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A B S T R A C T

Recently, computer vision and artificial intelligence are being used as enabling technologies for plant
phenotyping studies, since they allow the analysis of large amounts of data gathered by the sensors. Plant
phenotyping studies can be devoted to the evaluation of complex plant traits either on the aerial part of the
plant as well as on the underground part, to extract meaningful information about the growth, development,
tolerance, or resistance of the plant itself. All plant traits should be evaluated automatically and quantitatively
measured in a non-destructive way. This paper describes a novel approach for identifying plant roots from
images of the root system architecture using a convolutional neural network (CNN) that operates on small
image patches calculating the probability that the center point of the patch is a root pixel. The underlying
idea is that the CNN model should embed as much information as possible about the variability of the patches
that can show chaotic and heterogeneous backgrounds. Results on a real dataset demonstrate the feasibility
of the proposed approach, as it overcomes the current state of the art.
1. Introduction

Over the recent years, computer vision has become one of the
main assets for plant phenotyping studies, starting from the analysis
of remote sensing data of crops and fields to the development of semi-
automated software that could help domain experts in the analysis of
Root Systems Architectures (RSAs) [1]. Plant phenotyping is intended
to perform non-destructive analysis of complex plant traits related to
growth, yield, and adaptation to stress with an elevated degree of
accuracy and precision. Often, such tasks are performed by human
operators, subject to limitations in experience and skills. Furthermore,
recent years have seen the deployment of several High-Throughput
Platforms (HTPs), which are able to provide a relevant stream of
data concerning the phenotypical traits of plants. Consequently, human
operators also experienced an increased workload, which resulted in
the requirement for automatic and non-biased protocols to overcome
these issues.

The literature shows some examples of machine learning (ML) and
deep learning (DL) applications in specific fields of RSA segmentation.
Still, the common bottleneck reported in the state-of-the-art works is
the lack of generalized and standardized data that could be used to
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train extremely complex deep learning architectures. In other words, as
these models generally require a high number of labeled samples to be
trained, a strong limitation in their practical applicability is represented
by data availability.

Unfortunately, data sampling and labeling is a time-demanding
process, biased by the skills and workload of the human operator.
Hence, obtaining meaningful data that artificial intelligence models can
use can be difficult. Consequently, one of the first issues related to the
effective use of artificial intelligence models in the plant phenotyping
field concerns data availability, as common datasets used in object
recognition, such as ImageNet, are not specifically designed to work
with domain-specific data.

To solve this issue, this work introduces a processing pipeline for
the end-to-end analysis of RSAs of plants. Specifically, image segmen-
tation starts with patches extracted automatically from labeled images
acquired using the method described in our previous work [2]. The
pixel-based extraction criterion generates a large number of patches
from a relatively limited amount of images of RSAs, hence lowering
the burden on human operators for data gathering and labeling.
vailable online 18 May 2024
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The images obtained are then used to train a straightforward and
effective convolutional neural network (CNN) to estimate the probabil-
ity of observing a root pixel. The choice of the architecture behind the
proposed CNN model follows a specific criterion: finding the simplest
yet effective model that can be used to identify the RSAs of the plants
starting from the patch extracted with the proposed system. Conse-
quently, a relatively shallow and simple architecture was selected, with
three convolutional layers, each with a limited number of filters. To
further reduce the complexity of the network, a max pooling layer
was added before the latest fully connected layer, which led to a
binary classification layer where a sigmoid function performs the final
decision using a statistically determined threshold. The results show
that the model can outperform previous state-of-the-art approaches on
the proposed dataset.

The rest of the paper is organized as follows. In Section 2, the cur-
rent state-of-the-art is depicted. Then, Section 3 describes the method-
ology developed. Section 4 shows the experiments and the results
achieved, while Section 5 concludes the paper.

2. Related works

RSAs are difficult to observe directly, mainly due to the soil which
naturally covers them [3]. As a consequence, specific non-destructive
phenotyping methods have been developed, such as the use of trans-
parent agar or germination papers, which have proven to be efficient,
especially at early growth stages, with the only disadvantage of re-
quiring the root system to grow in artificial soil [4]. Another viable
approach is the use of X-ray computed tomography [5], which allows
the visualization of the root system in natural soil; however, this type
of system is expensive and difficult to deploy directly on the field.

