we repli-
cate the fine-tuning and evaluation of BERT-based classifiers after the
application of filters to improve the quality of the GitHub training
data. In addition, we take into consideration the Jira dataset, which by

5 https://daringfireball.net/projects/markdown/
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Table 1
A sample of the GitHub dataset.
Issue_url Issue_label Issue_created_at Issue_author_association Repository_url Issue_title Issue_body

api.GitHub.com/. . . bug 2021-01-
02T18:07:30Z

NONE api.GitHub.com/. . . Welcome screen on
every editor window
is very tedious

I just discovered
Gitlens and find the
functionality useful,
thank you to all who
contribute...

api.GitHub.com/. . . bug 2020-12-
31T18:19:31Z

OWNER api.GitHub.com/. . . ‘‘pcopy invite’’ and
‘‘pcopy paste abc:’’
does not check if
clipboard exists

api.GitHub.com/. . . bug 2021-01-
03T04:33:36Z

OWNER api.GitHub.com/. . . UI: Modal overlay is
half transparent,
should not be

api.GitHub.com/. . . enhancement 2020-12-
25T00:46:00Z

OWNER api.GitHub.com/. . . Make the loading
screen scale with
browser window size

Currently the loading
wheel is a fixed size
in pixels, but it would
be better to specify it
in terms of percentage
of the browser size.

api.GitHub.com/. . . bug 2021-01-
02T21:36:57Z

OWNER api.GitHub.com/. . . Spectator - Investigate
a way to strip
weapons before they
are spectating a
player

To bring magneto
stick floating
Table 2
Label distribution in the GitHub dataset.

Overall Train set Test set

Bug 401,391 (50%) 361,103 (50%) 40,288 (50%)
Enhancement 332,577 (41%) 299,374 (41%) 33,203 (41%)
Question 69,449 (9%) 62,422 (9%) 7,027 (9%)

Total 803,417 722,899 80,518

Table 3
The mapping applied from Jira codes to GitHub issue labels.

Label Codes

Bug {’Bug Report’}
Enhancement {’New Feature’, ’Improvement Suggestion’, ’Feature Request’}
Question {’Support Request’, ’Question’}

Table 4
Label distribution in the subset of the Jira dataset used in our study.

Bug Enhancement Question

1,522,538 70% 628,308 29% 8,787 <1%

Breakdown by project

Jira Name Year Bug Enhancement Question

Apache 2000 523,110 62% 312,671 37% 2,214 <1%
Hyperledger 2016 7,622 75% 2,601 25% 0 –
IntelDAOS 2016 3,616 100% 0 – 0 –
JFrog 2006 8,236 62% 4,993 38% 34 <1%
Jira 2002 131,138 48% 138,453 51% 2.438 1%
JiraEcosystem 2004 20,414 67% 9,958 33% 170 <1%
MariaDB 2009 22,800 95% 1,151 5% 0 –
Mindville 2015 860 40% 1,274 60% 0 –
Mojang 2012 420,819 100% 0 – 0 –
MongoDB 2009 48,122 54% 38,768 44% 1,808 2%
Qt 2005 106,804 87% 15,943 13% 0 –
RedHat 2001 160,937 71% 66,596 29% 408 <1%
Sakai 2004 33,216 85% 5,985 15% 0 –
SecondLife 2007 1,231 96% 48 4% 0 –
Sonatype 2008 6,495 61% 2,480 23% 1,597 15%
Spring 2003 27,118 50% 27,387 50% 118 <1%
4

construction meets the quality criteria that inspired the design of our
filters. We evaluate the performance of the BERT-based classifiers both
on the filtered GitHub datasets and on the Jira dataset (see Section 4.5).

As a preliminary step, we preprocess both datasets as described in
Section 4.1. The training of the issue classifiers, reported in Section 4.3,
is performed by first fine-tuning the pretrained language models, as
described in Section 4.2.

4.1. Pre-processing

As a first pre-processing step, we identify text patterns indicating
non-textual items – such as images, links, or code snippets – and
replace them with tokens (e.g., <img> for images). Then, we perform
a further text normalization step using ekphrasis Text Pre-Processor,6
which is able to identify URLs, email addresses, percentage or currency
symbols, phone numbers, user mentions, times, dates, and numbers. We
replace such items with ad hoc tokens; also, we use ekphrasis to unpack
hashtags, contractions, and emojis.

Since the documents need to be fed into either BERT or one of its
variants, we encode all the documents in the dataset using the model-
specific tokenizer. To avoid exceeding the GPU memory capacity, we
pad/truncate each document to 128 tokens, in line with previous
work (Wang et al., 2021). We apply the same preprocessing steps to
both datasets.

4.2. Model fine-tuning

We implement a supervised approach by leveraging state-of-the-art
models based on transformers. Specifically – as depicted in Fig. 1 – for
the GitHub dataset, we experiment with the fine-tuning of BERT-based
models in two different settings. In the first setting (denoted as Classifier
1 in Fig. 1), we leverage the textual content of the issue (i.e., title and
body) to fine-tune the language model and obtain the final classifier.
In the second setting (denoted as Classifier 2 in Fig. 1), we combine
textual data with the information provided by the author-association
field and train a feed-forward network using PyTorch.7

6 https://GitHub.com/cbaziotis/ekphrasis
7 https://pytorch.org/

https://GitHub.com/cbaziotis/ekphrasis
https://pytorch.org/
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Fig. 1. The two classifiers implemented for issue labeling.
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For the Jira dataset, we only implement the first approach, as we
bserve that it outperforms the second classifier trained on the GitHub
ataset (Colavito et al., 2022a) (see Table 7).

