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Abstract: This review examines the techno-functional properties of lactic acid bacteria (LABs) in
the food industry, focusing on their potential health benefits. We discuss current findings related
to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features,
and a variety of other biochemical activities. These activities include the production of antimicrobial
compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory
experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions
in foods and improve their functional properties. In addition, LABs’ role as probiotics is known for
their promising effects on gut health, immune system modulation, cholesterol control, and general
wellbeing. Despite these advantages, several challenges hinder the effective production and use of
probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring
their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests
avenues for future research.

Keywords: lactic acid bacteria; probiotic; bioactive compounds; techno-functional proprieties;
health benefits

1. Introduction

Lactic acid bacteria (LABs) are important active agents in the food industry and are
best known for their role in the lactic acid fermentation process. This process not only
acidifies the product, but also increases the bioavailability of essential nutrients, such as
vitamins, minerals, and antioxidant molecules, allowing the body to better absorb nutrients
and bioactive compounds [1]. Additionally, LABs contribute substantially to the desirable
texture, flavor, and aroma of fermented foods, significantly enriching both the sensory
experience and the nutritional value of these products [1]. Moreover, employing LABs is
an effective natural method for food preservation, extending shelf life and maintaining
food properties. This is achieved through the production of lactic acid and other microbial
metabolites, including bacteriocins and hydrogen peroxide, which inhibit the growth of
spoilage organisms and pathogens [2].

In addition to their technological advantages, LABs are also highly valued for their
probiotic properties. They play a crucial role in promoting gut health and supporting diges-
tion by maintaining a balanced gut microbiota, which is essential for a robust gut immune
system. Probiotic LABs work by displacing harmful bacteria, inhibiting their growth and
improving the integrity of the intestinal barrier [3,4]. Current research has expanded to
explore the relationship between dysbiosis, which is characterized by an imbalanced gut
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microbiota and inflammation. Such imbalances are considered both contributory to and a
consequence of various health issues, linking to symptoms like fatigue, diarrhea, bloating,
digestive problems, insulin resistance, and immune deficiencies [5]. Probiotics have also
been shown to prevent ailments, such as food allergies, allergic rhinitis, and gastrointestinal
disorders, including necrotizing enterocolitis [6,7]. Given the increasing consumer demand
for healthful and sustainable food options, the incorporation of probiotic LABs and their
metabolites into food products is gaining traction. This growing interest underscores the
need for ongoing research into new applications for LABs, focusing on enhancing overall
food quality and human health.

This review embarks on an exploration of the techno-functional properties of LABs
in food products, paying close attention to the potential benefits of LABs, as well as
their significance in relation to human wellbeing. Furthermore, this review addresses the
challenges associated with the production and application of probiotic LABs and proposes
new directions for future research.

2. Lactic Acid Bacteria Classification

LABs form a large group of Gram-positive, non-sporulating, rod- or cocci-shaped
bacteria. Among LABs, lactobacilli are a relevant subgroup with 256 species that have
high technological relevance. Due to their high diversity at phenotypic, ecological, and
genotypic levels, lactobacilli have recently been reclassified into 25 genera, including the
emended genus Lactobacillus, Paralactobacillus, and 23 novel genera. Other relevant LABs
are grouped into Lactococcus, Leuconostoc, Pediococcus, Streptococcus, Aerococcus, Alloiococcus,
Carnobacterium, Dolosigranulum, Enterococcus, Oenococcus, Tetragenococcus, Vagococcus, and
Weissella genera [8,9]. They are facultatively anaerobic, catalase-negative, and stationary.
They can be found in a range of habitats, including the cavities of people and animals as
well as in ecological niches in dairy, meat, and vegetable products [10,11]. The LAB group is
currently classified within the phylum Firmicutes, class Bacilli, and order Lactobacillales [11].
These microorganisms are characterized by low GC content (31–49%). While these bacteria
display diverse metabolic capacities, their common trait is the production of lactic acid from
the provided carbon substrate. They are classified as either obligate homofermentative,
predominantly producing lactic acid, or obligate heterofermentative, yielding a variety of
metabolites including lactic acid, acetic acid, ethanol, and carbon dioxide. Furthermore,
some species are classified as facultative heterofermentative, capable of utilizing both
fermentation pathways [11].

Probiotics

In recent years, there has been an increase in the use of LABs as probiotics, which
are living bacteria that, when taken in adequate quantities, have positive effects on the
body [12]. Probiotics should be able to tolerate the conditions of the gastrointestinal
tract, including the production of bile in the duodenum and the acidic environment of the
stomach, and they need to adhere to the gut lining to enhance interactions with gut cells [13].
They must also be able to participate in gut biological activity. Probiotics exert their
effects through three main modes of action: modulating the host’s defenses, including the
immune system; directly affecting other microorganisms, which is beneficial for preventing
infections and restoring microbial balance in the gut; and impacting microbial products, like
toxins and bile salts, aiding in detoxification in the gastrointestinal tract [13]. To experience
health advantages, a daily intake of 108 to 1011 CFU of bacterial cells is recommended [14].
It is crucial to note that while the viability of probiotics is important, non-viable forms,
known as parabiotics, can also contribute to human health [15]. In order to establish the
functional criteria for probiotics (Figure 1), it is essential to conduct both in vitro and in vivo
assays and to validate the results through controlled human studies.
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3. Safety of LABs