Once images of the RSA have been gathered, they should be seg-
mented to detect the roots. However, the segmentation step is usually
challenging due to the complex nature of the RSA and the low contrast
between soil particles and roots. To cope with these issues, several tools
have been proposed.

As an example, the authors in [6] proposed a framework named
GLO-Roots, which exploits different types of feature-based image anal-
ysis techniques, such as local pattern recognition, global, shape, and
directionality analysis, to identify and extract the characteristics of
the root system, also considering gene reporters and soil moisture.
Another semi-automated tool, called GT-Roots, is proposed in [7]; GT-
Roots also applies a processing pipeline to each image that starts by
extracting a Region of Interest (RoI), then converts the original image
into grayscale, performs adaptive thresholding, and finally applies a
morphological operator to enhance the results. GT-Roots also allows for
a semi or fully-automated pipeline, where the operator can manually
intervene in each intermediate processing step. Authors in [1] propose
GIA-ROOTS, whose pipeline first performs image pre-processing via
rotation, crop, and scaling. Afterward, the user is asked to select a
series of relevant root system traits from a set of 19 possible choices,
which are then used on the segmented image to extract the root system.
Another tool is saRIA [8], which provides a semi-automated environ-
ment for RSA segmentation and calculating phenotypic features of the
RSA. The analysis pipeline includes several pre-processing steps, such
as cropping, despeckling, smoothing, and inversion of image intensity.
Then, adaptive image thresholding is used to segment the image in
the foreground (roots) and background (soil) using Gaussian weighted
mean. Morphological filters are then used to remove noise and improve
the quality of the found roots, root skeletons are computed, and RSA
features are extracted from a list of 44 root traits using a pixel-wise
computation.

While these tools can perform extremely well when only a few
images are available, they may be inadequate when a high amount
of data must be processed due to the required human intervention.
Furthermore, fixed processing pipelines usually lack generalization
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capabilities. Tools based on deep learning have been proposed to deal
with these issues. One, and probably the most well-known, of such tools
is SegRoot [9], that provides a binary mask of root (white pixels) and
no-root (black pixels) starting from an RSA image. SegRoot is based on
a modification of SegNet [10] and uses a series of standard CNN blocks
(that is, 3 × 3 convolutional filters followed by batch normalization
and ReLU activations) in the encoder. The decoder is composed of
a series of unpooling layers that perform non-linear upsampling to
make the output feature maps identical to the input feature maps
of the corresponding encoding layer. The main difference between
SegRoot and SegNet lies in the loss function, which is a modification
of the Dice coefficient [11]. Another tool based on a U-architecture is
DeepLabv3+ [12], which uses an U-shaped encoder based on Xcep-
tion as its backbone. The approach proposed in [13] predicts two
parameters representing the vertical and horizontal centroid of root
distribution to reveal the phenotypic diversity of root distribution.

Despite their effectiveness, U-shaped models may be over-complex
for the classification task and provide only a binary output instead of
evaluating the probability of observing root or no-root portions of an
image. A traditional, stacked convolutional neural network can be used
accordingly if the root segmentation problem is framed as described in
Section 3.