As a preliminary step, we identify the best pre-trained language
odel to be used for the issue classification task. To this aim, we

onduct some experiments on the GitHub dataset. In particular, we
ompare the performance of BERT (Devlin et al., 2019), ALBERT (Lan
t al., 2020), and RoBERTa (Liu et al., 2019); as for BERT, we use
oth the base model and the large model. To select the best model,
e fine-tune and evaluate each of them by leveraging the training set.
pecifically, we split the training set to use 90% for training and 10%
or validation. We use the training set to assess the performance of the
odel using different learning rates and number of epochs. In line with

he recommendation provided by Devlin et al. (2019), we experimented
ith learning rates in [5e-5, 4e-5, 3e-5, 2e-5] and number of epochs in
1, 2, 3, 4]. We selected the final hyper-parameters to be used in this
tudy based on the best micro-F1 observed on the validation set during
he hyper-parameter tuning step. As a result of the hyper-parameter
uning, we decided to fine-tune each model using up to 4 epochs and
earning rate = 2e-5. For fine-tuning all the models, we use the AdamW
ptimizer (Adam weight decay) with epsilon = 1e-8, which is the
efault value.

.3. Training the issue classifiers

As a first step, we fine-tune the best language model using the full

raining set. To this aim, we replicate the same procedure adopted for a

5

model selection, i.e., we fine-tune the best language model using the
issue title and body, which we pad/truncate to consistently represent
documents with the same length (128 tokens). Then, we use the fine-
tuned RoBERTa model to build the two classifiers. For Classifier 1, we
imply rely on the textual information of the GitHub issues, i.e., on
he concatenation of the title and body of each issue. For Classifier 2,
e build a multilayer perceptron (MLP) classifier that leverages the

ombination of the textual information of the issues with the infor-
ation regarding the issue-author association contained in the dataset.
his decision was inspired by the issue-author association per class in
he GitHub dataset. The distribution (see Table 5) suggests that the
nformation regarding the issue-author association can provide useful
nsights for issue classification. For instance, questions and bugs appear
o be primarily reported by non-collaborating users, while enhance-
ents are mainly reported by repository owners. Thus, we decided to

nvestigate to what extent the textual information alone is sufficient to
erform accurate issue classification compared to the setting in which
he issue-author association is also leveraged.

To this aim, we extract the text embeddings of each document,
.e., the concatenation of the title and body of the issues, using the last
idden layer before the classification layer of the fine-tuned model, ob-
aining a 768-dimension embedding. We then concatenate the text em-
edding with the one-hot-encoding representation of the issue-author
ssociation information (six dimensions overall, one for each possible
alue of the issue-author association attribute). The new vector is
ed into a multi-layer perceptron with two hidden layers of size 256
nd 128, respectively. In order to train the network, we use stratifed
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Table 5
Issue-author association per class.

Issue-author association/Class Bug Enhancement Question

Collaborator 12% 13% 4%
Contributor 17% 16% 7%
Mannequin – – –
Member 12% 14% 3%
None 43% 21% 81%
Owner 16% 34% 5%

sampling to split the training set into a training (90%) and a validation
set (10%). The network is then trained with the following parameters:
batch size = 32, learning rate = 1 × 10−5, and the Adam optimizer.
We set epochs = 100 and use an early stopping criterion with patience
= 5. We use a callback function to save the model periodically, stop
the training early if the validation loss stops improving, and select the
model achieving the best (lower) validation loss. A callback function
is a custom code that can be executed at specific stages of the training
process, such as at the end of each epoch or batch. For the training,
we use PyTorch Negative Log-Likelihood Loss8 and set the weights of the
oss function as inversely proportional to the class frequencies in the
raining data. For further details about this implementation, our Tool
ompetition code is available on GitHub (Colavito et al., 2022b).

.4. Evaluating the performance of pre-trained language models (RQ1)

We provide the evaluation of the two classifiers on the test set in
erms of precision, recall, and F1. Given the unbalanced distribution
f the labels in the GitHub dataset, we report both the micro-F1 and
acro-F1.

Precision and recall are two fundamental measures used for binary
lassification problems. Let us consider a binary classification problem
ith two classes, 𝑐1 and 𝑐2. Precision is the probability that, if a random
ocument 𝑑 is classified as 𝑐1, the decision is correct. Recall is the
robability that, if a random document 𝑑 belongs to the class 𝑐1, the

classifier takes the exact decision. The mathematical expressions to
calculate precision and recall are as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

where TP is the number of true positives (correctly classified positive
instances), FP is the number of false positives (negative instances in-
correctly classified as positive), and FN is the number of false negatives
(positive instances incorrectly classified as negative).

In addition to precision and recall, the F1 score is another popular
measure for binary classification. It is the harmonic mean of precision
and recall and provides a balanced measure of their trade-off. The 𝐹1
score ranges from 0 to 1, with 1 indicating perfect precision and recall.
The mathematical expression for the F1 score is as follows:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

In presence of multiple classes, the overall F1 score of a classi-
ier can be calculated using two different methods: F1 micro- and
acro-averaging. F1 micro takes into account the total number of true
ositives, false positives, and false negatives across all classes, while
1 macro computes the F1 score for each class independently and then
akes their unweighted average. The mathematical expressions for f1
icro and f1 macro are as follows:

1𝑚𝑖𝑐𝑟𝑜 =
2 ×

∑𝐶
𝑖=1 𝑇𝑃𝑖

2 ×
∑𝐶

𝑖=1 𝑇𝑃𝑖 +
∑𝐶

𝑖=1 𝐹𝑃𝑖 +
∑𝐶

𝑖=1 𝐹𝑁𝑖

8 https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
6

𝐹1𝑚𝑎𝑐𝑟𝑜 =
1
𝐶

𝐶
∑

𝑖=1
𝐹1𝑖

where 𝐶 is the total number of classes and 𝐹1𝑖 is the 𝐹1 score for
lass 𝑖.