LABs are generally recognized as GRAS (Generally Recognized as Safe), which offi-
cially authorizes their use in food applications and guarantees their safety. However, not
all LAB strains are classified as GRAS. To achieve GRAS status, a LAB strain must fulfill
specific criteria, such as being non-pathogenic, non-mutagenic, non-carcinogenic, and not
resistant to antibiotics [11]. Similarly, the European Union, alongside the GRAS designation
in the United States, offers a corresponding status known as the Qualified Presumption of
Safety (QPS), which was established by the European Food Safety Authority (EFSA). Mi-
croorganisms under QPS are recognized as safe without the need for further comprehensive
safety assessments. To qualify for QPS status, a microorganism must have a well-defined
taxonomic identity, adequate evidence of safety, confirmed non-pathogenic properties, and
a clearly defined intended use [12]. The Generally Recognized as Safe (GRAS) classification
is primarily assigned to Lactococcus and lactobacilli. Certain species within LAB genera
such as Streptococcus have also received GRAS/QPS designation; however, none of the
species within the Enterococcus genus have achieved GRAS/QPS status so far, mainly due
to their potential as opportunistic pathogens [13].

4. Techno-Functional Proprieties of LABs

LABs exert a significant influence on the technological and functional characteristics
of food products. These characteristics, which include safety assurance, nutritional en-
richment, and sensory enhancement, underscore the essential role of LABs in preserving
and improving food quality. Understanding the complex techno-functional characteris-
tics of LABs is pivotal for optimizing food manufacturing procedures and guaranteeing
customer satisfaction.

4.1. Acidification

Their acidifying activity has a significant impact on the functional properties of fer-
mented foods and beverages. The decrease in pH plays an important role in improving their
hygienic qualities and imparting distinct taste profiles. Several factors such as fermentation
temperature, strain, and the nature and concentration of the carbon source can affect lactic
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acid production [16]. For example, lactose remains the preferred carbon source for some
LABs. Grasso et al. [17] found that dairy yogurt had higher total titratable acidity and
L-lactic acid content compared to plant-based yogurts.

Furthermore, acidification creates an acidic environment that is conducive to the
coagulation of casein in dairy products and enhances water retention capacity and moisture
retention during the processing and cooking of meat products [18,19]. Barbut’s research [20]
identified that the gelation process in meat products is significantly influenced by the
timing of acid exposure to meat proteins. Specifically, lactic acid plays a crucial role by
facilitating the binding of these proteins before the cooking process. This pre-cooking
binding is essential for forming a stable gel structure, which improves the texture of the
meat. Additionally, maintaining a low pH not only enhances the color and stability of meat
products but also improves the color and quality of fermented fruit beverages [21,22].

In addition to enhancing the techno-functional properties of foods, acidification also
improves their nutritional properties. Notably, it improves the solubilization and extraction
of bioactive compounds in fermented fruit beverages [23]. Several studies have shown that
the fermentation of fruit juices significantly affects the levels of citric acid, the biochemical
conversion of phenolic compounds, and antioxidant activity [22,24]. However, LABs can
also be responsible for biological deacidification, as is the case in winemaking, where
LABs convert malic acid into lactic acid, thus softening the taste [25]. An improvement
in the nutritional value of sourdough bread was also noted, including improved mineral
availability and a reduction in phytic acid content due to lactic acid production [26].

LABs can also produce beneficial organic acids, like acetate and propionate, which
are known for improving food preservation by reducing the pH and enhancing sensory
qualities, such as flavor and texture, in products like cheese and yogurt [27]. These acids
also support overall health, including digestive and metabolic processes. Additionally,
compounds, like 2-hydroxyisocaproic acid (HICA) and 3-phenyllactic acid (PLA), which
are derived from the amino acids L-leucine and L-phenylalanine, respectively, possess
antimicrobial properties that help extend the shelf life of food products while contributing
to health benefits, such as muscle recovery and metabolic health [28].

4.2. Protein Hydrolysis

The significance of the proteolytic activities of LABs in the food industry is well
recognized. Thermophilic lactobacilli are particularly known for their high proteolytic
activity, surpassing that of other bacteria, with variations among strains within each
species [29]. Among them, Lactobacillus delbrueckii subsp. bulgaricus stands out for its strong
proteolytic capacity [30]. This activity involves a range of proteinases and peptidases, which
are essential for flavor development and the production of various bioactive compounds,
including antimicrobial and antioxidant peptides [31].

These proteolytic activities contribute to the coagulation of milk proteins, influencing
the texture and taste of the dairy products [32]. Moreover, they enhance the safety of fer-
mented products by reducing allergenic properties through the hydrolysis and elimination
of protein allergens [33]. In fermented meat products, LAB proteolytic activity aids in the
breakdown of proteins—thereby improving digestibility and increasing the number of
soluble and free amino acids—and small peptides [33]. This process not only enhances
palatability and tenderizes the meat but also reduces the required maturation period [34].