3. Materials and methods

3.1. Dataset gathering and annotation

To gather this dataset, the procedure described in our previous
work has been followed [2]. Specifically, data have been collected
over 40 days from cylindrical rhizotron tubes containing 5 plants of a
specific genotype. To this end, approximately 3800 snapshots have been
gathered, each consisting of 𝑘 = 6 photos of a rhizotron tube for approx-
imately 22800 raw RGB images. Such images have been captured using
a Scout sca1600-14gc camera (Basler AG) with a spatial resolution of
1234 × 1624 (width × height). To reduce the environmental factors that
could affect image quality in uncontrolled environments (e.g. outdoor
with lighting changes or using different sensors to capture the same
type of data), data collection took place using the High Throughput
Plant Phenomics Platform (HTP) based on a LemnaTec Scanalyzer3D
system located at the ALSIA Metapontum Agrobios Research Centre.
The system is equipped with an automated belt conveyor system that
automatically drives the samples to an acquisition chamber so that the
position, orientation and lighting conditions of each captured frame can
be controlled and standardized. Raw images have been then processed,
first identifying the rhizotron border, which has been then rotated to
evaluate the cylinder radius via geometrical formulae. Then, images
have been stitched together, completing the panorama extraction step.
Afterward, images have been cleaned from the contribution provided
by noise generated by the influence of light reflected on the cylindri-
cal rhizotrones via SVD. From the original dataset, 300 images have
been selected for manual data annotation. These images have been
hand-traced by domain experts using the Computer Vision Annotation
Tool [14] and exported into the Dataset Management Framework (Da-
tumaro) format [15]. In order to ensure accuracy and consistency in the
annotated ground truth data, the ground truth masks have been labeled
by three different independent domain experts. A reliability check was
then performed using a major voting procedure. In more details, a pixel
of the ground truth mask was labeled as root (or no-root) if at least two
independent annotators labeled it as root (or no-root). This way, we
aimed at reducing subjective bias that could be introduced by a single
annotator, even from an expert one. An example of the ground truth

image and its corresponding ground truth is provided in Fig. 1.
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Fig. 1. On the left, a root composite image with its corresponding ground truth on
the right.

3.2. Data preprocessing

Let us note that raw annotated images are not directly used for the
experiments. Instead, image patches have been automatically created
using an extraction filter of size 𝐹𝑤 × 𝐹ℎ. Specifically, the filter ‘‘flows’’
across each pixel in the image, starting from the top left towards the
bottom right, provided that:

𝑥𝑃 ∈
[

𝐼𝑤 +
𝐹𝑤
2

, 𝐼𝑤 −
𝐹𝑤
2

]

∧ 𝑦𝑃 ∈
[

𝐼ℎ +
𝐹ℎ
2
, 𝐼ℎ −

𝐹ℎ
2

]

(1)

In Eq. (1), (𝑥𝑃 , 𝑦𝑃 ) represents the coordinates of the pixel 𝑃 , while
𝐼𝑤 and 𝐼ℎ represent the width and the height of the original image,
respectively. In other words, the filter extracts a series of patches
provided that its borders completely fit within the original image,
hence not applying any padding operation.

Once each patch has been extracted, its corresponding ground truth
has been used to automatically label it as either a positive sample (that
is, its center represents a root pixel) or a negative sample (that is, its
center does not represent a root pixel).

Let us note that a dataset extracted this way could be highly imbal-
anced, presenting a larger number of negative samples. For this reason,
during the image patches automatic extraction, a certain number of
root patches from an image have been extracted. Then the same number
of no-root patches is randomly selected by subsampling the image
background. This way, about 250.000 patches were collected for each
class, whose examples are shown in Fig. 2.

However, for the training of RootNet a data augmentation step has
been performed, where images have been randomly rotated around the
center point, flipped (both horizontally and vertically), and adjusted in
terms of sharpness, brightness, contrast, or saturation. All the augmen-
tation operations do not affect the center point of the patch, so the
patch does not change its class after being augmented. No color jitters
have been introduced with the aim of avoiding the effect of introducing
unlikely data in the dataset.

3.3. RootNet architecture

In the experiments, a straightforward but effective CNN-based ar-
chitecture called RootNet is proposed, which is made of three stacked
CNN layers with max pooling and ReLU activation. To design RootNet,
the rules described by [16] have been followed, doubling the number
of convolution filters when the feature map size is halved. Afterward,
a fully connected layer was used, followed by a sigmoid activation
function. The sigmoid activation function is chosen over the softmax
activation function as the problem is framed as a binary classification
task, where the network is required to establish whether each patch is
127
either a positive or a negative sample. As for the loss function, binary
cross-entropy has been used, with SGD as the optimization algorithm.
A summary of the architecture of RootNet is shown in Fig. 3.