Indeed, micro-averaging is known to be influenced by the perfor-
ance on the majority class; conversely, the ability of a classifier to

orrectly identify items belonging to classes with few training instances
s correctly assessed by the macro-average (Sebastiani, 2002). For the
ira dataset, we only train one classifier, corresponding to the Classifier
1 architecture.

4.5. Evaluating the impact of improved data quality on training (RQ2)

In line with the goal of our second research question, we assess the
performance of classifiers obtained using training datasets of improved
quality. To this aim, we define a number of criteria to filter out noisy
data from the GitHub dataset. In addition, we take into account the
Jira dataset, which meets by construction the same set of data quality
criteria operationalized by our filters.

When mining software repositories, it is important to appropriately
define quality criteria for the inclusion/exclusion of each repository to
be analyzed (Kalliamvakou et al., 2014b). However, the issues included
in the GitHub dataset were collected by considering a time frame as
the only inclusion criterion (Kallis et al., 2022). As a consequence, the
dataset might be noisy and potentially include issues from toy projects.
The quality criteria that we adopt in this study are based both on a
manual inspection of the GitHub dataset as well as on previous research
on this topic (Kalliamvakou et al., 2014b; Biswas et al., 2019; Munaiah
et al., 2016).

As reported by Kalliamvakou et al. (2014b), the majority of the
projects hosted on GitHub are either personal or inactive. Consistently
with this finding, an inspection of the GitHub dataset revealed that the
corpus contains several repositories including only one issue, a hint that
the related projects might indeed be inactive or personal. In the light of
this, we try to improve the quality of our training data by considering
only high-quality projects that are likely to actively use the GitHub
issue tracking system.

The project star count is usually regarded as a reliable indicator
of the quality of a GitHub repository (Biswas et al., 2019; Munaiah
et al., 2016). As such, we use the number of project stars as a proxy
for data quality and experiment with training sets including issues
from repositories with an increasing number of stars. Specifically, we
filter training and test sets from the GitHub dataset using a progressive
star threshold, i.e., {50, 100, 500, 1000, 1500} stars. Given the class
imbalance, we also perform undersampling on the training set based
on the support of the minority class (i.e., question). For each of the five
settings in which we train the model using the filtered datasets, we
also train a classifier on a random sampling of the training set. This is
useful to assess the effectiveness of the filter in a setting in which the
two models have been trained using a control dataset (no filter applied)
with comparable size. The only difference is that, in the first case,
the issues are the ones that match the quality criteria operationalized
with the star-based filter, while in the second case they are randomly
sampled. We then test both classifiers on the filtered test set.

As a further consideration emerging from the manual inspection of
the misclassified cases from the GitHub dataset (Colavito et al., 2022a),
we argue that the lack of consolidated issue labeling guidelines might
be a cause for the lower quality of training data. Having consolidated
contribution guidelines might help contributors label issues consistently
over time. Such guidelines are more likely to be present in consolidated
software projects: for this reason, we adopt project age as a second
proxy for quality. To operationalize this quality criterion, we (i) remove
projects with an age less than one year and (ii) we split the remaining
projects into two ranges – i.e., [1, 4] years and ]4,+∞) years – as

inspired by a previous work (Vasilescu et al., 2014). As in the case of

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
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Table 6
Pre-trained model selection: the best performance achieved on the validation set for all fine-tuned models.

ALBERT (3 epochs) BERT-base (2 epochs) BERT-large (2 epochs) RoBERTa (4 epochs)

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Bug .8695 .8906 .8799 .8712 .9069 .8887 .8694 .9106 .8895 .8756 .8985 .8869
Enhancement .8615 .874 .8677 .8709 .8802 .8756 .8722 .8763 .8742 .8743 .8755 .8749
Question .6734 .532 .5944 .7142 .5083 .5939 .7257 .5104 .5993 .6667 .5612 .6094

Micro .8528 .8528 .8528 .8614 .8614 .8614 .8618 .8618 .8618 .8599 .8599 .8599
Macro .8015 .7655 .7807 .8188 .7651 .7860 .8224 .7658 .7877 .8055 .7784 .7904
.

the star-based filtering, we compare the performance of the classifier
trained on filtered data with the one trained on a control dataset where
the age filter is not applied.

Finally, another problem observed in the GitHub dataset is the
presence of issues originally tagged with more than one label. Despite
affecting a small portion of data (less than 3%), previous work suggests
that this phenomenon might represent a source of noise and thus impair
classifier performance (Wu et al., 2022). For this reason, we adopt a
third filter specifically aimed at removing multi-labeled issues.

We apply all of the above-mentioned filters to the GitHub dataset
only. As for the Jira dataset, it already meets the adopted quality
criteria by design. Indeed, it is exclusively composed of popular OSS
projects, each of which has been active for more than 4 years at the time
of this writing. Concerning the reliability of the labels contained in this
dataset, we consider it is ensured thanks the coding study performed by
the dataset authors (Montgomery et al., 2022).

