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Abstract. In this paper, we describe a constructive method to find a dissi-

pative term for any generic higher order, homogeneous, possibly weakly, hy-

perbolic operator P (∂t, ∂x), with x ∈ Rn, n ≥ 1. We derive long-time decay
estimates for the solution to the related Cauchy problem. We provide an

example of application to the theory of elastic waves.

1. Introduction

In this paper we consider a m-th order hyperbolic homogenous equation, m ≥ 2,

P (∂t, ∂x)u := ∂mt u+
∑

1≤|α|≤m

bα ∂
m−|α|
t ∂αx u = 0, (1)

with t ∈ R and x ∈ Rn, n ≥ 1 and bα ∈ R, and we find suitable lower order
terms which, added to P (∂t, ∂x)u, transform equation (1) into a dissipative one.
Equation (1) is said to be hyperbolic if the polynomial

P (λ, iξ) = λm +
∑

1≤|α|≤m

bα λ
m−|α|(iξ)α (2)

has only pure imaginary roots iaj(ξ
′) for any ξ′ ∈ Sn−1 = {ξ ∈ Rn : |ξ| = 1};

namely

P (λ, iξ′) =

m∏
j=1

(λ− iaj(ξ′)) (3)

where aj(ξ
′) ∈ R.

If all roots are simple for any ξ′ ∈ Sn−1, equation (1) and the polynomial P are
said to be strictly hyperbolic, otherwise they are said to be weakly hyperbolic.

In order to present our result, we need the following

Definition 1. A polynomial

f(z) =

κ∑
j=0

cjz
j , (4)

with κ ≥ 1, cj ∈ C, cκ 6= 0, is said to be strictly stable (resp. stable) if Re (zj) < 0
(resp. Re (zj) ≤ 0) for any zj : f(zj) = 0.

2010 Mathematics Subject Classification. Primary 35L30, Secondary 26C10.

Key words and phrases. hyperbolic polynomials, strictly stable polynomials, higher order hy-
perbolic equations, dissipative terms, decay estimates, elastic waves.

Published on: Communications in Partial Differential Equations 42, 11 (2017), 1682–1706.

1

Communications in Partial Differential Equations 42, 11 (2017), 1682–1706.
https://dx.doi.org/10.1080/03605302.2017.1390674



2 M. D’ABBICCO, E. JANNELLI

Throughout the present paper, when we write a polynomial in the form (4), we
always implicitly assume that its degree is κ, i.e. cκ 6= 0. We also notice that c0 6= 0
in a strictly stable polynomial (4); hence, it is not restrictive to assume that c0 = 1.
Our main result is the following

Theorem 1. Let P be a (possibly weakly) hyperbolic polynomial as in (3), and
let m1 be the maximum multiplicity of the roots in (3) over ξ′ ∈ Sn−1, i.e.

m1 := max
ξ′∈Sn−1

{
k : ∂k−1λ P (aj(ξ

′), ξ′) = 0, for some j = 1, . . . ,m
}
.

Let r ≥ m1 and let ψ(z) :=

r∑
k=0

ckz
k be a strictly stable, real polynomial, according

to Definition 1, with c0 = 1. Moreover, let

Q(λ, iξ) := ψ(∂λ)P (λ, iξ) = P (λ, iξ) +

r∑
k=1

ck ∂
k
λP (λ, iξ). (5)

Then the equation Q(∂t, ∂x)u = 0 is a dissipative equation. More precisely:

• if r ≤ m− 1, then the solution to{
Q(∂t, ∂x)u = 0, t ≥ 0, x ∈ Rn,
∂jt u(0, x) = uj(x), j = 0, . . . ,m− 1,

(6)

satisfies the following long-time decay estimate with polynomial speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C
m−r−2∑
j=0

(1 + t)−
n
4−
|α|+k−j

2 ‖uj‖L1

+ C(1 + t)−
n
4−
|α|+k−(m−r−1)

2

m−1∑
j=m−r−1

‖uj‖L1

+ C e−δt
m−1∑
j=0

‖uj‖H|α|+k−j+m1−1 (7)

for any α ∈ Nn and k ∈ N such that
n

2
+ |α|+ k > m− r− 1, (8)

and for some C > 0, δ > 0, not depending on the data, provided that
uj ∈ L1 ∩H |α|+k−j+m1−1 for j = 0, . . . ,m− 1;
• if r ≥ m, then the solution to (6) satisfies the following long-time decay

estimate with exponential speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C e−δt
m−1∑
j=0

‖uj‖H|α|+k−j+m1−1 . (9)

for any α ∈ Nn and k ∈ N, for some C > 0, δ > 0, not depending on the
data, provided that uj ∈ H |α|+k−j+m1−1 for j = 0, . . . ,m− 1.

Theorem 1 has been proved in the case P strictly hyperbolic and r = 1 by the
authors in [13]. For r = 1, the real polynomial 1 + c1z is strictly stable if, and only
if, c1 > 0. This led to the result that the operator P (∂t, ∂x) + c1∂λP (∂t, ∂x) was
dissipative, for any c1 > 0, in the sense of Theorem 1.
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On the one hand, Theorem 1 shows how to extend this result for strictly hy-
perbolic operators when r ≥ 2; in particular, we notice that the decay rate for
the solution improves as r grows. On the other hand, Theorem 1 allows to deal
with weakly hyperbolic operators, if r is greater than or equal to the maximum
multiplicity of the roots in (3).

Remark 1. As it is well known, in absence of lower order terms, i.e. if one only con-
siders the Cauchy problem for the homogenous, hyperbolic equation P (∂t, ∂x)u = 0,
one may only prove a classical energy estimate in the form

‖∂αx ∂kt u(t, ·)‖L2 ≤ C
m−1∑
j=0

‖uj‖H|α|+k−j ,

which excludes blow-up of the energy as t → ∞ (here we are also assuming that
the equation is strictly hyperbolic). By invariance with respect to time reversal,
dissipative effects may be excluded for homogeneous equations, in general. We
remark that the presence of time-dependent, bounded, coefficients which include
oscillations might invalidate this estimate and produce a blow-up in infinite time
(see [8, 33]).

To get a dissipative effect on the energy, in general, it is necessary to include
lower order terms. Otherwise, in absence of lower order terms, a decay rate may
be produced, under suitable geometric assumptions on the characteristic roots, if

dispersive estimates Lq −Lq
′

are proved, where q ∈ (2,∞] and q′ = q/(q− 1) is the
Hölder conjugate of q (as for the non dissipative wave equation).

The study of long-time decay estimates for dissipative hyperbolic equations
like (7) goes back to the study of the Cauchy problem for the damped wave equation
(see [27]),

utt −∆u+ 2c1ut = 0, t ≥ 0, x ∈ Rn,
with c1 > 0. Indeed, the full symbol Q(λ, iξ) = λ2 + |ξ|2 + 2c1λ of the damped
wave operator is obtained by taking the homogeneous symbol of the wave equation,
i.e. P (λ, iξ) = λ2 + |ξ|2, and setting r = 1 in Theorem 1. In particular,

‖u(t, ·)‖L2 ≤ C(1 + t)−
n
4 (‖u0‖L1 + ‖u1‖L1 + ‖u0‖L2 + ‖u1‖L2),

‖(∇, ∂t)u(t, ·)‖L2 ≤ C(1 + t)−
n+2
4 (‖u0‖L1 + ‖u1‖L1 + ‖u0‖H1 + ‖u1‖L2).