In the bakery industry, proteolytic activity is crucial for breaking down gluten proteins,
thus affecting the rheology of sourdough wheat dough and impacting bread texture and
digestibility [26]. Additionally, proteolytic activity leads to the release of various amino acids
in fermented products, including glutamate, which enhances the umami taste, and peptides
such as glutathione and glutamyl dipeptides, contributing to the kokumi taste [35,36].

4.3. Impact of LABs on Food Texture

LABs significantly influence the texture of food products primarily through their
exopolysaccharide (EPS) production [37]. EPSs act as natural texturizers, stabilizers, viscosi-
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fiers, bio-thickeners, or emulsifiers [38]. The specific function of EPSs depends on factors
such as temperature, pH, ionic strength of the medium, sugar composition, chain length,
sugar linkages, branching frequency, and molecular mass [38]. In dairy products, EPSs
enhance texture by contributing to a smoother, creamier consistency and by improving
the body of low-fat cheeses without the need for added fats [38]. They also modify the
rheological properties of food matrices, leading to increased viscosity and improved gel
strength, which are beneficial for products like fermented dairy drinks and cheeses [39,40].
Additionally, EPSs help reduce syneresis in yogurt and other fermented milk products,
thus preventing the undesirable separation of liquid from the gel [40].

EPSs also have excellent water-binding capacities, which are essential for retaining
moisture in baking products. This property helps reduce staling and improves the softness
and shelf life of bread [37]. Galli et al. [41] observed that fermentation using Weissella
confusa results in the in situ production of dextran, which increases dough viscosity. Fur-
thermore, recent studies suggest that strains of Limosilactobacillus reuteri-producing EPSs can
enhance the quality of gluten-free bread, reducing the need for expensive hydrocolloidal
polysaccharides in the baking process [39].

4.4. Production of Flavor Compounds

During food fermentation, LABs utilize carbon sources, initiating specific metabolic
pathways that significantly enhance flavor profiles. These bacteria primarily ferment
carbohydrates into lactic acid, which not only preserves the food by lowering its pH but
also imparts a distinctive tartness. During this process, LABs also generate various volatile
compounds, such as alcohols, esters, and aldehydes, which are essential for the nuanced
flavors found in cheeses, yogurts, and sourdough [42,43]. LABs can also convert citric acid
into diacetyl and acetoin, which contribute buttery and creamy flavors, respectively, in
dairy products [44,45].

LABs also contribute to flavor development in fermented foods through their lipid
metabolism. They initiate lipolysis, breaking down triglycerides into free fatty acids and
glycerol [46]. Release of short-chain fatty acids, such as butyric and caproic acid, are
essential for the distinctive flavors found in cheeses and other dairy products [47,48].

LABs’ ability to metabolize amino acids also plays an important role in flavor diversi-
fication [49]. LABs can decarboxylate or transaminate amino acids, converting them into
α-keto acids and amines, which serve as precursors for various aromatic compounds. These
α-keto acids may be further reduced into aldehydes and alcohols, contributing significantly
to the flavor profile of fermented foods [50]. This enzymatic breakdown enhances the
flavor profiles of fermented products, adding depth and richness. Additionally, amino
acids can participate in Maillard reactions with reducing sugars present in the fermentation
medium, leading to the formation of complex flavors, adding characteristics (like umami
and caramel) and reducing undesirable odors [51]. Alcohols derived from amino acids can
also react with free fatty acids to form esters, which are known for their pleasant fruity and
floral aromas [47,52].

4.5. Improvement of Antioxidant Activity of Fermented Products

LABs enhance the antioxidant activity of fermented products through multiple bio-
chemical processes. During fermentation, these bacteria promote the release of antiox-
idant compounds, such as free phenolic compounds, which directly contribute to ter-
minating oxidation chain reactions [53]. Research has shown that changes in phenolic
compounds during lactic acid fermentation are associated with increased antioxidant lev-
els [23]. Additionally, specific enzymes like tannase and β-glucosidase in LABs break
down tannins and glycosylated isoflavones, respectively. This process releases aglycones
and polyphenol monomers, enhancing the bioavailability and antioxidant activity of these
substances [23,54,55].

Furthermore, in protein-rich foods, LABs play a crucial role in converting proteins
into smaller peptides and free amino acids, which have significant antioxidant activities
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that can neutralize reactive oxygen species. Research has demonstrated that the proteolytic
activities of LAB strains, like Lacticaseibacillus casei and Lactobacillus acidophilus, in probiotic
yogurts and fermented milk, enhance the antioxidant capacity. This enhancement occurs
as antioxidant peptides are released during proteolysis [56]. These peptides, noted for
their potent antioxidant properties, function by chelating pro-oxidant metal ions. Their
effectiveness is determined by their structural features and concentration levels [57,58].

Additionally, LABs produce EPSs with intrinsic antioxidant properties that further
enhance free radical scavenging. An EPS isolated from a Lactiplantibacillus plantarum culture
was found to exhibit antioxidant activity by acting as an electron donor to stabilize free
radicals, among other not yet fully understood mechanisms [59].