5. Leveraging pre-trained language models for automatic issue
classification

In this section, we address our first research question: To what extent
we can leverage pre-trained language models to enhance the state of the art
in automatic issue labeling?

5.1. Model training

In the following, we report the results concerning the classifiers
trained on the GitHub dataset. As described in Section 4.2, before
training our classifiers, we selected the pre-trained language model to
be used. Table 6 reports the results of the performance assessment on
the validation set for all the models that we experimented with during
the pre-trained model selection phase. Given the small differences
observed for all models in the overall micro F1, we decided to pick
as the best model the one achieving the best F1 on the minority class –
i.e., the question class. Accordingly, we selected RoBERTa as the most
promising language model to be used for further experiments.

In Table 7, we report the performance of the two classifiers trained
on the GitHub dataset, comparing them with the approach based on
fastText (Bojanowski et al., 2017), the state-of-the-art model at the time
this study was performed.9 This choice is in line with the recommenda-
ions of the organizers of the challenge to which our classifier trained
n GitHub issues was originally submitted for evaluation (Colavito
t al., 2022a). Both our classifiers outperform the FastText baseline and
hey achieve a performance comparable to the one reported by previous
ork on issue classification based on contextual embeddings (Izadi
t al., 2022). In particular, Classifier 1 (RoBERTa fine-tuned) achieves
he best micro F1 (.8591), while for Classifier 2 (MLP) – which also
ncludes consideration of the author-issue association – we observe a
ower micro F1 (.8295). Nonetheless, in the latter case, the recall for
he minority class question is substantially improved – up to .7537 –

as also reflected by the higher macro average recall (.7774 and .8092

9 For the sake of completeness, we replicated the training of the text-
ased classifier using codeBERT (Feng et al., 2020), obtaining a performance
omparable to the one achieved by the RoBERTa-based classifier. The results
btained with codeBERT are included in the replication package.
7

Table 7
Performance of the classifiers trained on the GitHub dataset, evaluated on the test set

Class Classifier 1: RoBERTa Classifier 2: MLP FastText Baseline
Title + Body Author + Title + Body Title + Body

Prec Rec F1 Prec Rec F1 Prec Rec F1

Bug .8750 .8988 .8867 .8934 .8346 .8630 .8314 .8725 .8515
Enhanc. .8713 .8743 .8728 .8797 .8394 .8591 .8155 .8464 .8307
Question .6760 .5591 .6120 .4727 .7537 .5810 .6521 .3502 .4557

Micro avg .8591 .8591 .8591 .8295 .8295 .8295 .8162 .8162 .8162
Macro avg .8074 .7774 .7905 .7486 .8092 .7677 .7663 .6897 .7126

Table 8
Confusion matrix on the test set for Classifier 1.

Gold label Classifier prediction

Bug Enhancement Question

Bug 36,210 (90%) 3,106 (8%) 972 (2%)
Enhancement 3,261 (10%) 29,031 (87%) 911 (3%)

Question 1,914 (27%) 1,184 (17%) 3,929 (56%)

for Classifier 1 and 2, respectively). Albeit the overall performance
is substantially unvaried in terms of micro F1, the choice between
the RoBERTa-based and the MLP-based model might not be trivial in
practice, as RoBERTa optimizes the precision of the minority class while
the MLP achieves a better recall.

In Table 8, we report the confusion matrix for the RoBERTa classi-
fier. We observe that the misclassification of questions as bugs is main
cause of error (27% of test documents), immediately followed by the
misclassification of questions as enhancements (17% of cases). As the
third most frequent cause of error, we observe the misclassification
of enhancements as bugs (10%). We conjecture that this can be also
explained by the unbalanced distribution of labels in the dataset (see
Table 2). For this reason, in subsequent experiments we performed an
undersampling of the training set. Afterward, to get deeper insights on
the difficulties inherent in our issue classification task, we performed
an error analysis by manually inspecting the classification output of the
RoBERTa fine-tuned model; the results are reported in the next section.

5.2. Error analysis

We manually examined a set of 370 misclassified issues, i.e., a
statistically significant sample (with 95% confidence level) of the cases
in which the classifier yielded a wrong prediction.

We observed that some issues labeled as question actually report
inconsistent behavior or missing code, thus resembling the structure
and content of bug reports (e.g., ‘‘Fragrance not showing in Homekit -
I cannot see the installed fragrance in HomeKit, however it is available in
Homebridge’’.). Often, questions contain an error message, which is also
common for bugs. These cases are labeled as question in line with the
information seeking goal of the author. However, a text-based classifier
might not be able to disambiguate between bugs and questions in
similar cases. A similar situation is observed for questions or bugs that
also include suggestions for fixing the reported problem, which is
possibly a cause for the misclassification of questions as enhancement.
Finally, the dataset contains issues collected from different projects,
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Fig. 2. An issue labeled as question from a maintainer of the repository.
hus reflecting possible inconsistencies in the labeling rationale, as well
s a few examples of issues written in a language other than English.

In the following, we report and comment on some representa-
ive examples of issues that, for the aforementioned reasons, may be
ifficult to classify correctly and were indeed misclassified by our
oBERTa-based classifier.

Figs. 2 and 3 depict an issue labeled as question. The author of the
issue did not originally assign any label to it. The issue content and
structure are typical of bug reports, as the issue describes a problem and
provides some instructions on how to reproduce the error. However,
after one day from the issue submission, a maintainer starts handling
the problem and adds a comment clarifying that ‘‘This is the expected
behavior of the code’’ (see Fig. 3) - meaning that the code, used in that
way, is actually supposed to throw an error. As a result of this analysis,
the maintainer labels the issue as a question.