(10)

On the other hand, setting r = 2 in Theorem 1, one finds an exponential decay
in (9), which is a well-known property for the damped Klein-Gordon equation:

utt −∆u+ 2c1ut + 2c2u = 0, t ≥ 0, x ∈ Rn,
with c1, c2 > 0. Indeed, the real polynomial c2z

2 + c1z + 1 is strictly stable if, and
only if, c1, c2 > 0.

The decay rate in (10) comes from an asymptotic profile of the solution which is
given by the solution to a Cauchy problem for the heat equation [19, 26, 27, 28, 29].
Long-time decay estimates like (7) are particularly helpful to study semilinear prob-
lems. In particular, estimates (10) have been applied to find the critical exponent
for the global existence of small data solutions for the damped wave equation with
power nonlinearity [21, 37] or nonlinear memory [9].

These results have been extended in recent years to linear and semilinear damped
wave equations with time-dependent coefficients [3, 10, 15, 16, 25, 39] to wave
equations with structural damping [4, 11, 12, 14, 24], and to more general operators
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(see, in particular, [6]). This list of results concerning decay estimates for damped
wave equations and their applications is far from being complete.

In the setting of long-time decay estimates for higher order inhomogeneous equa-
tions with constant coefficients, we address the interested reader to [34], where
dispersive and Strichartz estimates are obtained. In particular, under different hy-
potheses of geometric type on the roots of the full symbol of the operator, the

authors are able to derive Lq − Lq
′

estimates, q ∈ [2,∞], where q′ = q/(q − 1),
for inhomogeneous hyperbolic equations. The decay rate in these estimates has the

classical form (1 + t)
−κ

(
1
q−

1
q′

)
, where κ > 0 depends on the assumptions on the

roots of the full symbol.
In Theorems 2.1.1 and 2.1.2 in [34], an exponential decay in time follows by the

assumption that the roots of the full symbol are uniformly bounded by a negative
constant (a property that we prove for our equation, when r = m, in Theorem 1).
Indeed, as it is well known, this assumption produces a strong dissipative effect,
which leads to exponential decay in time, as in (9).

A huge literature exists for dissipative hyperbolic systems with constant coeffi-
cients, under suitable assumptions on the lower order term and its relations with
the first-order term. We address the interested reader to [36], and to [2] and the
references therein, being aware that this cannot be an exhaustive list. Recently,
dissipative estimates for first-order hyperbolic systems with time-dependent coeffi-
cients have been obtained in [40].

This paper is intended to be a starting point to consider higher order operators,
with properties and effects which are new if compared to the case of the wave oper-
ator, with a new approach. The question that we address is to find a constructive
way to produce a dissipative effect for a given higher order hyperbolic operator,
and to explicitly give the related decay estimate at the energy level, with no need
to discuss the behavior or the roots of the full symbol, and assuming only the strict
or weak hyperbolicity of the roots of the main symbol. We plan to consider Lp−Lq
estimates, with 1 ≤ p ≤ q ≤ ∞, for higher order equations, in future works, keeping
an explicit, constructive, approach.

We notice that our techniques, developed in Section 3, may be successfully ap-
plied to higher order operators which are more general than the ones considered in
Theorem 1, as we show in Section 7.

Theorem 1 has the advantage that it allows to construct a dissipative term for
a generic hyperbolic, homogeneous, equation P (∂t, ∂x)u = 0 of any order m ≥ 2,
without any need to study the full symbol of the resulting equation. In other
words, to find a dissipative structure, we do not have to compute the roots of a
polynomial of order m, depending on a parameter ξ, with complex coefficients.
Thanks to Theorem 1, it is sufficient to check the stability of a real polynomial
in one variable, which degree is not smaller than the maximum multiplicity of the
roots of the symbol P (λ, iξ)u = 0.

In a forthcoming paper, we will provide applications of Theorem 1 to the study
of semilinear problems, in particular linear estimates (7) can be successfully applied
to study the global existence of small data solutions to problems with different type
of power nonlinearities.

In Section 5, we provide a brief example of application of Theorem 1 to the
theory of elastic waves. It is well known that a second order system of elastic waves
may be reduced to the study of a scalar, fourth order, equation. Also, we will
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reduce the study of a system of elastic waves coupled with Maxwell equations to
the study of a scalar, sixth order, equation.

To prove Theorem 1, we need some auxiliary results. For the ease of reading,
we collect these results in separate sections. In Section 2 we collect some known
results about strictly stable polynomials in one variable z ∈ C; in Section 3 we
give a standard way to perturb a hyperbolic polynomial obtaining a strictly stable
polynomial, whereas in Section 4 we prove some lemmas about the behavior of the
roots of Q(λ, iξ), as ξ → 0 and as |ξ| → ∞, from which the proof of Theorem 1
follows.

Notation.

[x] If x ∈ R, we define the floor function [x] as

[x] := max{k ∈ Z : k ≤ x}.

g(D)f(z) If g(z) is a polynomial, g(z) =

κ∑
j=0

ajz
j , and f(z) is another poly-

nomial, we define g(D)f(z) as the polynomial

g(D)f(z) :=

κ∑
j=0

ajf
(j)(z).

g(∂λ)P (λ, iξ) If g(z) is a polynomial, g(z) =

κ∑
j=0

ajz
j , and P (λ, iξ) is a polyno-

mial in λ, depending on a parameter iξ, we define g(∂λ)P (λ, iξ) as
the polynomial

g(∂λ)P (λ, iξ) :=

κ∑
j=0

aj∂
j
λP (λ, iξ).

ge(z), go(z) If g(z) is a polynomial, g(z) =

κ∑
j=0

ajz
j , we define ge(z), go(z) as

the polynomials

ge(z) =

[κ/2]∑
j=0

(−1)ja2jz
2j , go(z) =

[(κ−1)/2]∑
j=0

(−1)ja2j+1z
2j+1 , (11)

so that g(iz) = ge(z) + igo(z).

2. Preliminary results about strictly stable polynomials

We collect here some well-known results about strictly stable polynomials which
will be useful in what follows. First of all, we state some immediate properties of
strictly stable polynomials.

Lemma 1. Let f(z) =

κ∑
j=0

cjz
j be a strictly stable polynomial. Then:
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(i) the polynomials

zκ f(1/z) =

κ∑
j=0

cjz
κ−j =

κ∑
j=0

cκ−jz
j ,

f(γz) =

κ∑
j=0

(γj cj) z
j , with γ > 0,

are strictly stable;
(ii) if f is also real, then either cj > 0 for all j = 0, . . . , κ, or cj < 0 for all

j = 0, . . . , κ.

Proof. Trivial. �

Definition 2 (see Definition 6.3.1 in [31]). We say that two non–constant real
polynomials weakly interlace if they have both only real roots, their degrees differ
at most by one and there exists an ordering such that

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αν ≤ βν ≤ · · · ≤ βm−1 ≤ αm ≤ βm (12)

where the αj are the zeros of one of the polynomials and the βj are those of the other
(the last term βm must be struck in (12) if the degrees of the two polynomials differ
by one). If no equality sign occurs in (12), then we say that the two polynomials
strictly interlace.

Now let us recall two classical criteria for strictly interlacing polynomials.

Theorem 2 (Hermite–Kakeya). Let f, g be non–constant real polynomials. Then
f, g strictly interlace if, and only if, for all λ, µ ∈ R : (λ, µ) 6= (0, 0) the polynomial
λf(z) + µg(z) has real simple zeros.

Proof. See for instance [31], Theorem 6.3.8. �

Theorem 3 (Hermite–Biehler). Let f, g be non–constant real polynomials. Then
f, g strictly interlace if, and only if, the polynomial h(z) := f(z) + ig(z) has all its
zeros either in the half–plane {z : Im(z) > 0} or in the half–plane {z : Im(z) < 0}.