4.6. Biopreservation

LABs play a crucial role in food biopreservation due to their ability to produce a wide
range of antifungal and antibacterial metabolites [60,61]. These include organic acids, such
as lactic acid and acetic acid, which lower the pH of the food environment, inhibiting the
growth of molds like Penicillium species as well as common foodborne pathogens [62,63].

LABs also produce hydrogen peroxide a potent oxidizing agent, is known for its
ability to damage cellular components, such as biofilms, cell membranes, and cell walls,
offering a broad antimicrobial range against bacteria, fungi, and viruses [64]. This property
makes it ideal for disinfection and food preservation. Additionally, LABs produce volatile
compounds, like diacetyl, which not only contribute to the aroma of cheeses but also inhibit
the growth of molds [65]. Moreover, LABs produce conjugated linoleic acid (CLA), which
is crucial in boosting the effectiveness of LABs against pathogenic bacteria [66].

EPSs produced by LABs also play a crucial role in disrupting the biofilms of pathogenic
bacteria, thereby enhancing food safety [67]. These substances interfere with the initial
stages of biofilm development by altering the surfaces of bacterial cells, which prevents
their attachment to surface [68]. Moreover, EPSs can disrupt the communication among
pathogenic bacteria by interfering with quorum sensing mechanisms, which are crucial
for biofilm maturation and integrity [69]. Some EPSs also possess inherent antimicrobial
properties that directly inhibit or kill pathogens within biofilms [67]. The Lactococcus lactis
F-mou strain, isolated from Sahrawi camel milk in Algeria, produces EPSs with potent
inhibitory properties against various harmful microorganisms, including Staphylococcus au-
reus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, and others, showcasing
its significant potential in natural food preservation and enhancement [70].

Bacteriocins, which are small antimicrobial peptides produced by LABs, are highly
effective at inhibiting a wide range of spoilage and pathogenic microorganisms, thus
enhancing food safety and extending shelf life [71,72]. Recognized as safe for human
consumption, bacteriocins offer a natural alternative to chemical preservatives in the food
industry. Nisin, a well-known bacteriocin produced by Lactococcus lactis subsp. lactis, has
been classified as GRAS and deemed a safe food additive since 1969 [73]. It is widely
used in the dairy industry to inhibit spoilage and pathogenic bacteria in products like
cheese and yogurt. Nisin is particularly effective against Gram-positive bacteria, including
resistant pathogens such as Listeria monocytogenes [64,74]. It works by disrupting microbial
membranes, interacting with membrane phospholipids, displacing or releasing enzymes,
and ultimately leading to the lysis of the cell wall [75].

5. Beneficial Effects of Probiotic LABs
5.1. Improvements in Lactose Intolerance and Lactose Digestion

Lactose intolerance is a physiological disorder characterized by the inability of the
human body to break down lactose due to a deficiency of the enzyme lactase in the intestinal
mucosa [76]. This condition can result from digestive disorders or congenital diseases.
Recent research indicates that probiotics can alleviate symptoms of lactose intolerance,
which may include stomach pain, cramps, vomiting, and flatulence in adults, as well as
acidic diarrhea in children [77]. Gingold-Belfer et al. [78] demonstrated that administering
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probiotics with β-galactosidase activity significantly improved symptoms in a vast majority
of individuals with lactose malabsorption. Additionally, probiotics have been shown to
effectively regulate the gut’s pH levels, enhance β-galactosidase expression, and modulate
the colon’s microbiota [79].

5.2. Cholesterol-Lowering Activity

Some LAB probiotics have been shown to provide additional benefits, such as the
absorption of cholesterol and the lowering of cholesterol and triglyceride levels in the
blood. Hypercholesterolemia is recognized as a significant risk factor for the development
of coronary heart disease [80]. Therefore, reducing blood cholesterol levels is crucial for
disease prevention. Lb. acidophilus and Enterococcus faecalis isolated from traditional Chinese
fermented cucumbers were found to have higher cholesterol- and triglyceride-lowering
effects in vitro [81].

The exact mechanisms that cause the cholesterol-lowering effects of probiotics are not
fully understood. According to Cao et al. [82], lactobacilli have the potential to modulate
cholesterol levels by regulating the gene expression associated with cholesterol synthesis,
metabolism, and absorption. Kazemian et al. [83] demonstrated that SCFAs can decrease
serum lipid levels by inhibiting or redirecting cholesterol synthesis within the liver. In
another study, Bosch et al. [84] indicated that three Lpb. plantarum strains (CECT 7527,
7528, and 7529) were capable of producing substantial quantities of propionic and butyric
acids. These strains could also uptake cholesterol directly from the surrounding media and
decrease its concentration through cell surface binding. Various alternative mechanisms
have been proposed in order to account for the decline in intestinal cholesterol absorption
following the regular consumption of probiotics. These mechanisms include the trans-
formation of cholesterol into coprostanol, a sterol that cannot be absorbed by the body,
and the inhibition of enterocyte expression of intestinal cholesterol transporters [85]. The
EPSs derived from Lactiplantibacillus have also shown considerable potential in reducing
cholesterol levels [86].