If the reported error was not the expected behavior of the code but
ather the result of a bug, then the issue text would have been the same.
owever, the maintainer would have labeled it as a bug. This example
emonstrates how the difference between questions and bugs might be

subtle and not necessarily reflected in the textual content and in its
organization.

The example in Fig. 4 reports an issue with two labels. The issue au-
thor, who is a project contributor, labels the issue as a question. Indeed,
the text represents a question on repository usage. The author wants to
know how to achieve a specific goal using the software contained in the
repository. A project maintainer handles the issue, commenting: ‘‘This
is not possible at the moment’’ and showing interest in integrating the
feature in a future update. Eventually, the maintainer labels the issue
as an enhancement, which is the final label included in the dataset.
This example shows how team members may use labels differently: the
issue is objectively a question, but the maintainer decided to use that
question as a reminder or a starting point to enhance the repository by
integrating the feature described therein. Accordingly, the maintainer
labeled the issue as an enhancement. However, as in the previous
example, the distinction between the author’s intention to ask a question
and the maintainer’s intention to suggest an enhancement is not clearly

reflected in the text, thus causing misclassification.

8

6. Impact of data quality for automatic issue classification

In this section, we address our second research question: To what
extent the performance of a model can be improved by improving the quality
of the training data?

6.1. Applying the quality filters on the GitHub dataset

In the following, we report on the results of the experiments con-
ducted after applying the filtering criteria described in Section 4.5
on the GitHub dataset. Specifically, we report the performance of
classifiers trained on the filtered training datasets, evaluated against
the held-out test set. We address the problem of imbalanced training
data by performing undersampling on the training set, based on the
cardinality of the minority class.

Applying the star filter to the GitHub dataset. To filter out
low-quality issues, we started by experimenting with a filter based
on the number of project stars. In Table 9, we show the distribution
of the datasets obtained by applying this filtering criterion with an
increasing number of stars as a threshold. It should be noted that, if
a project was removed as an effect of the star-based filtering, all of the
issues belonging to that project were removed accordingly from both
the training and the test set. Moreover, since we are removing issues
from the test set, we cannot compare the performance computed for
the resulting models with the ones obtained using the full dataset. In
order to assess the effectiveness of the filter, we train the RoBERTa-
based classifier on a random sampling of the dataset, which preserves
the distribution of the corresponding filtered dataset. We then test
the performance of the classifier on the filtered test set. In Table 10
and Table 11, we report the performance of the models trained on
the filtered dataset and the randomly-sampled dataset, respectively.
We also report the confusion matrices for the top performing models,
corresponding to the 1500-star filter (see Table 12 and Table 13).

Comparing the results, we observe an improvement of the F1 macro
for the classifiers trained on the filtered dataset. Specifically, as can also
be seen from the confusion matrices, the performance improvement is
mostly due to the increased precision of the question class, which is

the most difficult to predict (see Section 4.4). The difference in the
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Fig. 3. The maintainer’s answer to the issue depicted in Fig. 2.
Fig. 4. An issue originally labeled as question by its author, which is eventually labeled as enhancement by a maintainer.
Table 9
Distribution of the dataset after filtering on the project star count.

Star Filter 50 Star 100 Star 500 Star 1000 Star 1500 Star

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

Bug 202,085 (58%) 23,124 (58%) 178,913 (59%) 20,507 (58%) 120,721 (60%) 13,715 (60%) 97,797 (60%) 11,079 (60%) 84,819 (61%) 9,551 (61%)
Enhancement 101,453 (29%) 11,537 (29%) 83,657 (27%) 9,588 (27%) 49,108 (24%) 5,568 (24%) 36,431 (23%) 4,128 (22%) 30,398 (22%) 3,449 (22%)
Question 46,279 (13%) 5,499 (13%) 43,320 (14%) 5,131 (15%) 32,439 (16%) 3,799 (16%) 27,440 (17%) 3,177 (17%) 23,519 (17%) 2,676 (17%)

Total 349,817 40,160 305,890 35,226 202,268 23,082 161,668 18,384 138,736 15,676
9
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Table 10
Performance of the models trained on the dataset filtered by the number of project stars and then undersampled with a non-minority strategy.

Star filter 50 Star 100 Star 500 Star 1000 Star 1500 Star

Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp

Bug .9160 .8009 .8546 23,124 .9135 .8188 .8636 20,507 .9176 .8074 .8590 13,715 .9200 .8125 .8629 11,079 .9234 .8124 .8643 9,551
Enhancement .8145 .8139 .8142 11,537 .8033 .8185 .8108 9,588 .7648 .8059 .7848 5,568 .7578 .8011 .7789 4,128 .7544 .7979 .7755 3,449
Question .5061 .7743 .6121 5,499 .5517 .7605 .6395 5,131 .5687 .7705 .6544 3,799 .5825 .7765 .6657 3,177 .5788 .7840 .6659 2,676

Micro .8010 .8010 .8010 40,160 .8103 .8103 .8103 35,226 .8010 .8010 .8010 23,082 .8037 .8037 .8037 18,384 .8044 .8044 .8044 15,676
Macro .7456 .7964 .7603 40,160 .7561 .7993 .7713 35,226 .7504 .7946 .7661 23,082 .7534 .7967 .7691 18,384 .7522 .7981 .7686 15,676
Table 11
Performance of the models trained on a randomly-sampled dataset having the same distribution as the corresponding dataset filtered by the number of project stars.