Proof. See for instance [31], Theorem 6.3.4. �

As an immediate corollary of Theorem 3 we get the following stability criterion:

Theorem 4 (Hermite–Biehler). Let f(z) =

κ∑
j=0

cjz
j be a real polynomial. Then

one of the two polynomials f(z), f(−z) is strictly stable if, and only if, fe(z), fo(z)
(see Notation) strictly interlace.

Proof. Define h(z) := f(iz) = fe(z) + ifo(z), and let Γ be the set of the roots of
h. From Theorem 3 we get that fe and fo strictly interlace if, and only if, either
Γ ⊂ {z : Im(z) > 0} or Γ ⊂ {z : Im(z) < 0}. These two cases are, respectively,
equivalent to the strict stability of either f(z) or f(−z). �
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3. Perturbation of hyperbolic polynomials

We say that a monic polynomial

f(z) = zn +

n∑
j=1

aj z
n−j , (13)

with aj ∈ C, is hyperbolic if it has only pure imaginary roots, i.e.

f(z) =

n∏
j=1

(z − ixj), xj ∈ R.

The main goal of this section is to prove the following theorem, which provides a
standard way to perturb a hyperbolic polynomial obtaining a strictly stable poly-
nomial.

Theorem 5. Let p(z) be a monic hyperbolic polynomial of degree m, and let m1

be the maximum multiplicity of its roots. Let r ≥ m1, and let ψ(z) :=

r∑
k=0

ckz
k be

a strictly stable real polynomial, according to Definition 1, with c0 = 1. Then the
polynomial (see Notation)

q(z) := ψ(D)p(z) = p(z) +

r∑
k=1

ck p
(k)(z) (14)

is strictly stable.

We notice that, if r > m, then p(k)(z) ≡ 0 in (14) for any k = m + 1, . . . , r.
Moreover, the assumption r ≥ m1 is also necessary; indeed, if ixj is a root of p(z)

with multiplicity r1 ≥ r+1, then p(k)(ixj) = 0 for k = 1, . . . , r1−1; hence q(ixj) = 0,
so that q(z) is not strictly stable.

Theorem 5 is the milestone of our construction of dissipative, higher order,
weakly hyperbolic equations (Theorem 1). In order to prove Theorem 5, we need a
preliminary result.

Proposition 1. Let g(z) =

r∑
k=0

βk z
k, with β0 = 1 and βr 6= 0, be a real polynomial

with only real roots, and let f(z) be another non–constant real polynomial with only
real roots. Then, the polynomial

g(D)f(z) =

r∑
k=0

βkf
(k)(z) (15)

has only real roots. Moreover, x∗ is a zero of g(D)f(z) of order s, with s ≥ 2, if,
and only if, x∗ is a zero of f of order s+ r.

Proof. This is a very particular case of the classical Hermite–Poulain–Jensen theo-
rem, see for instance [31], Theorem 5.4.9. �

We are now ready to prove Theorem 5.

Proof of Theorem 5. The polynomial ψ(z) is strictly stable; hence, by Theorem 4,
ψe(z), ψo(z) strictly interlace. Therefore, Theorem 2 implies that the polynomial

ψλ,µ(z) := λψe(z) + µψo(z) (16)
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has simple real roots for any (λ, µ) 6= (0, 0). Moreover for any (λ, µ) 6= (0, 0) the
degree of ψλ,µ(z) is not less than r− 1.

The polynomial p(z) is hyperbolic, i.e. p(z) =

m∏
j=1

(z − ixj), xj ∈ R. Hence, the

polynomial

ϕ(z) := p(iz)/im =

m∏
j=1

(z − xj), (17)

is a monic real polynomial with only real roots whose multiplicity does not ex-
ceed m1 and, by hypothesis, m1 ≤ r; therefore, by Proposition 1, the polynomial
ψλ,µ(D)ϕ(z) has only real simple roots for any (λ, µ) 6= (0, 0).

But ψλ,µ(D)ϕ(z) = λψe(D)ϕ(z)+µψo(D)ϕ(z); hence, by Theorem 2 we get that
ψe(D)ϕ(z), ψo(D)ϕ(z) strictly interlace. Now it is immediate to verify that, if q(z)
is defined by (14), then

q(iz) = im(ψe(D)ϕ(z)− iψo(D)ϕ(z)) ; (18)

therefore, by Theorem 3, either q(iz) has all its zeros in the half–plane {z : Im(z) >
0} or q(iz) has all its zeros in the half–plane {z : Im(z) < 0}, i.e. one be-
tween q(z), q(−z) is strictly stable. We claim that q(z) is strictly stable. Indeed,
let us denote by iσ the sum of the roots of p(z). Then σ is a real number, due to
the hyperbolicity of p(z), and we have

(−1)mq(−z) = zm − (mc1 − iσ)zm−1 + . . . ;

hence the sum of the real parts of the roots of q(−z) is equal to mc1, which is a
strictly positive number, as c1 > 0 (see Lemma 1 (ii)). Therefore q(−z) cannot be
strictly stable. �

The hypothesis of strict stability on the polynomial ψ(z) in Theorem 5 is highly
reasonable; indeed, we can state a sort of converse of Theorem 5.

Theorem 6. Let ψ(z) =

r∑
k=0

ckz
k be a real polynomial, with c0 = 1, and let us

suppose that for any hyperbolic polynomial p(z) of degree m ≥ r, with roots whose
multiplicity does not exceed r, the complex polynomial

q(z) := ψ(D)p(z) = p(z) +

r∑
k=1

ckp
(k)(z) (19)

is stable. Then ψ(z) is stable.

Proof. By contradiction. Let us suppose that ψ(z) has (at least) a couple of complex
conjugated roots with strictly positive real part. For any m ∈ N, m ≥ r, define

qm(z) := zm +

r∑
k=1

ckD
k(zm) = zm +

r∑
k=1

m!

(m− k)!
ckz

m−k (20)

and

ψm(z) :=
( z
m

)m
qm

(m
z

)
= 1 +

r∑
k=1

m!

mk(m− k)!
ckz

k . (21)

Since ψm(z)→ ψ(z) as m→∞, there exists a sufficiently large ν such that ψm(z)
has a couple of complex conjugated roots with strictly positive real part for m ≥ ν,
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and so the same happens for qm(z). Without loss of generality, we may suppose
that ν = jr for a suitable j ∈ N. For any ε > 0, let

pε(z) =

j−1∏
h=0

(z − hiε)r ; (22)

then pε(z) is a hyperbolic polynomial with multiplicity of its roots equal to r. By
continuity, when ε→ 0 the roots of the polynomial

pε(z) +

r∑
k=1

ckp
(k)
ε (z) (23)

tend to the roots of qν(z); hence, for ε sufficiently small, the polynomial in (23) is
not stable, an absurd. �

We conclude this section with two results which we will use in Section 4 to prove
Theorem 1. The first is an immediate consequence of Theorem 5.

Corollary 1. Let ψ(z) =

r∑
k=0

ckz
k, with c0 = 1, be a real strictly stable polynomial

and let r1 ≤ r. Then the real polynomial

ψ(D)zr1 =

r1∑
k=0

r1!

(r1 − k)!
ck z

r1−k (24)

is strictly stable as well.

Proof. The proof follows by applying Theorem 5 to the polynomial zr1 . �

The second result is a slight variation on the theme of Theorem 5.

Theorem 7. Let ψ(z) =

r∑
k=0

ckz
k, with c0 = 1, be a real strictly stable polynomial

and let m ≥ r, and

q(z) := ψ(D)zm = zm−r
r∑

k=0

m!