The research conducted by Modi et al. [87] demonstrated that a fermented amla
beverage, using strains of Pediococcus lolii, Pediococcus acidilactici, Pediococcus pentosaceus,
and Lpb. plantarum, positively impacts lipid profiles in both serum and the liver. These LAB
strains modulate cholesterol levels through several mechanisms. They reduce cholesterol
synthesis by lowering hepatic HMG-CoA reductase levels, counteract reactive oxygen
species with their antioxidant properties to prevent cholesterol oxidation, and enhance
liver function, which is critical for lipid metabolism. Additionally, they decrease serum
triglycerides and total cholesterol. The beverage’s organic acids further inhibit cholesterol
synthesis and improve fatty acid utilization, with these effects being enhanced by free
polyphenols and flavonoids released by lactic acid fermentation.

5.3. Immunomodulation

Recent research has shown that the incorporation of probiotics into the diet enhances
both the innate and adaptive immune responses [88]. Mazziotta et al. [3] have clarified how
probiotics interact with the host’s immune system within the gut, detailing the mechanisms
involved. These mechanisms include probiotics’ ability to interact with pattern recognition
receptors (PRRs) on the surface of gut epithelial cells. This interaction triggers cytokine
production and stimulates regulatory T cells (Tregs), which are crucial for maintaining
immune homeostasis in the gut and limiting inflammation. Additionally, Tregs facilitate
interactions with specialized enterocytes known as M cells. These cells assist in transporting
antigens from the gut lumen to dendritic cells (DCs) in the lamina propria. The interaction
between DCs and LABs leads to the activation of various T helper cell differentiation
patterns or regulatory T cell responses [89]. Moreover, studies have demonstrated that
LABs positively influence intestinal barrier function by enhancing mucus production from
goblet cells. These cells form a physical barrier between the intestinal lumen and host
tissues, preventing the invasion of harmful pathogens [90,91].
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5.4. Modulation of Antioxidant Defense Systems and Anti-Inflammatory Properties

The antioxidant and anti-inflammatory activities of LABs play a crucial role in manag-
ing oxidative stress and inflammatory processes in the body. Figure 2 illustrates the diverse
antioxidant mechanisms of LABs responsible for reducing oxidative stress. LABs help
neutralize reactive oxygen species (ROS), potentially harmful molecules that can damage
cells and tissues. This neutralization primarily occurs through the chelation of metal ions
that catalyze ROS formation via reactions such as the Fenton reaction [92]. These ROS are
normal byproducts of cellular metabolism which, if unregulated, can damage cells and are
associated with increased risks of heart disease, cancer, and arthritic conditions [93].
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Moreover, certain strains of LABs activate or stimulate antioxidant enzymes, such
as superoxide dismutase (SOD) and glutathione peroxidase (GPx), which break down
ROS and protect cells from oxidative damage [94]. Wang et al. [95] discovered that when
Limosilactobacillus fermentum (formerly known as Lb. fermentum) was added to the diets of
pigs, it increased the total antioxidant capacity, particularly in larger pigs, due to enhanced
levels of key antioxidative enzymes, including SOD and GPx. This was associated with a
decrease in malondialdehyde levels, a biomarker of oxidative stress, suggesting reduced
oxidative damage within the animals. A recent study by Yang et al. [96] demonstrated
that Lacticaseibacillus paracasei (formerly known as Lactobacillus paracasei) M11-4 possesses
inherent antioxidant activity and can upregulate its own antioxidant enzymes in response
to hydrogen peroxide exposure.

In addition to reducing oxidative stress, LABs have significant anti-inflammatory
properties. They modulate the inflammatory response by inhibiting the expression of
key enzymes, such as cyclooxygenase-2 and inducible nitric oxide synthase, which are
involved in the production of inflammatory mediators [97]. This inhibition helps to reduce
the production of pro-inflammatory compounds, such as nitric oxide, thereby reducing
inflammation and its associated effects.

5.5. Effects of LABs on Glycemic Control in Diabetes

The impact of LABs on blood sugar regulation is complex and multifaceted. A study
of Ghafouri et al. [98] focusing on synbiotic bread containing lactic acid showed promising
results, with a significant decrease in HbA1c levels in patients with type 2 diabetes, sug-
gesting that LABs can positively influence metabolic health markers. On the other hand, a
separate randomized controlled trial investigating the supplementation with Lb. acidophilus
La5 and Bifidobacterium animalis subsp. lactis Bb12 revealed no substantial improvements in
key diabetic biomarkers, such as fasting glucose, insulin, or HOMA-IR [99].
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Recently, Jeong et al. [100] demonstrated that certain LAB strains exhibit noteworthy
α-glucosidase inhibitory activities, which are instrumental in managing oxidative stress
and moderating postprandial blood glucose levels, which are critical elements in diabetes
management. This study also highlighted the anti-adipogenesis properties of these strains,
establishing a link between obesity management and type 2 diabetes control.