Star filter 50 Star 100 Star 500 Star 1000 Star 1500 Star

Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp

Bug .9075 .7944 .8472 23,124 .9097 .7890 .8450 20,507 .9101 .7891 .8453 13,715 .9103 .7906 .8462 11,079 .9120 .7734 .8370 9,551
Enhancement .8509 .7481 .7962 11,537 .8511 .7428 .7933 9588 .8282 .7263 .7739 5,568 .8271 .7081 .7630 4,128 .8267 .6831 .7481 3,449
Question .4600 .8176 .5888 5,499 .4681 .8277 .5980 5,131 .4971 .8252 .6204 3,799 .5042 .8297 .6272 3,177 .4812 .8498 .6144 2,676

Micro .7843 .7843 .7843 40,160 .7820 .7820 .7820 35,226 .7799 .7799 .7799 23,082 .7788 .7788 .7788 18,384 .7666 .7666 .7666 15,676
Macro .7395 .7867 .7441 40,160 .7430 .7865 .7454 35,226 .7451 .7802 .7465 23,082 .7472 .7761 .7455 18,384 .7399 .7688 .7332 15,676
p

Table 12
Confusion matrix of the model trained on the star-filtered dataset.

Gold label Star filter 1500

Prediction

Bug Enhancement Question

Bug 7,647 (80%) 648 (7%) 1,256 (13%)
Enhancement 327 (9%) 2,743 (80%) 379 (11%)
Question 285 (11%) 260 (10%) 2,131 (79%)

Table 13
Confusion matrix of the model trained on the randomly-sampled dataset.

Gold label Random sampling

Prediction

Bug Enhancement Question

Bug 7,321 (77%) 353 (4%) 1,877 20%)
Enhancement 421 (12%) 2,368 (69%) 660 (19%)
Question 257 (10%) 141 (5%) 2,278 (85%)

outcome of the two classifiers is statistically significant, as proven with
a McNemar test (Kirch, 2008; McNemar, 1947) performed to compare
their output on the test set (𝑝 < .05).10 However, the improvement is
small and might not result in a more useful behavior of the classifier in
practice.

Applying the age filter to the GitHub dataset. We set up the same
set of experiments with the filter based on the age of a GitHub project.
As done for the star filter, we compare the performance of resulting
models with a random sampling of the original training set, preserving
the distribution, and test the model on the same filtered test set. We
obtain three datasets, with the distributions illustrated in Table 14. We
report the results of our experiments in Tables 15 and 16. We also
report the confusion matrices for both settings in Tables 17 and 18.

The results are comparable to what observed for the star-based
filter. Once again, as can be seen from the confusion matrices, the
performance improvement can be attributed to the increased precision
of the question class. Also in this case, the difference in the classifiers
outcome is statistically significant, as proven by the results of a Mc-
Nemar test (𝑝 < .05). However, the improvement is even smaller than
the one observed for the star-based filter, thus suggesting no tangible
enhancement of the classifier in practice.

Removing multi-label issues from the GitHub dataset. As a
third quality filter, we removed from the dataset the issues for which

10 McNemar’s test is a non-parametric test that can be used to compare
lassification algorithms (Salzberg, 1997).
10
more than one label were provided. This information was obtained
by querying the GitHub API. Other than removing the multi-labeled
issues, we also removed those issues for which we could not retrieve
this information using the GitHub API (i.e., all those issue that had been
removed since the creation of the dataset). As a result of the application
of this filtering criterion, 3% of the issues were removed from the
original dataset and we obtained a new dataset containing only issues
with a single label; the new distribution is shown in Table 19.

Then, we trained the issue classifier on the filtered dataset. The
model performances are shown in Table 20 and the related confusion
matrix in Table 21. Compared to the performance obtained with the
unfiltered dataset (see the RoBERTa classifier performance reported in
Table 7), we observe an improvement in the overall F1, both micro
(from .8591 to .8697) and macro (from .7905 to .8065). This is also
true for each class. In particular, for the most difficult class to predict,
i.e. question, we observe an improvement of F1 (from .6120 to .6389),
recision (from .6760 to .6814), and recall (from .5591 to .6014). While

affecting only 3% of the issues, the application of this filtering criterion
results in the biggest performance improvement. Still, the overall gain
in performance can be considered negligible.

Applying the combined filters to the GitHub dataset. The de-
cision to use filters separately was done on purpose to control for
confounding factors. In other words, we want to test the impact on
data quality for each of the filters that operationalize our data quality
criteria. Nevertheless, for completeness, we experimented with the
filtered dataset obtained by combining all the filters. Specifically, we
combined the filters using the threshold that led to better performance
improvement, i.e. Age>4, Stars>1500, and removal of multi-label is-
sues.

We report the results on the dataset obtained using the combined
filters in Table 22. As done for the individual filters, we compared
the results obtained using a Randomly-sampled dataset with the same
distribution observed for the filtered dataset (see Table 23). As already
observed for the individual filters, the improvement in the overall F1
is negligible.

6.2. Experimenting with the Jira dataset

In the following, we report the results concerning our experiments
with the Jira dataset (Montgomery et al., 2022). As already discussed
in Section 4.5, this dataset guarantees the adopted quality criteria
by design. As such, we do not apply any filtering in this case. The
question class in the Jira dataset is heavily underrepresented, with
question-labeled issues representing <1% of the dataset. We trained
our RoBERTa model using 90% of the Jira dataset and tested it using
the remaining 10%. We report the performance of the classifier in
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Table 14
Distribution of the dataset after filtering by project age.