(m− k)!
ck z

r−k . (25)

Then the real polynomial

q(z)

zm−r
=

r∑
k=0

m!

(m− k)!
ck z

r−k

is strictly stable, i.e. q(z) has r roots with strictly negative real parts, and the
root z = 0 with multiplicity m− r.

Proof of Theorem 7. If m = r, the proof follows from Corollary 1 with r1 = m. Let
now m ≥ r + 1.

We define ψ1(z), ψ2(z) and ψλ,µ(z), which has simple roots for any (λ, µ) 6= (0, 0),
as in the proof of Theorem 5, and

i−mq(iz) = q1(z)− iq2(z)

with

q1(z) = ψe(D)zm =

[r/2]∑
k=0

(−1)k
m!

(m− 2k)!
c2kz

m−2k,
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q2(z) = ψo(D)zm =

[(r−1)/2]∑
k=0

(−1)k
m!

(m− (2k + 1))!
c2k+1z

m−(2k+1).

By applying Proposition 1 with f(z) = zm and g(z) = ψλ,µ(z), then ψλ,µ(D)zm has
only real zeroes, the only possibly multiple zero is z = 0, and it has multiplicity m−
r. But

ψλ,µ(D)zm = λ q1(z) + µ q2(z),

so that
ψλ,µ(D)zm

zm−r
= λ

q1(z)

zm−r
+ µ

q2(z)

zm−r

has only real, simple zeroes (clearly, different from z = 0) for any (λ, µ) 6= (0, 0).
The rest of the proof is analogous to the proof of Theorem 5. �

4. Proof of Theorem 1

Thanks to the results obtained in Section 3, we obtain important information
on the roots of Q(λ, iξ).

Proposition 2. Let P be a hyperbolic polynomial as in (3), and let m1 be the

maximum multiplicity of the roots in (3), r ≥ m1 and ψ(z) :=

r∑
k=0

ckz
k, be a

strictly stable, real polynomial, with c0 = 1. Then the roots λj(ξ) of Q(λ, iξ),
defined in (5), satisfy Reλj(ξ) < 0, for any ξ 6= 0. Moreover, max{m − r, 0}
roots λj vanish at ξ = 0, whereas the remaining roots satisfy Reλj(0) < 0.

Proof. The first part of the statement follows by applying, for any fixed ξ 6= 0,
Theorem 5 to the hyperbolic polynomial

p(z) = P (z, iξ) = zm +

m∑
j=1

ij bj(ξ)z
m−j , bj(ξ) :=

∑
|α|=j

bα ξ
α.

The second part of the statement follows by Theorem 7, since P (z, 0) = zm. �

When r ≤ m − 1, we need to estimate Reλj(ξ), as ξ → 0, for the m − r roots
which vanish at ξ = 0. We have the following.

Lemma 2. Let r ≤ m− 1 and λj(ξ) be a root of (5), satisfying λj(0) = 0. Then

|Imλj(ξ)| ≤ K1|ξ|, −K2
cr−1
cr
|ξ|2 ≤ Reλj(ξ) ≤ −K3

cr−1
cr
|ξ|2, (26)

in a neighborhood of ξ = 0, for some K1 > 0 and K2 > K3 > 0, which do not
depend on ψ. Moreover, if r ≤ m − 2 and λ`(ξ) is another root of (5), i.e. ` 6= j,
satisfying λ`(0) = 0, then

|Imλj(ξ)− Imλ`(ξ)| ≥ K4|ξ|, (27)

in a neighborhood of ξ = 0, for some K4 > 0.

Proof. We fix ξ′ ∈ Sn−1. Let ρ > 0 and ξ = ρξ′. We define η = λ/ρ, so that we
may write

∂kλP (λ, iξ) = (iρ)m−kQk(η), where

Qk(η) :=

m−k∑
j=0

(m− j)!
(m− j − k)!

bj(ξ
′)ηm−k−j ,

(28)
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and ηj(ρ) := λj(ρξ
′)/(iρ).

We notice that Qk is strictly hyperbolic for any k ≥ r−1, since r ≥ m1, where m1

is the maximum multiplicity of the roots of Q0.
Now we may write Q(λ, iξ) = 0 in the form:

r∑
k=0

ck (iρ)r−kQk(η) = 0.

It follows Qr(ηj) → 0, as ρ → 0, that is, ηj tends to a real, simple, root η̄ of Qr.
We may write

Qr(ηj) = (ηj − η̄)Q̃r(ηj),

with Q̃r(η̄) 6= 0, therefore,

ηj − η̄ = − 1

cr Q̃r(ηj)

r−1∑
k=0

ck (iρ)r−kQk(ηj);

so that

λj = iρηj = iρη̄ + ρ2
cr−1Qr−1(ηj)

cr Q̃r(ηj)
+ O(ρ3) .

We notice that η̄ may be zero, in general. On the other hand, η̄ cannot be a root
of Qr−1, since this latter is strictly hyperbolic and η̄ is a root of Qr. Therefore, we
get

Re

(
Qr−1(ηj)

Q̃r(ηj)

)
6= 0,

for sufficiently small ρ, thanks to ηj → η̄ ∈ R. By the compactness of Sn−1 and by
Proposition 2, it follows (26).

Now we prove (27). We define η` = λ`/(iρ) as we did for ηj . As ρ→ 0, ηj and η`
tend to two different roots η̄j , η̄` of Qr. Being Qr a strictly hyperbolic polynomial,
it follows from the previous representation, that

|Imλj − Imλ`| = ρ|Re ηj − Re η`| = ρ|η̄j − η̄`|+ O(ρ2) ≥ C ′ρ.

Using again the compactness of Sn−1, we conclude the proof of (27). �

We recall that cr > 0, cr−1 > 0 in (26), due to Lemma 1(ii).
Now we need to estimate the behavior of λj(ξ) as |ξ| → ∞.

Lemma 3. For any fixed ξ′ ∈ Sn−1, the roots λj(ξ) of (5), where ξ = |ξ| ξ′, satisfy

∃ lim
|ξ|→∞

Reλj(ξ) < 0, lim
|ξ|→∞

(
|ξ|−1Imλj(ξ)− aj(ξ′)

)
= 0, j = 1, . . . ,m, (29)

where iaj(ξ
′) are the roots of P (λ, iξ′) (see (3)).

Proof. As in the proof of Lemma 2, we fix ξ′ ∈ Sn−1 and we set ξ = ξ′ρ, for ρ > 0.
Again, let η = λ/(iρ) and ηj := λj/(iρ). We write again the polynomials ∂kλP in
the form (28), so that Q(λ, iξ) = 0 may be written as

Q0(ηj) +

r∑
h=1

ch (iρ)−hQh(η) = 0.

As ρ→∞, Q0(ηj)→ 0, that is, ηj → aj(ξ
′).
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Let iaj(ξ
′) be a root of P (λ, iξ′) with multiplicity r1; we recall that r1 ≤ m1 ≤ r.

We may write

Qh(ηj) = (ηj − aj)r1−hQ̃h(ηj), h = 0, . . . , r1,

where Q̃h(ηj) 6= 0. In particular, Q̃r1(ηj) = Qr1(ηj), and

Q̃h(ηj) =
r1!

(r1 − h)!
Q̃0(ηj), h = 0, . . . , r1.

Therefore, recalling the expression in (24), it follows that

0 =

r1∑
h=0

ch (iρ)−h(η − aj)r1−hQ̃h(ηj) + O(ρ−r1−1)

=

r1∑
h=0

r1!

(r1 − h)!
ch (iρ)

−h
(ηj − aj)r1−hQ̃0(ηj) + O(ρ−r1−1)

= (iρ)
−r1 Q̃0(ηj)

r1∑
h=0

r1!