5.6. Prevention of Intestinal Infections and Treatment of Diarrheal Diseases

The potential of probiotics to treat diarrheal diseases and prevent gastrointestinal
infections has been well studied. Some probiotic strains help treat and prevent disease
because they prevent bacteria from growing in the stomach. Clinical data indicate that vari-
ous lactobacilli species appear to work efficiently in both viable and non-viable forms [21].
However, researchers recommend taking live probiotics because they can colonize and
settle in the digestive tract, stabilize the gut flora, and eliminate pathogens [101]. According
to a study by Guarino et al. [102], Lacticaseibacillus rhamnosus GG is helpful in both the
prevention and treatment of diarrheal diseases. Probiotics have also been shown to stop
antibiotic-induced diarrhea and reduce its severity, frequency, and duration as they can
restore the balance of an imbalanced flora, improve water intake, minimize opportunistic
infections, and strengthen the intestinal barrier and immunity [103].

Other gastrointestinal diseases such as irritable bowel syndrome and inflammatory
bowel diseases (IBD) have also been successfully prevented by probiotics [104]. Environ-
mental factors that cause dysbiosis are one of the main causes of IBD. Indeed, the gut
microbiome of individuals with IBD exhibits a reduced abundance of bacterial species and
genera in comparison to those who are considered to be in good health [105]. It has been
shown that changes in the qualitative and quantitative composition of the gut microbiome
are associated with chronic inflammation of the gut mucosa [106].

Probiotics may help people with IBD to reduce inflammation, improve symptoms, and
delay recurrence, especially when used in conjunction with drug therapy [107]. A study
conducted by Shadnoush et al. [108] has suggested that the consumption of probiotic yogurt
containing Bifidobacterium and lactobacilli may be efficacious in reducing inflammation.

5.7. Cancer Prevention and Treatment

LAB probiotics have demonstrated significant potential in reducing the prevalence of
cancer symptoms [15]. In particular, they have demonstrated antiproliferative or proapoptotic
effects on a range of cancer cells, including colon, gastric, breast, cervical, and myeloid leukemia
cells. Their potential to prevent and treat cancer may be due to a variety of factors (Table 1).

Table 1. Potential roles of LABs in cancer prevention and treatment.

Action Mode Description References

Modulation of gut microbiome

LABs modulate the gut microbiome to reduce inflammation and oxidative stress.
This includes altering metabolic activities of the intestinal microflora,
binding/degrading potential carcinogens, and producing
antitumorigenic compounds.

[109–111]

Boosting the immune response
Activation of natural killer cells and cytotoxic T lymphocytes. LABs can increase
cytokines, such as TNF-α, IFN-γ, and IL-10, enhancing cellular immunity and
suppressing tumor cell proliferation.

[111,112]

Production of anticancer
metabolites

LABs produce anticancer metabolites, such as extracellular polysaccharides,
peptidoglycans, bacteriocins, and SCFAs, inhibiting cancer cell growth and inducing
apoptosis. LAB-produced EPSs can suppress tumor-related enzymes, while SCFAs
maintain gut health and reduce inflammation.

[113–115]

Gut–brain axis modulation

The complex interaction between gut microbiota and the brain, influencing stress
and inflammation, is critical in cancer development. Dysbiosis may lead to a ‘leaky
gut’, elevating inflammation and cancer risk. The gut microbiota’s role in
neurotransmitter production and immune system modulation is also significant.

[116]

Elevating quality of life for
cancer patients

Alleviating fatigue, enhancing mood, and improving the quality of life for cancer
patients overall. [117,118]

Synergistic effects with
chemotherapy/radiotherapy Observed synergistic effects when combined with chemotherapy or radiotherapy. [116,119]
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Probiotics may reduce cancer risk through several mechanisms [120]. They modulate
the gut microbiota to maintain a balanced microbial environment and improve the integrity
of the gut barrier, which prevents harmful substances from entering the bloodstream.
Furthermore, they reduce DNA damage in the gut epithelium, potentially lowering the
risk of cancer-causing mutations [121]. Probiotics also enhance the body’s immune and
inflammatory responses, which helps fight infections and reduce the inflammation often
linked with cancer progression [120]. A critical aspect of their anticancer effect involves
the suppression of enzyme production in the gut microbiota that converts amines and
aromatic substances into active carcinogens. This suppression can significantly decrease
the formation of these carcinogens, thereby potentially preventing colorectal cancer [120].
Śliżewska et al. [120] highlight that inhibiting these enzymes is a promising strategy for
cancer prevention. Additionally, Sharma et al. [122] have shown that metabiotics derived
from Lcb. rhamnosus exhibit strong antigenotoxic and cytotoxic effects against colon cancer
cells, such as Caco-2 and HT-29, illustrating the direct anticancer properties of probiotic
derivatives. Regular intake of lactobacilli and Bifidobacterium for four to six weeks has also
been associated with a lowered risk of colorectal cancer, further underscoring the protective
potential of these probiotics [123].

Probiotics have also been known for their cytotoxic effects on various gastric and
colon cancers by producing SCFAs (mainly acetate, propionate, and butyrate) [115]. These
SCFAs not only energize colonocytes but also induce acidosis and cancer cell death, reduc-
ing secondary bile acid production. Among SCFAs, butyric acid is crucial in regulating
colonocyte proliferation, division, and apoptosis, and it is present at higher levels in the
feces of healthy individuals compared to those with colorectal cancer [124].