Age filter Age>4 4>Age>1 Age>1

TRAIN TEST TRAIN TEST TRAIN TEST

Bug 126,935 (58%) 14,489 (58%) 208,936 (48%) 23,870 (48%) 335,871 (51%) 38,359 (50%)
Enhancement 62,499 (28%) 7,199 (28%) 204,102 (47%) 23,382 (46%) 266,601 (41%) 30,581 (41%)
Question 30,945 (14%) 3,640 (14%) 24,767 (5%) 3,143 (6%) 55,712 (8%) 6,783 (9%)

Total 220,379 25,328 437,805 50,395 658,184 75,723
Table 15
Performance of the models trained on the dataset filtered by project age and than undersampled with a non-minority strategy (tested on the filtered test set).

Age filter Age>4 4>Age>1 Age>1

Prec Rec F1 supp Prec Rec F1 Supp Prec Rec F1 Supp

Bug .9043 .8039 .8512 14,489 .8938 .7946 .8413 23,870 .9005 .7992 .8468 38,359
Enhancement .7969 .7908 .7938 7,199 .8797 .8428 .8609 23,382 .8690 .8358 .8521 30,581
Question .5352 .7799 .6347 3,640 .3477 .7493 .4750 3,143 .4313 .7799 .5554 6,783

Micro .7967 .7967 .7967 28,471 .8141 .8141 .8141 50,395 .8123 .8123 .8123 75,723
Macro .7454 .7915 .7599 28,471 .7071 .7956 .7257 50,395 .7336 .8050 .7515 75,723
.

Table 16
Performance of the models trained on a randomly-sampled dataset having the same distribution as the corresponding dataset filtered by project age (tested on the filtered test set)

Age filter Age>4 4>Age>1 Age>1

Prec Rec F1 supp Prec Rec F1 Supp Prec Rec F1 Supp

Bug .8983 .7943 .8431 14,489 .8919 .7865 .8359 23,870 .8975 .7941 .8427 38,359
Enhancement .8304 .7414 .7834 7,199 .8745 .8541 .8642 23,382 .8720 .8316 .8513 30,581
Question .4834 .8088 .6051 3,640 .3525 .7299 .4754 3,143 .4226 .7861 .5497 6,783

Micro .7813 .7813 .7813 28,471 .8143 .8143 .8143 50,395 .8086 .8086 .8086 75,723
Macro .7374 .7815 .7439 28,471 .7063 .7902 .7252 50,395 .7307 .8039 .7479 75,723
.

Table 17
Confusion matrix of the model trained on the age-filtered dataset.

Gold label Age Filter>4

Prediction

Bug Enhancement Question

Bug 11,648 (80%) 1,108 (8%) 1,733 (12%)
Enhancement 774 (11%) 5,693 (79%) 732 (10%)
Question 459 (13%) 343 (9%) 2,838 (78%)

Table 18
Confusion matrix of the model trained on the randomly-sampled dataset.

Gold label Random Sampling

Prediction

Bug Enhancement Question

Bug 11,508 (79%) 804 (6%) 2,177 (15%)
Enhancement 893 (12%) 5,337 (74%) 893 (13%)
Question 410 (11%) 286 (8%) 2,944 (81%)

Table 19
Distribution of the GitHub dataset after removing the multi-class examples and the
unavailable ones.

Remove Multi-Class

Train Test

Bug 281,732 (49%) 32,106 (49%)
Enhancement 249,429 (43%) 28,065 (43%)
Question 49,974 (9%) 5,780 (9%)

Total 581,135 65,951

Table 24. To address the problem of imbalanced training data, we also
experimented with undersampling. However, the related attempts did
not result in improved performance; therefore, we do not report these
results here.

The performance of the model trained on the Jira dataset is com-
parable to the one obtained with the GitHub dataset, except for the
question class. The smaller number of questions has a significant impact
11
Table 20
Results of training and testing after removing issues with more than one label from
the GitHub dataset.

Remove Multi-Class

Prec Rec F1 Support

Bug .8832 .9010 .8920 32,106
Enhancement .8882 .8893 .8887 28,065
Question .6814 .6014 .6389 5,780

Micro .8697 .8697 .8697 65,951
Macro .8176 .7972 .8065 65,951

Table 21
Confusion matrix of the predictions from the classifier trained without multi-class issues

Gold label Prediction

Bug Enhancement Question

Bug 28,926 (90%) 2,294 (7%) 886 (3%)
Enhancement 2,369 (8%) 24,957 (89%) 739 (3%)
Question 1,457 (25%) 847 (15%) 3,476 (60%)

Table 22
Performance of the model trained on the filtered dataset using the most restrictive
filters.

Prec Rec F1 Support

Bug 0.9032 0.7751 0.8342 2,094
Enhancement 0.7763 0.8290 0.8018 1,164
Question 0.5587 0.7617 0.6446 600

Micro 0.7893 0.7893 0.7893 3,858
Macro 0.7461 0.7886 0.7602 3,858

on the model performance, resulting in a lower F1, precision, and recall
for all classes except for bug.

As a further analysis, we performed a follow-up experiment training
individual models for each of the four projects containing at least
1,000 issues labeled as question. The projects included in this machine-
learning experiment are Apache, Jira, MongoDB and Sonatype. The
results are reported in Table 25. Overall, the performance obtained
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Table 23
Performance of the model trained on the random sampled dataset, having the same
distribution as the dataset filtered using most restrictive filters.