(r1 − h)!
ch ((ηj − aj)iρ)

r1−h + O(ρ−r1−1)

= (iρ)
−r1 Q̃0(ηj)ψ(D)zr1 + O(ρ−r1−1),

with

z = (ηj − aj)iρ.
By Corollary 1, ψ(D)zr1 is strictly stable. Therefore,

(ηj − aj)iρ = z̃ + o(1), as ρ→∞,

where z̃ is a root of ψ(D)zr1 , in particular Re z̃ < 0; hence,

λj = iρηj = iρaj + z̃ + o(1),

so that (29) follows. �

In particular, from Proposition 2 and Lemma 3, we derive that

∀ ε > 0 ∃ cε > 0 : Reλj(ξ) ≤ −cε ∀ ξ : |ξ| ≥ ε , (30)

for any root verifying λj(0) = 0, whereas

∃ c > 0 : Reλj(ξ) ≤ −c ∀ ξ ∈ Rn , (31)

for any root verifying Reλj(0) < 0.
We are now ready to prove Theorem 1.

Proof of Theorem 1. Assume for a moment that the roots of Q(λ, iξ) are simple.
Then, after performing the Fourier transform of the equation in (6), we may write

û(t, ξ) =

m∑
j=1

eλj(ξ)t ∆j(ξ)

m−1∑
h=0

σm−1−h,j(ξ) ûh(ξ), (32)

where

∆j(ξ) =
∏
k 6=j

1

λj(ξ)− λk(ξ)
,

σ0,j = 1, σ1,j = −
∑
k 6=j

λk, σ2,j =
∑
k<l

λkλl + λjσ1,j ,
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σ3,j = −
∑
k<l<p

λkλlλp + λjσ2,j , . . .

By Plancherel’s theorem, we want to estimate the L2 norm of

|ξ||α|∂kt û(t, ξ).

Let ε > 0. By (30)–(31) we know that Reλj ≤ −cε for any ξ : |ξ| > ε and
j = 1, . . . ,m.

Due to |λj(ξ)| . |ξ| for |ξ| > ε, we get

|∆j(ξ)| . |ξ|−(m−1) |σm−1−h,j(ξ)| . |ξ|m−1−h,

and

|∂kt û(t, ξ)| . |ξ|k
m∑
j=1

eReλj(ξ)t |∆j(ξ)|
m−1∑
h=0

|σm−1−h,j(ξ)| |ûh(ξ)|.

Therefore

|ξ||α||∂kt û(t, ξ)| . e−cεt |ξ||α|+k
m−1∑
h=0

|ξ|−h |ûh(ξ)|,

for |ξ| > ε. Taking into account of the possible multiplicity of λj(ξ), in a compact
subset of {|ξ| > ε}, this estimate becomes

|ξ||α||∂kt û(t, ξ)| . (1 + t)m e−cεt |ξ||α|+k
m−1∑
h=0

|ξ|−h |ûh(ξ)|.

It is clear that (1 + t)m e−cεt . e−δt for some δ ∈ (0, cε).
However, two or more roots λj(ξ) tend to coincide as |ξ| → ∞ along the direc-

tion ξ′ = ξ/|ξ|, if iaj(ξ
′) is a multiple root of P (λ, iξ′). In this case, if r1 is the

multiplicity of iaj(ξ
′), we may estimate

|ξ||α||∂kt û(t, ξ)| . (1 + t|ξ|)r1−1 e−cεt |ξ||α|+k
m−1∑
h=0

|ξ|−h |ûh(ξ)|.

Therefore, if m1 is the maximum multiplicity of the roots of P (λ, iξ′), by applying
Plancherel’s theorem on the initial data, we obtain

‖û(t, ·)‖L2(|ξ|≥ε) . e
−δt

m−1∑
h=0

‖uh‖H|α|+k−h+m1−1 ,

for some δ ∈ (0, cε). That is, we have a loss of regularity in our estimate, due to
the weak hyperbolicity of P .

For sufficiently small ε > 0, for any ξ : |ξ| ≤ ε, we distinguish two cases.
We assume for a moment that the roots satisfying Reλj < 0 are simple. Then

they remain simple for |ξ| ≤ ε, for sufficiently small ε and, for each root λj(ξ) such
that Reλj < 0, we may estimate ∆j(ξ) by a constant. On the other hand, we
may also estimate |σm−1−h,j(ξ)| by a constant. Taking into account of the possible

multiplicity of λj(ξ) and estimating again (1 + t)m e−ct . e−δt for some δ ∈ (0, c),
this leads to

|λj(ξ)|k
m∑
j=1

eReλj(ξ)t |∆j(ξ)|
m−1∑
h=0

|σm−1−h,j(ξ)| |ûh(ξ)| . e−ct
m−1∑
h=0

|ûh(ξ)|.
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for any |ξ| ≤ ε. In particular, by Plancherel theorem,

∥∥∥|ξ||α| |λj(ξ)|k m∑
j=1

eReλj(ξ)t |∆j(ξ)|
m−1∑
h=0

|σm−1−h,j(ξ)| |ûh(ξ)|
∥∥∥
L2(|ξ|≤ε)

. e−ct
m−1∑
h=0

‖uh‖H|α|+k−h+m1−1 .

Indeed, the weighted norms ‖(1 + |ξ|)κûh‖L2(|ξ|≤ε) are all equivalent for κ ∈ R.
If r ≥ m, estimate (9) immediately follows and we conclude the proof of Theo-

rem 1.
Now let r ≤ m− 1, so that we should also consider the roots λj(ξ) which vanish

at ξ = 0.
Thanks to (27), there exists ε > 0 such that each root λj(ξ), which satis-

fies λj(0) = 0, is a simple root of Q(λ, iξ), for any 0 < |ξ| < ε.

Then we may estimate |∆j(ξ)| . |ξ|−(m−r−1), thanks to (27). On the other

hand, we may estimate |σm−1−h,j(ξ)| . |ξ|m−r−1−h, for any h ≤ m− r− 1, thanks
to (26), whereas we estimate σm−1−h,j(ξ) by a constant for h ≥ m− r− 1. We also
remark that |λj(ξ)| . |ξ| thanks to (26).

Therefore,

∥∥∥|ξ||α|(λj(ξ))k eλj(ξ)t ∆j(ξ)

m−1∑
h=0

σm−1−h,j(ξ) ûh(ξ)
∥∥∥
L2(|ξ|≤ε)

.
m−1∑
h=0

‖Jh eReλj(ξ)t‖L2(|ξ|≤ε) ‖ûh‖L∞ ,

where

Jh :=

{
|ξ||α|+k−h if h = 0, . . . ,m− r− 1,

|ξ||α|+k−(m−r−1) if h ≥ m− r− 1.

We remark that ‖ûh‖L∞ . ‖uh‖L1 .
In particular, Jh are in L2(|ξ| ≤ ε) for any h = 0, . . . ,m − 1, thanks to (8)

(incidentally we remark that condition (8) may be relaxed if um−1 = um−2 = . . . =
um−` = 0 for some ` ≥ r + 1 in (6)).

If t ≤ 1, we simply estimate the L2(|ξ| ≤ ε) norm of Jhe
Reλjt by a constant.

Let t ≥ 1. By the change of variable θ =
√
tξ, we derive∫

|ξ|≤ε
|ξ|2(|α|+k−h)e−2K3

cr−1
cr
|ξ|2t dξ

. t−
n
2−|α|−k+h

∫
Rn
|θ|2(|α|+k−h)e−2K3

cr−1
cr
|θ|2 dθ.