Many studies showed the potential use of EPSs from LABs as a therapeutic interven-
tion in colorectal cancer. Deepak et al. [125] conducted a study that examined the impact
of administering EPSs derived from the probiotic Lb. acidophilus. Their research focused
on a rat model of 1,2-dimethylhydrazine-induced colon cancer, a well-established experi-
mental setup for studying colorectal cancer. The results showed that the administration
of EPSs is correlated with a decrease in the formation of polyps, which are precursors to
colorectal cancer.

5.8. The Effect of LAB Probiotics on Mental Health and Cognitive Performance

The utilization of probiotics has been discovered to positively influence mental health
and cognitive performance wellbeing (Table 2).

Table 2. The role of probiotics on mental health and wellbeing.

Mental Health and Wellbeing Role of Probiotics References

Alleviating symptoms of
anxiety and depression

• Modulates the hypothalamic–pituitary–adrenal axis, the primary stress
response system in the body.

• Fine tunes the gut–brain axis to optimize communication between the gut
and the brain.

• Generates neuroactive metabolites that influence brain function
and behavior.

[126–129]

Promoting reduction in the
incidence of

neurodegenerative diseases
and enhancing cognitive

performance

• Reduces oxidative stress and inflammatory cytokines, targeting
Alzheimer’s disease biomarkers.

• Inhibits apoptosis and boosts neurotrophic factors, like BDNF, which are
crucial for neuron survival.

• Protects dopaminergic neurons and suppresses neuroinflammation,
enhancing antioxidant capacity.

• Produces SCFAs, which are associated with improved cognitive function.

[130–134]
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LAB probiotics influence cognitive performance through their interaction with the
gut–brain axis, which is the bidirectional communication pathway between the gastroin-
testinal tract and the central nervous system [9]. LABs contribute to this interaction by
producing various metabolites during fermentation, such as organic acids, amino acids,
exopolysaccharides, and vitamins. These compounds help to modulate the gut micro-
biota, which is crucial for maintaining a balanced intestinal environment that supports
overall health, including brain function. Additionally, some LAB strains can produce
neurotransmitters, like gamma-aminobutyric acid (GABA), which is a key inhibitor in the
mammalian central nervous system that plays a significant role in regulating mood and
cognitive functions [129].

Moreover, LABs influence the immune system, which is intricately linked with the cen-
tral nervous system [135]. By modulating immune responses and reducing inflammation,
LABs can indirectly affect brain health and cognitive processes [136]. The direct impact of
LABs on neural pathways further underscores their potential role in influencing cognitive
functions [137]. Papalini et al. [138] demonstrated that a four-week probiotic treatment
enhanced mental performance under stress, which is associated with changes in frontal
lobe areas involved in cognitive regulation.

6. Next-Generation Probiotics and Postbiotics: Addressing Some of the Limitations
of Probiotics

The probiotic products sector has gained popularity and global appeal in recent
years. However, it is not always certain that the products sold deserve the claimed benefits,
necessitating rigorous regulatory oversight. Zawistowska-Rojek et al. [139] found that many
probiotic products on the market do not meet the claimed health benefits or the declared
bacterial concentration, and some contain unlisted microorganisms, raising concerns about
consumer safety and product transparency.

Another significant challenge in developing reliable and effective probiotic products
lies in maintaining their functionality under various processing and storage conditions to
fully realize their potential for enhancing human health. While lyophilization is commonly
employed for microorganism preservation, it can lead to considerable viability loss for
certain probiotic strains due to stress conditions, like extreme temperatures and dehydra-
tion. To address this issue, optimizing cryoprotectants becomes essential to enhance strain
survival during lyophilization [140].

Moreover, microencapsulation presents another promising approach. This method
entails encapsulating probiotics in microgels or lipids, offering substantial protection during
gastrointestinal transit and improving product handling and shelf life. Afzaal et al. [141]
have shown that encapsulated probiotics exhibit significantly higher survival rates than
their non-encapsulated ones, particularly under simulated gastrointestinal conditions. They
also demonstrate enhanced resistance within the intestinal tract and improved stability
during storage, retaining their probiotic properties over time. However, it is worth noting
that implementing these advanced technologies may lead to increased production costs.

Next-generation probiotics (NGPs) represent a significant evolution in the field of pro-
biotics, defined as specifically selected strains of microorganisms that offer superior health
benefits compared to traditional probiotics [142]. Developed using advanced techniques,
such as next-generation sequencing, NGPs provide more precise targeting of health needs,
improving the viability and effectiveness of probiotic strains under various processing
and storage conditions. This innovation not only enhances the resistance and survival of
probiotics in the gastrointestinal tract but also increases the potential for treating specific
diseases through the production of targeted bioactive compounds [143]. However, NGPs
have certain limitations. The safety of NGPs, not yet fully established due to their novelty,
poses a major challenge. Their regulation, as biotherapeutic products, requires extensive
clinical trials, which can delay their introduction into the food market.