Prec Rec F1 Support

Bug 0.8935 0.7937 0.8407 2,094
Enhancement 0.8496 0.7569 0.8005 1,164
Question 0.5140 0.8233 0.6329 600

Microavg 0.7872 0.7872 0.7872 3,858
Macroavg 0.7524 0.7913 0.7580 3,858

Table 24
Performance of the system trained on the Jira dataset, evaluated on 10% of the dataset
(with the same distribution of the overall dataset).

Class RoBERTa
Title + Body

Prec Rec F1 Support

Bug .9378 .9413 .9395 152,252
Enhancement .8540 .8569 .8554 62,831
Question .6402 .3766 .4742 879

Micro .9136 .9136 .9136 215,962
Macro .8116 .7240 .7564 215,962

by training on the individual projects is lower than the one achieved
using the full dataset; the only exception was observed for the Sonatype
project: in this case, we obtained an F1 of .8915 for the question class,
while for bug and enhancement the F1 is still lower than the ones
obtained for the full dataset.

7. Discussion

The use of BERT-based models in software engineering is not
new. Specifically, BERT was used to automatically classify the sen-
timent of technical texts such as Stack Overflow posts or GitHub
comments (Biswas et al., 2020; Batra et al., 2021). As far as GitHub
issue tagging is concerned, Wang et al. (2021) compared the perfor-
mance of a pre-trained contextual language representation obtained
with BERT with the performance achieved by traditional deep-learning
models leveraging GLoVe (Pennington et al., 2014) for the initialization
of word embeddings. They found that BERT outperforms other deep
learning language models when large training data is used. Conversely,
Convolutional Neural Networks perform better than BERT in presence
of small-size training data. In their study, Wang et al. (2021) exper-
iment with the BERT model originally developed by Google (Devlin
et al., 2019; Liu et al., 2019) to recommend a label for GitHub issues,
i.e. their models recommend k possible tags for any issue. As such,
the performance of their recommender is measured using F1-score@k,
which impairs direct comparison with the performance obtained in our
study where a classification task is addressed. As a further difference,
Wang et al. trained their model separately for each project. Further-
more, in our study we advance the state of the art by also experimenting
with AlBERTo and RoBERTa, as well as with the BERT large version.
RoBERTa was also leveraged by Izadi et al. (2022) for predicting
both the type and priority of an issue. Specifically, they model issue
type prediction as a classification task and fine-tuned RoBERTa on a
dataset of 817,743 GitHub issues from over 60 K repositories labeled
as bug report (362 K), enhancement (342 K), and support/documentation
(112 K). Similarly to what we do in our study, they rely on the textual
information contained in each issue title and body and achieve an
overall accuracy of 82%, with F1 equal to .85, .84, and .67 for bug,
enhancement and documentation/support, respectively.

However, regardless of algorithmic choices, the quality of ML-based
systems can suffer considerably if models are trained on bad-quality
data (Halevy et al., 2009; Kästner, 2021). The results of the analy-
sis of the misclassified cases reported in Section 5.2 suggest that a
shared understanding of the issue labeling criteria is essential to ensure

consistency of the labels in the training data.
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Inspired by the findings of this qualitative analysis, we designed and
operationalized data quality criteria to filter out issues based on the
presence of multiple labels, the project star count, and the project age.
We evaluated the impact of applying such data quality filters on the
model performance. Unfortunately, this did not result in an improved
performance. The main cause of misclassification in all settings remains
the confusion between question and other labels. We also experimented
with project-specific training of issue classifier, without observing a
significant improvement in the performance. The only project for which
we observe a good performance for all classes is Sonatype. By inspect-
ing the project website, we found that the creation of issues is guided
by a wizard that ensures consistency in the labeling.11

Our findings suggest that filtering projects included in the training
set to improve data quality do not necessarily result in a substantial
improvement of model performance. These results are apparently in
contrast with recent findings by Wu et al. (2022), who demonstrate how
the performance of models can be substantially improved by enhancing
the quality of training data. However, we point out that the strategy
followed by these authors to improve the quality of their datasets is
not directly comparable with ours. Indeed, they fixed bug labeling
issues by means of a costly manual annotation process, involving
trained professionals and a rigorous annotation protocol. On the other
hand, we tried to clean our dataset – thus limiting uncertain labels –
through automated filtering procedures based on the operationalization
of generic data quality criteria. Moreover, we note that – despite some
clear similarities – the classification tasks addressed in the two studies
are different. In particular, Wu et al. aim to separate security bug
reports from other kinds of bug reports. For this task, they claim that
manual effort is still required because current automated approaches
do not handle it well. Our negative results suggest that this might be
the case also for the issue labeling task: in future work, we set out to
confirm this hypothesis by exploring the impact of manual issue label
correction on model performance.

8. Conclusion

In this paper, we exploit pre-trained language models for automatic
issue classification. In particular, we experimented with BERT and its
variants and found that RoBERTa-based classifiers achieve state-of-the-
art performance in automatic issue labeling. Then, we also investigate
the impact of data quality on the classifier performance using filters
that operationalize generic data quality criteria. None of the attempts
to improve the quality of data had a significant effect on the model
performance. We identify the weak definition of the question label as
the main threat to construct validity affecting the overall data quality.

This study confirms that the use of noisy data has a detrimental im-
pact on model performance. Indeed, while the effects of random errors
in data can be tamed by collecting more data, the existence of system-
atic and conceptual flaws in data cannot be overcome statistically and
necessarily entail defects in the resulting ML models.
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Table 25
Performances of Jira project-specific training and testing.

Jira project Apache Jira MongoDB Sonatype

Prec Rec F1 Support Prec Rec F1 Support Prec Rec F1 Support Prec Rec F1 supp
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