3.4. RootNet evaluation

As already explained in Section 3.3, our experiment aims to distin-
guish between positive (i.e., roots) and negative (i.e., no-roots) patches.
Hence, the output feature map of the latest convolution layer (Conv3 in
Fig. 3) is provided to a fully connected layer with a sigmoid activation
function, whose output is in the range [0, 1]. Hence, given a threshold
𝜎, the model provides a positive outcome if the prediction for the 𝑖th
image is above 𝜎, and a negative outcome otherwise.

The value of 𝜎 directly influences four scores that can be used to
evaluate the performance of RootNet, specifically:

• True Positives (TP), that is, the number of positive samples that
have been correctly classified.

• True Negatives (TN), that is, the number of negative samples that
have been correctly classified.

• False Positives (FP), that is, the number of negative samples that
have been incorrectly classified as positive samples.

• False Negatives (FN), that is, the number of positive samples that
have been incorrectly classified as negative samples.

Adjusting the threshold via threshold-moving is a simple yet effec-
tive technique to improve classification performance [17]. To explain
this, let us briefly recall the definitions of recall and precision:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

In other words, the model achieves higher precision when 𝐹𝑃 → 0,
while it achieves higher recall when 𝐹𝑁 → 0. However, in the case
of binary classification, the value for the different scores is related to
the 𝜎 value. A higher 𝜎 value implies that the model will misclassify
fewer negative samples, reducing the overall 𝐹𝑃 . At the same time,
however, the model will also misclassify a higher number of positive
samples, leading to higher 𝐹𝑁 . Consequently, these combined effects
will lead to higher precision and lower recall. On the other hand, a
lower value for 𝜎 causes the opposite effect, reducing precision, but
improving recall.

Hence, as the aim is to experimentally choose a value for 𝜎 to
optimize both precision and recall, the F1 score metric is used, that
embeds both precision and recall in its formulation:

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(4)

4. Experimental results

In this section, the results achieved by the proposed method on the
dataset described in Section 3.1 are described.

4.1. RootNet performance

First, the results of the RootNet architecture have been evaluated by
varying the input image size in terms of precision, recall, accuracy, and
F1 score. Specifically, three models with three different image input
sizes have been used, that is, 257 × 257 (i.e., RootNet-257), 129 × 129
(i.e., RootNet-129), and 65 × 65 (i.e., RootNet-65). From these networks,
the raw value predicted by the binary classifier has been extracted, that
is, the raw value extracted by the sigmoid activation function. Several
fixed values for the 𝜎 threshold are used to compute evaluation metrics.
The results are reported in Figs. 4(a), 4(b) and 4(c). Furthermore, the
numerical values achieved by the metrics at the threshold of 𝜎 ∼ 0.45
are shown in Table 1.
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Fig. 2. RootNet dataset patches arranged in two rows: row a. that shows examples from the root class and row b. that shows examples from the non-root class. All the patches
must span the highest number of background configurations possible to consider root image complexity. A non-root patch can have roots in the surroundings, but the center point
must be a non-root.
Fig. 3. RootNet architecture. The proposed architecture sends the RGB image through three different convolutional layers, with a decreasing density of the applied kernels. After
the third convolution, a max pooling layer is applied to retain relevant features, which are then fed to a fully connected layer and, finally, to the decision layer.
Table 1
Metrics achieved by RootNet at a fixed value of 𝜎 = 0.45 after data augmentation.

Model A (%) P (%) R (%) F1 (%)

RootNet-257 𝟗𝟐.𝟒𝟕% 𝟗𝟏.𝟗𝟕% 92.71% 𝟗𝟐.𝟑𝟒%
RootNet-129 92.36% 91.65% 92.96% 92.30%
RootNet-65 92.22% 91.38% 𝟗𝟑.𝟎𝟎% 92.18%

Table 2
Metrics achieved by RootNet at a fixed value of 𝜎 = 0.45 without augmentation.