Since the last integral is bounded, we obtain

‖Jheλjt‖L2(|ξ|≤ε) .

{
(1 + t)−

n
4−
|α|+k−h

2 , h = 0, . . . ,m− r− 1 ;

(1 + t)−
n
4−
|α|+k−(m−r−1)

2 h = m− r− 1, . . . ,m− 1.

By gluing these estimates with the previous ones, we conclude the proof of (7). �
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5. An application of Theorem 1 to the theory of elastic waves

There exists a large literature concerning the study of systems of elastic waves,
which goes back to [18, 23]. We address the interested reader to [7] for a nice survey
about the Lamé operator which drives the propagation of linear elastic waves.

In particular, in Rn, dissipative systems of elastic waves have been studied in [5,
20, 32]. Strichartz estimates have been obtained in [1] for systems of elastic waves
in R3.

Linear elastic waves are modeled by the hyperbolic system of equations

ρ ∂2t u− µ∆u− (µ+ ν)∇div u = 0, t ∈ R, x ∈ Rn,

where ρ > 0 is the density, µ > 0 and ν > −µ are the Lamè constants, u =
(u1, . . . , un) is the displacement n-dimensional vector, and

∇ =
(
∂x1

, . . . , ∂xn
)
, div u :=

n∑
j=1

∂xjuj .

The scalar operator ∆ is intended to be applied to each component of u, i.e. ∆u =
(∆u1, . . . ,∆un). We do not distinguish between row and column vectors.

After re-scaling µ and ν, we may assume, without loss of generality, that ρ = 1,
that is,

∂2t u− µ∆u− (µ+ ν)∇div u = 0. (33)

As a consequence of (33), div u verifies the scalar equation:

∂2t div u− (2µ+ ν)∆ div u = 0. (34)

Therefore, as it is well-known, applying the scalar operator ∂2t − (2µ+ ν)∆ to (33),
one finds that each component of u verifies the fourth-order scalar equation:

∂4t u− (3µ+ ν)∆∂2t u+ µ(2µ+ ν)∆2u = 0. (35)

Equation (35) is strictly hyperbolic, with symbol:

P (λ, iξ) = λ4 + (3µ+ ν)|ξ|2λ2 + µ(2µ+ ν)|ξ|4,
and it is given by the factorization of two wave operators with different speeds:(

∂2t − (2µ+ ν)∆
) (
∂2t − µ∆

)
u = 0. (36)

Therefore, Theorem 1 may applied to equation (35). Let r = 1, 2, 3, 4. Then the
equation Q(∂t, ∂x)u = 0, with symbol defined in (5), reads as:

∂4t u− (3µ+ ν)∆∂2t u+ µ(2µ+ ν)∆2u+ c1
(
4∂3t u− 2(3µ+ ν)∆∂tu

)
+ c2

(
12∂2t u− 2(3µ+ ν)∆u

)
+ 24c3∂tu+ 24c4u = 0. (37)

Remark 1. The hypotheses on the strict stability of the polynomial ψ(z) = 1+c1z+
c2z

2 + c3z
3 + c4z

4, in Theorem 1, are verified if, and only if, one of the following
holds

• c1 > 0 and c2 = c3 = c4 = 0;
• c1 > 0, c2 > 0 and c3 = c4 = 0;
• c1 > 0, c2 > 0, c3 ∈ (0, c1 c2) and c4 = 0;
• cj are all positive, and they verify the conditions

4c4 < c22, c21c4 + c23 < c1c2c3. (38)

The proof follows, for instance, by applying Theorem 4 to ψ(z).
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Some interesting models from the theory of systems of electromagnetic elastic
waves may also be studied by reducing them to higher order, scalar equations.

Let us consider the coupled system of linear elastic waves with Maxwell equations
in R3, i.e. 

∂2t u− µ∆u− (µ+ ν)∇div u+ γ∇× E = 0,

∂tE −∇×H − γ∇× ∂tu = 0,

∂tH +∇× E = 0,

(39)

where ∇× denotes the curl operator. It is clear that div u still verifies (34).
Model (39) can be considered a special case of the model studied in exterior domains
in [17].

We may assume without restriction that the electric field E and the magnetic
field H are divergence-free, since divE and divH are constant, as a consequence
of the second and third equations in (39).

By the second and third equation in (39), we obtain:

∂2tE +∇× (∇× E)− γ∇× ∂2t u = 0

which, being divE = 0, recalling that

∇× (∇× f) = −∆f +∇ div f, (40)

gives the system {
∂2t u− µ∆u− (µ+ ν)∇ div u+ γ∇× E = 0,

∂2tE −∆E − γ∇× ∂2t u = 0.
(41)

Applying the operator ∂tt − ∆ to the first equation in (39), replacing the second
equation in (41), recalling (40), we get

∂4t u−(1+µ+γ2)∆∂2t u+µ∆2u−((µ+ν)−γ2)∇ div ∂2t u+(µ+ν)∆∇ div u = 0. (42)

Since div u verifies (34), in the special case((µ + ν) − γ2)(2µ + ν) = µ + ν, equa-
tion (42) reduces to a fourth order scalar equation given by the factorization of

(∂2t − α+∆)(∂2t − α−∆)u = 0,

where

α± =
1 + µ+ γ2 ±

√
(1− µ+ γ2)2 + 4µγ2

2
.

Otherwise, applying the operator ∂2t − (2µ+ ν)∆ to (42), we obtain the sixth-order
scalar equation given by the factorization of

(∂2t − (2µ+ ν)∆)(∂2t − α+∆)(∂2t − α−∆)u = 0.

Then one may construct lower order terms which make the equation above dissipa-
tive, by applying Theorem 1.

Remark 2. It is clear that there is no general way to solve a sixth order algebraic
equation, depending on a parameter ξ ∈ Rn, with complex-valued coefficients.
Therefore, the task to explicitly compute the roots λj(ξ) of the polynomial

Q(λ, iξ) = (λ2 + (2µ+ ν)|ξ|2)(λ2 + α+|ξ|2)(λ2 + α−|ξ|2) +
∑

k+|α|≤5

ck,αλ
k (iξ)α,

with ck,α ∈ R, seems to be not easy to be accomplished. Thus, it is not possible
to apply some known result in literature, where assumptions are taken on the
properties of the roots of the full symbol of an inhomogeneous operator. The
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application of Theorem 1 to the model discussed in the present section, gives at
least a relatively general class of coefficients ck,α, for which a dissipative decay
estimate is provided.

6. An example of dissipative equation not included in Theorem 1

It is clear that Theorem 1 only provides a class of lower order terms which, if
added to a homogeneous hyperbolic operator, make it dissipative. Indeed, not all
possible dissipative higher order inhomogeneous operators R(∂t, ∂x) with principal
part P (λ, ∂ξ) may be written in the form (5). If this is possible, then the coef-
ficients ck may be easily and uniquely determined by the solving the polynomial
identity:

R(λ, 0) = P (λ, 0) +

r∑
k=1

ck ∂
k
λP (λ, 0) ≡ λm +

r∑
k=1

ck
m!

(m− k)!
λm−k.

In this section, we give a complete characterization of third order, inhomogeneous
operators, for which a dissipative effect appears, under the additional assumption
that only terms which contain an even number of spatial derivatives appear. Thanks
to this assumption, the full symbol of the inhomogeneous operator is real, and so
Theorem 4 may be directly applied to this latter.