To overcome these challenges, the utilization of postbiotics presents a significant op-
portunity. They are defined as preparations of inanimate microorganisms and/or their
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components that confer health benefits [144]. This approach addresses concerns associated
with live cell administration, mitigating the risks for immunocompromised or vulnerable
individuals. Opting for postbiotics brings numerous advantages [145], including the low
likelihood of transfer of antimicrobial resistance genes to virulent microbes, which signifi-
cantly reduces the incidence of infection [145]. However, for postbiotics to be considered
safe, an ad hoc safety assessment cannot be omitted. This evaluation must encompass
not only the parent microorganism but also the actual formulated amount and potential
overdoses. Postbiotics derived from food-grade microorganisms or those listed on EFSA’s
QPS lists may encounter smoother approval processes [146]. Postbiotics, unlike living cells,
can be produced under controlled processes that ensure functional property maintenance
during storage. They do not require special conditions to maintain viability, allowing for
more stable and effective products [145]. Postbiotics derived from Lpb. plantarum have
demonstrated cytotoxic effects and the ability to induce apoptosis in cancer cells, suggesting
that they have potential to be used as supplements or adjunct treatments for cancer [147].
Promising results have also been obtained with heat-inactivated cells from Lcb. paracasei,
Lb. acidophilus, and Lcb. rhamnosus [146].

Furthermore, postbiotics align with consumer preferences for natural ingredients,
serving as clean-label alternatives. As techno-functional substances, they offer multiple
benefits, enhancing food and beverage shelf life, sensory characteristics, and nutritional
value without relying on chemical additives [148]. Regulatory authorities have not yet
established a specific framework for foods or dietary supplements containing postbiotics.
However, in certain countries, some postbiotic-based products are marketed under differ-
ent regulatory categories. On the other hand, specific standards have been detailed for
postbiotic formulations designated for pharmaceutical applications [146].

7. Conclusions

The functional attributes of LABs have received noteworthy considerations from
the medical and food sectors due to their extensive health benefits. The integration of
LAB-rich foods and probiotic dietary supplements into regular diets holds the potential
for optimizing health-enhancing outcomes. Nevertheless, it is critical to conduct further
research to clarify the precise mechanisms for the development of LAB-based targeted
therapeutic approaches. Furthermore, exploring alternative approaches, such as postbiotics,
offers a promising path to enhance therapeutic outcomes and promote human wellbeing.
Postbiotics offer various benefits in comparison to live cells, encompassing amplified safety
and stability as well as a wider range of potential applications. Furthermore, postbiotics
can act as techno-functional additives in the food industry, contributing not only to prod-
uct advancement but also aligning with the developing consumer demands for natural,
health-promoting ingredients. The continuous research and application of postbiotics in
these sectors can lead to the development of more salubrious, secure, and functional food
products. Additionally, the NGPs can amplify the potential for targeted health benefits,
utilizing specially engineered strains that enhance both efficacy and specificity. Novel,
effective biotechnological tools can be developed by harnessing whole microbial consortia
or by the de novo assembly of synthetic microbial communities, further expanding the
scope of beneficial microbial applications in health and nutrition.

The monoculture approach has long overlooked the role that ecological interactions
play in the functioning and growth of LABs within microbial consortia [149]. These con-
sortia underlie food chains and provide essential support for ecosystems and macroscopic
organisms. Microbial consortia consist of both culturable and unculturable isolates with sig-
nificant physiological and biochemical differences. Although modern culture-independent
approaches have allowed tremendous advances in our knowledge of the non-culturable
portions of microbial consortia, their techno-functional exploitation remains a challenge.
There is immense biotechnological potential in the ability to harness entire microbial con-
sortia rather than mono-cultures or simple co-cultures. Microbial consortia offer greater
resilience, complex functionalities, and a reduced metabolic burden with respect to single-
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species cultures [150]. While the benefits of harnessing the full functional potential of whole
microbial consortia are well understood, there are conceptual and technical hurdles in the
way of achieving this goal. Overcoming such obstacles requires the ability to propagate and
maintain entire natural microbial consortia. Hence, it is imperative to optimize targeted
preservation methodologies to uphold the structure and metabolic functions of microbial
consortia, ensuring the integrity and characteristics of the associated ecosystem. Genetic
alterations and viability decline are particularly significant in microbial consortia compared
to pure cultures, due to different tolerance levels of microbial components (species and
strains) to storage-induced stresses. Examples of efforts in this direction are the technique of
human fecal microbiota transplantation [151] or the assembly of synthetic sourdough meta-
communities [147]. Taking advantage of microbial consortia, synthetic metacommunities
comprising predetermined compositions can be assembled for a variety of biotechnological
purposes. The ability to predict and assemble large multispecies communities requires an
understanding of how these microbiomes form, function, and coexist, ultimately enabling
the design of functional microbiomes de novo. Predicting the composition and behav-
ior of microbial communities cannot rely solely on aggregating individual components
or monitoring the most abundant species. Ad hoc approaches are needed to anticipate
metacommunity dynamics and drive coexisting species toward resilient states [147,152].
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MnSOD Manganese superoxide dismutase
ROS Reactive oxygen species
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