Model A (%) P (%) R (%) F1 (%)

RootNet-257 86.40% 𝟗𝟖.𝟏𝟎% 73.62% 84.12%
RootNet-129 86.18% 97.98% 73.44% 83.96%
RootNet-65 𝟖𝟕.𝟖𝟏% 97.95% 𝟕𝟔.𝟖𝟗% 𝟖𝟔.𝟏𝟓%

Table 2 shows the classification results achieved by the available
configurations of RootNet without data augmentation. The results
clearly show how data augmentation improves the overall performance
of the networks. Interestingly, this is mainly related to a lower re-
call achieved by the network when trained on non-augmented data,
resulting in a decrement in the performance of the network in the
correct identification of root patches. This could be ascribed to the
augmentation steps that keep the central point belonging to a root (or
no-root), that increase the variability of the observed scene, resulting
in better performance.

The first thing to notice is that the precision value shows direct
proportionality with the 𝜎 threshold. In contrast, the recall shows
inverse proportionality to the same threshold. As a consequence of this
behavior, the accuracy and F1 curves show an inverted U-shape. This
result is stable for the three RootNet models, regardless of the input
size, even if the numerical values slightly differ for each architecture.
From the analysis of these curves, it is possible to define proper
𝜎 threshold values to analyze the results produced by RootNet. For
example, fixing a desired precision and recall values of 0.95, it can be
defined 𝜎𝑝 ∼ 0.6 and 𝜎𝑟 ∼ 0.3 to filter an image processed by RootNet
with the following logic:

• If a pixel has a predicted outcome value greater than or equal to
𝜎 , it is labeled as root.
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𝑝

• If a pixel has a predicted outcome value less than or equal to 𝜎𝑟,
it is labeled as background.

• Otherwise, it is labeled as unknown.

With reference to Fig. 4, the same logic can be applied using a single
threshold, obtained when 𝜎𝑝 = 𝜎𝑟 = argmax

𝜎
(𝐹1) ∼ 0.45, as the higher

values of the F1 score are achieved for a threshold value between 0.4
and 0.5. These threshold values will be used in the next experiment to
provide a qualitative evaluation of the images processed by RootNet,
hence achieving a comparison with the SegRoot model on our dataset.

4.2. Comparison with SegRoot

This section compares the results of RootNet with those of SegRoot.
However, it must be considered that the two networks use different
underlying principles: a U-shaped encoder/decoder network for Seg-
Root and a stacked set of Convolutional-ReLU-Max pooling layers with
a binary classifier on top of them for RootNet. Hence, a direct, quantita-
tive comparison of classic metrics (e.g., accuracy) may not be suited for
the task. Consequently, a qualitative evaluation is proposed comparing
the original image, the ground truth, and the results achieved by both
networks.

In Fig. 5, a visual comparison of the results achieved by SegRoot
and the three different versions of RootNet is shown.

From Fig. 5(d), it can be seen that SegRoot provides the best results
when used with the original weights, as retraining it on our dataset
introduces a significant quantity of noise. However, by comparing the
results achieved by SegRoot with the ground truth, it can be seen that
it cannot capture the finer details, such as the smaller parts of the RSA.
Furthermore, SegRoot misclassifies some of the artifacts introduced by
the merging procedure applied on the original image (cfr. Section 3.1)
as parts of the RSA. As for our architecture, the qualitative comparison
shows that both RootNet-65 (Fig. 5(e)) and RootNet-129 (Fig. 5(f))
successfully capture fine-grained details about the RSA, with RootNet-
129 achieving less noise in the bottom of the image, where no roots are
available.

To further extend our comparison, let us qualitatively evaluate
Fig. 6, where the results achieved by SegRoot are compared with the
ones achieved with RootNet-65 on four different RSAs, selected accord-
ing to both the density and the length of available roots. Specifically:
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Fig. 4. From left to right, evaluation of Accuracy, Precision, Recall, and F1-score
for RootNet-257, RootNet-129, and RootNet-65 at 𝜎 threshold levels from 0.1 to 0.9,
sampled with a step of 0.1.

• RSA 1 (top left) has been selected since a high density of long
roots is visible in the upper part of the image.

• RSA 2 (top right) has been selected since there is a high density
of both long and short roots over the whole image.

• RSA 3 (bottom left) has been selected due to the low density of
the visible short roots.

• RSA 4 (bottom right) has been selected due to the high density of
short roots in the bottom part of the image.