In the following of this section, we fix

P (∂t, ∂x) = ∂3t − a(∂x) ∂t, (43)

Q(∂t, ∂x) = P (∂t, ∂x) + b0 ∂
2
t − b(∂x) + d0 ∂t + e0, (44)

where b0, d0, e0 ∈ R and

a(∂x) =

n∑
j,k=1

ajk ∂xj ∂xk ,

b(∂x) =

n∑
j,k=1

bjk ∂xj ∂xk ,

with ajk, bjk ∈ R. The hyperbolicity condition for P (∂t, ∂x) holds if, and only if,

a(ξ) ≥ 0 for any ξ ∈ Sn−1; the roots of P (λ, iξ) = 0 are 0,±i
√
a(ξ).

Lemma 4. Let a(ξ) ≥ 0 and b(ξ) be as above. Then the polynomial

Q(λ, iξ) = λ3 + b0λ
2 + λ(d0 + a(ξ)) + e0 + b(ξ)

is strictly stable for any ξ ∈ Rn \ {0} if, and only if, b0 > 0, and

• either

e0 = d0 = 0, 0 < b(ξ) < b0 a(ξ), ∀ξ ∈ Sn−1 (45)

(in this case, the operator P (∂t, ∂x) must be be strictly hyperbolic);
• or

e0 = 0, d0 > 0, 0 < b(ξ) ≤ b0 a(ξ), ∀ξ ∈ Sn−1 (46)

(in this case, the operator P (∂t, ∂x) must be be strictly hyperbolic);
• or

0 < e0 < b0 d0, 0 ≤ b(ξ) ≤ b0 a(ξ), ∀ξ ∈ Sn−1. (47)
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• or

0 < e0 = b0 d0, 0 ≤ b(ξ) < b0 a(ξ), ∀ξ ∈ Sn−1. (48)

Proof. Since the polynomial is real-valued for any ξ ∈ Rn \ {0}, we may apply
Theorem 4, so that Q(λ, iξ) is strictly stable if, and only if,

b0 > 0, d0 + a(ξ) > 0,

and

0 < e0 + b(ξ) < b0(d0 + a(ξ)), ∀ξ ∈ Rn \ {0}. (49)

By homogeneity arguments, due to a(ξ) ≥ 0, condition d0 + a(ξ) > 0 for any ξ ∈
Rn \ {0} holds if, and only if, d0 ≥ 0 if a(ξ) > 0 for any ξ ∈ Sn−1, or d0 > 0 if a(ξ)
vanishes for some ξ ∈ Sn−1. Again, by homogeneity arguments, condition (49) is
equivalent to ask that

0 < b(ξ) < b0 a(ξ), ∀ξ ∈ Sn−1,

if e0 = d0 = 0, to

0 < b(ξ) ≤ b0 a(ξ), ∀ξ ∈ Sn−1,
if e0 = 0 and d0 > 0, or to (47) or (48), if e0, d0 > 0. This concludes the proof. �

Remark 3. If Q(λ, iξ) is as in (5), then the assumptions of Theorem 8 are verified.
Indeed, in this case, b0 = 3c1, b(ξ) = c1 a(ξ), d0 = 6c2 and e0 = 6c3, and the
polynomial ψ(z) = 1 + c1z + c2z

2 + c3z
3 is strictly stable in one of the following

three cases (see Remark 1):

• c1 > 0 and c2 = c3 = 0;
• c1 > 0, c2 > 0, and c3 = 0;
• c1 > 0, c2 > 0, and 0 < c3 < c1 c2.

In the first case, (45) holds, in the second one (46) holds, whereas, in the last case,
(47) is verified.

Remark 4. In Theorem 2.1 in [38], the authors prove that the stability of a poly-
nomial in the form

Q(λ, iξ) = Pm(λ, iξ) + Pm−1(λ, iξ) + Pm−2(λ, iξ),

where m ≥ 3 and Pk are homogeneous hyperbolic polynomials of order k, is equiv-
alent to ask the following set of assumptions:

• Pm−1 is strictly hyperbolic;
• there is no common zero of Pm, Pm−1 and Pm−2, exception given for λ = 0

when ξ = 0;
• Pm(1, 0), Pm−1(1, 0) and Pm−2(1, 0) are non-zero and they have the same

sign;
• Pm(λ, ξ) and Pm−1(λ, ξ) weakly interlace for any ξ 6= 0;
• Pm−1(λ, ξ) and Pm−2(λ, ξ) weakly interlace for any ξ 6= 0.

It is easy to check that condition (46) is equivalent to the previous set of assumptions
for the polynomial Q(λ, iξ) in Lemma 4 with d0 6= 0 and e0 = 0.

The behavior of the roots of Q(λ, iξ) may then be checked as ξ → 0 and as |ξ| →
∞, as we did in the proofs of Lemmas 2 and 3.

We notice that if a(ξ) = 0, then the roots of Q(λ, iξ) = λ3 + b0λ
2 + d0λ+ e0 are

constant, so that there is nothing to prove.
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Let us first consider ξ → 0. If (47) or (48) holds, then the three roots of Q(λ, 0)
have negative real parts. If (45) or (46) holds, then the roots of Q(λ, iξ) which

vanish at ξ = 0 verify |Imλj(ξ)| ≤ C|ξ| and Reλj(ξ) ≤ −c|ξ|2, for some C > 0
and c > 0, as ξ → 0. Moreover, if d0 = 0, the two vanishing roots λ±(ξ) satisfy (27),
i.e., |Im (λ+ − λ−)| & |ξ|.

Indeed, if d0 > 0 and e0 = 0, then there is one root λj(ξ), vanishing at ξ = 0,

since Q(λ, 0) = λ3 + b0λ
2 + d0λ. Due to

d0λj(ξ) = −λ3j (ξ)− λj(ξ) a(ξ)− b0 λ2j (ξ)− b(ξ),

this root verifies

λj(ξ) = −b(ξ)/d0 + O(|ξ|3).

On the other hand, if d0 = e0 = 0 then there are two roots λ±(ξ), vanishing
at ξ = 0, since Q(λ, 0) = λ3 + b0λ

2. Due to(√
b0λ±(ξ) + i

√
b(ξ)

)(√
b0λ±(ξ)− i

√
b(ξ)

)
= −λ±(ξ)3 − λ±(ξ) a(ξ),

these roots verify

λ±(ξ) = ±i
√
b(ξ)/b0 −

a(ξ)− b(ξ)/b0
2

+ O(|ξ|3).

Similarly, we may follow the proof of Lemma 3 to prove that Reλj(ξ) remains away
from zero, as |ξ| → ∞, for any j = 1, 2, 3. Indeed, the three roots λ0(ξ), λ+(ξ)
and λ−(ξ) verify:

Imλ0(ξ) = O(|ξ|−1), Imλ±(ξ) = ±i
√
a(ξ) + O(|ξ|−1),

Reλ0(ξ) = − b(ξ)
a(ξ)

+ O(|ξ|−1), Reλ±(ξ) = −a(ξ)b0 − b(ξ)
2a(ξ)

+ O(|ξ|−1),

if a(ξ) > 0.
Following the proof of Theorem 1, we are now in the position to prove the

following.

Theorem 8. Let P and Q be as in (43) and (44), with b0 > 0. Assume one
among (45)-(46)-(47)-(48). Then the equation Q(∂t, ∂x)u = 0 is a dissipative equa-
tion. More precisely:

• if (45) holds, then the solution to{
Q(∂t, ∂x)u = 0, t ≥ 0, x ∈ Rn,
∂jt u(0, x) = uj(x), j = 0, 1, 2,

(50)

satisfies the following long-time decay estimate with polynomial speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C(1 + t)−
n
4−
|α|+k−1

2

(
(1 + t)−

1
2 ‖u0‖L1 + ‖u1‖L1 + ‖u2‖L1

)
+ C e−δt

2∑
j=0

‖uj‖H|α|+k−j (51)

for any α ∈ Nn and k ∈ N, provided that n ≥ 3 if |α| = k = 0;
• if (46) holds, then the solution to (50) satisfies the following long-time

decay estimate with polynomial speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C(1 + t)−
n
4−
|α|+k

2

(
‖u0‖L1 + ‖u1‖L1 + ‖u2‖L1

)
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+ C e−δt
2∑
j=0

‖uj‖H|α|+k−j (52)

for any α ∈ Nn and k ∈ N;
• if (47) or (48) holds, then the solution to (50) satisfies the following long-

time decay estimate with exponential speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C e−δt
2∑
j=0

‖uj‖H|α|+k−j , (53)

if a(ξ) > 0 for any ξ ∈ Sn−1, for any α ∈ Nn and k ∈ N, or

‖∂αx ∂kt u(t, ·)‖L2 ≤ C e−δt
2∑
j=0

‖uj‖H|α|+k−j+2 , (54)

if a(ξ) vanishes at some ξ ∈ Sn−1, for any α ∈ Nn and k ∈ N.

Proof. The same as the proof of Theorem 1. �

Lemma 4 guarantees the optimality of assumptions (45)-(46)-(47)-(48).

Remark 5. The chance to explicitly check the stability of the polynomial Q(λ, iξ),
with Q as in (44) was strongly related to the assumption that it was a third order
operator with real-valued coefficients, so that it was possible and easy to apply
Theorem 4. This approach still works with fourth order polynomials with real-
valued coefficients (for instance, for polynomials with principal part given by (35)),
and other stability criteria may help in more complicated cases. However, in general,
it seems to be a hard task to check the stability of a high order inhomogeneous
polynomial in the general form. Theorem 1 provides a tool to construct at least
a class of lower order terms, for a given high order homogeneous polynomial, for
which the stability is guaranteed.

7. Further applications of Theorem 5

In this section, we show how Theorem 5 may be also applied to study equations,
which are not covered by Theorem 1.

It is well-known (see, for instance, [4, 14, 22, 30, 35]) that the damped wave
equation keeps its dissipative nature if the external damping term is replaced by a
structural one, namely, if we consider the Cauchy problem for

utt −∆u+ 2c(−∆)θut = 0, t ≥ 0, x ∈ Rn, (55)

with θ ∈ (0, 1], c > 0, where the fractional Laplacian is described by its action

(−∆)θf = F−1(|ξ|2θFf),

being F the Fourier transform with respect to x. The full symbol of (55) may be
written in the form

P (λ, iξ) + c|ξ|2θ∂λP (λ, iξ),

where P (λ, iξ) = λ2 + |ξ|2 is the symbol of the wave operator. In particular, the
polynomial above is strictly stable for any ξ 6= 0, thanks to Theorem 5.
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More in general, let P (∂t, ∂x) be a real, hyperbolic operator with maximum

multiplicity of its roots m1 over Sn−1, and let r ≥ m1, ψ(z) =

r∑
j=0

ckz
k a strictly

stable, real, polynomial, with c0 = 1. Let θ ∈ (0, 1]. Then

Qθ(λ, iξ) := ψ(|ξ|2θ∂λ)P (λ, iξ) = P (λ, iξ) +

r∑
k=1

ck |ξ|2kθ ∂kλP (λ, iξ), (56)

is a real, strictly stable, polynomial, for any ξ 6= 0, thanks to Lemma 1(i) and
Theorem 1. Therefore, we may deal with models like (55). However, to derive
decay estimates for the higher order models, we need to estimate the behavior of
the roots of (56) as ξ → 0 and as |ξ| → ∞, as we did in Section 4 for Q(λ, iξ).

However, in the special case θ = 1/2, this analysis is not necessary, sinceQ 1
2
(λ, iξ)

is homogeneous of degree m, and we have the following

Theorem 9. Let P be a hyperbolic polynomial as in (3), and let m1 be the maximum

multiplicity of the roots in (3), over ξ′ ∈ Sn−1. Let r ≥ m1 and let ψ(z) :=

r∑
k=0

ckz
k,

be a strictly stable, real polynomial. Then a solution toP (∂t, ∂x)u+

r∑
k=1

ck (−∆)
k
2 P (k)(∂t, ∂x)u = 0, t ≥ 0, x ∈ Rn

∂jt u(0, x) = uj(x), j = 0, . . . ,m− 1,

(57)

where P (k)(λ, iξ) := ∂kλP (λ, iξ), satisfies the following long-time decay estimate with
polynomial speed:

‖∂αx ∂kt u(t, ·)‖L2 ≤ C
m−1∑
j=0

(1+t)−
n
2−|α|−k+j ‖uj‖L1 +C e−δt

m−1∑
j=0

‖uj‖H|α|+k−j , (58)

for any α ∈ Nn and k ∈ N, such that

n

2
+ |α|+ k > m− 1, (59)

for some C > 0, δ > 0, which do not depend on the data.

Proof. For any ξ 6= 0, let λ = |ξ|λ̃(ξ′), with ξ′ = ξ/|ξ|, so that

Q 1
2
(λ, iξ) := |ξ|mQ(λ̃, iξ′),

where Q is defined as in (5). Since Sn−1 is compact, by Theorem 5, there exist C1 >
C2 > 0 such that

−C1|ξ| ≤ Reλj(ξ) ≤ −C2|ξ|,

for any ξ 6= 0, j = 1, . . . ,m. It is clear that λj(0) = 0, since Q 1
2
(λ, 0) = λm. We

follow the proof of Theorem 1, setting ε = 1, and taking into account of the possible
multiplicity of the roots of Q(λ̃, iξ′) which, of course, is at most m. However, thanks
to

etReλj(ξ) ≤ e−C2t|ξ| ≤ e−C2t/2 e−C2t|ξ|/2
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for |ξ| ≥ 1, we have now both exponential decay and smoothing effect for high
frequencies. Therefore, for any |ξ| ≥ 1, we may estimate

|ξ||α||∂kt û(t, ξ)| . e−C2t/2 (1 + t|ξ|)m e−C2t|ξ|/2 |ξ||α|+k
m−1∑
h=0

|ξ|−h |ûh(ξ)|

. e−C2t/2 |ξ||α|+k
m−1∑
h=0

|ξ|−h |ûh(ξ)|,

so that no loss of regularity appears, due to the possible multiplicity of the roots
of Q(λ̃, ξ′); indeed,

‖|ξ||α|∂kt û(t, ξ)‖L2(|ξ|≥1) . e
−C2t/2

m−1∑
h=0

‖|ξ||α|+k−hûh‖L2(|ξ|≥1).

Similarly, at low frequencies |ξ| ≤ 1, we reduce to estimate

Ih :=

∫
|ξ|≤1

|ξ|2(|α|+k) (t2 + |ξ|−2)he−2C2 |ξ|t dξ, h = 0, . . . ,m− 1,

where again we took into account of the possible weak hyperbolicity of Q(λ̃, ξ′).
The integral is bounded, thanks to (59), and for t ≥ 1 we apply the change of
variable θ = tξ to derive

Ih . t
−n−2|α|−2k+2h

∫
Rn
|θ|2(|α|+k−h)e−2C2|θ| dθ,

so that the proof of (58) follows. �
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putação e Matemática, Universidade de São Paulo (USP), FFCLRP, Av. dos Ban-
deirantes, 3900, CEP 14040-901, Ribeirão Preto - SP - Brasil.

The authors are supported by INdAM - GNAMPA Project 2017 and are mem-
bers of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
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