In each subfigure of Fig. 6 is shown, from left to right, the original
image, the ground truth, the results achieved using RootNet-65, and the
results achieved by SegRoot with its original weights. Specifically, the
results provided by RootNet-65 are described in terms of the values of
𝑠𝑖𝑔𝑚𝑎 for each pixel. Hence:

• If the pixel is colored in dark green, the network has classified it
as a root with a confidence score above 0.95.

• If the pixel is colored in green, the network has classified it as a
root with a confidence score between 0.8 and 0.95.

• If the pixel is colored in orange, the network has classified it as a
root with a confidence score between 0.6 and 0.8.

• If the pixel is colored in yellow, the network has classified it as a
root with a confidence score between 0.3 and 0.6.

• If the pixel is colored in black, the network has classified it as a
root with a confidence score below 0.3.
129
Fig. 5. Results achieved on a sample image. From left to right: the original image
(5a), the ground truth (5b) manually extracted by domain experts, the results achieved
by SegNet with its original weights (5c) and after being retrained on our dataset (5d),
and the results achieved by RootNet-65 (5e), RootNet-129 (5f), and RootNet-257 (5g),
respectively.

In other words, according to the two-thresholds formulation de-
scribed in Section 4.1, pixels colored in orange, green, and dark green
can be considered roots with a high confidence level. On the other
hand, pixels colored in black can be considered part of the background.
Finally, pixels colored in yellow are labeled as ‘‘uncertain’’ and, as it can
be seen, mostly belong to the zones relative to the artifacts introduced
by the preprocessing on the images or to the zones surrounding the
roots. This is also desirable, as it can highlight root parts that are
effectively within the RSA but have not been labeled by the domain
expert as too dim in their appearance on the image. As seen from the
images, RootNet outperforms SegRoot in the cases shown in Figs. 6(a),
6(b), and 6(d), which account for dense zones of long and short roots,
providing high reliability, especially by considering the two-thresholds
formulation proposed. As for the case shown in Fig. 6(c), RootNet ap-
pears to be able to correctly characterize roots, which are also available
in the ground truth; however, several points also appear with values of
the confidence score above 0.6, which can be taken back in part to the
artifacts within the image and in part to several dim structures within
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Fig. 6. Qualitative comparison between SegRoot with original weights and RootNet-
65. From left to right, respectively, the original image, the ground truth, RootNet-65
results, and finally SegRoot binary mask are reported.

the RSA. Therefore, in this case, using the single-threshold formulation
may be preferable.

4.3. Quantitative comparison

To further assess the performance of RootNet, a pixel-based quan-
titative comparison against SegRoot was proposed. Specifically, four
metrics were used: precision, recall, F1 score and Hausdorff distance
between the ground truth and a binary mask produced by each method.
Results are shown in Table 3.
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Table 3
Quantitative pixel-based comparison of RootNet against SegRoot.
Network F1 P R

SegRoot 11.58% 9.50% 20.42%
RootNet-65 17.56% 10.07% 𝟕𝟕.𝟎𝟐%
RootNet-129 𝟐𝟐.𝟔𝟓% 𝟏𝟑.𝟕𝟕% 67.78%
RootNet-257 21.40% 13.39% 60.62%

Table 4
Quantitative comparison of RootNet against SegRoot over patches of
3 × 3 pixels.
Network F1 P R

SegRoot 11.66% 9.60% 20.32%
RootNet-65 18.39% 10.60% 𝟕𝟔.𝟔𝟖%
RootNet-129 𝟐𝟑.𝟔𝟐% 𝟏𝟒.𝟒𝟖% 67.70%
RootNet-257 22.41% 14.16% 60.40%

Table 5
Quantitative comparison of RootNet considering the border effect.
Network F1 P R

RootNet-65 17.64% 10.06% 𝟕𝟗.𝟑𝟑%
RootNet-129 𝟐𝟑.𝟎𝟕% 𝟏𝟑.𝟕𝟏% 74.71%
RootNet-257 22.40% 13.39% 74.25%

It is important to underline that, as already stated in Section 4.2,
a direct comparison in terms of standard metrics among these models
is not straightforward, as they are based on different considerations
and working principles. In particular, the problem solved by RootNet
is intrinsically formulated as a probability estimation, therefore the
informative content output by the proposed method is not a simple
binary mask. Moreover, to frame the problem and prepare the dataset,
particular attention was payed to the ground truth labeling, privileging
thin lines that certainly highlight a root in the images, due to the
major voting procedure described before. As such, even if the quan-
titative comparison is based on a pixel-level evaluation of the results
achieved using the networks in inference mode over 17 validation
images, considering such binary masks and the ground truth labeled
this way could lead to relatively low values of the F1 score. For this
reason, in order to better evaluate the performance of the models in the
most unbiased way, we also provided a computation of the Hausdorff
distance between the ground truth and all the binary masks obtained by
the networks. Table 3 shows that RootNet-129 outperforms the other
models in terms of F1 score and precision, while RootNet-65 achieves
the highest value for recall. Still, these values must be taken in the
context of a pixel-based evaluation, which can be inherently biased by
minimal offset errors in the prediction. In other words, a displacement
of the prediction performed by the network of a negligible number
of pixels, either vertically or horizontally, can significantly impact the
values provided by the metrics. As such, the results were also validated
considering the average prediction of a patch of 3 × 3 pixels. The results
are shown in Table 4, and confirm the ones already achieved in Table 3.

Finally, let us consider the border effect introduced by RootNet
when used in inference. In fact, during the proposed tests, the model
was used in inference without introducing any extra padding effect
to avoid repetition bias. However, this imposes a tradeoff in that the
outermost 𝑁−1

2 pixels will not be considered during the analysis, with
𝑁 the patch size RootNet considers during training. Consequently,
accounting for these border effects yields the results shown in Table 5.

Interestingly, when the border effect is considered, the precision
is slightly affected, along with the overall F1 score, but the recall is
noticeably improved. This is mainly related to the fact that the border
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Table 6
Quantitative comparison of the Hausdorff
distance between the ground truth and the
binary masks computed by the network
models.
Network Hausdorff distance

SegRoot 24.61
RootNet-65 𝟏.𝟕𝟖
RootNet-129 3.27
RootNet-257 3.05

pixels are not predicted as belonging to roots, hence the overall number
of false negatives decreases, therefore improving the recall achievable
by the network. Finally, in Table 6 the Hausdorff distance between the
ground truth and the validation binary masks is reported, showing that
the proposed approach is able to provide a root mask with a distance
error of less than 2 pixels in the best case and less than 4 pixels in the
worst case.

5. Conclusions and future works

This work has proposed an alternative formulation of the RSA
segmentation problem that does not require a U-shaped network but
relies on binary classification via probability map estimation to classify
pixels of the original image as roots or background. This approach has
provided optimal quantitative results regarding the accuracy and the
F1-score using small CNNs with only three stacked convolutional layers.
This CNN model was specifically selected to test the effectiveness of the
end-to-end pipeline. In this sense, future works will be directed towards
testing more complex architectures, aiming at finding the optimal
trade-off between achieved accuracy and computational load. As it
provides adequate performance with small models, it has an overall
reduced computational cost compared to other approaches requiring
more resource-exhaustive architectures. Furthermore, the approach is
flexible, as the value of the optimal thresholds used for the final
classification can be tuned to achieve the desired quantitative metrics.

The practicability and feasibility of this approach are especially
relevant in scenarios where there is a lack of labeled data. Labeling
RSAs is costly for the domain expert. Still, the proposed approach can
generate many patches from a relatively limited number of images,
providing an effective tool to identify complex RSAs with high reliabil-
ity. Furthermore, the approach can be easily scaled, and an optimized
version can exploit the parallel computational capabilities of GPUs to
achieve quasi-real-time performance over large amounts of data.

Future works will be focused on exploring different architectures,
which can also include different types of layers, to improve both the
overall metric and the efficiency of the network, as well as testing
the proposed model on images of different plant species. Furthermore,
new evaluation metrics will be provided to quantitatively compare
the results achieved by RootNet with other networks in a simple and
unbiased fashion.
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