
Leveraging GPT-like LLMs to Automate Issue Labeling
Giuseppe Colavito

giuseppe.colavito@uniba.it
University of Bari

Italy

Filippo Lanubile
�lippo.lanubile@uniba.it

University of Bari
Italy

Nicole Novielli
nicole.novielli@uniba.it

University of Bari
Italy

Luigi Quaranta
luigi.quaranta@uniba.it

University of Bari
Italy

ABSTRACT
Issue labeling is a crucial task for the e�ective management of
software projects. To date, several approaches have been put forth
for the automatic assignment of labels to issue reports. In particu-
lar, supervised approaches based on the �ne-tuning of BERT-like
language models have been proposed, achieving state-of-the-art
performance. More recently, decoder-only models such as GPT have
become prominent in SE research due to their surprising capabili-
ties to achieve state-of-the-art performance even for tasks they have
not been trained for. To the best of our knowledge, GPT-like models
have not been applied yet to the problem of issue classi�cation,
despite the promising results achieved for many other software
engineering tasks. In this paper, we investigate to what extent we
can leverage GPT-like LLMs to automate the issue labeling task.
Our results demonstrate the ability of GPT-like models to correctly
classify issue reports in the absence of labeled data that would be
required to �ne-tune BERT-like LLMs.
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1 INTRODUCTION
Large Language Models (LLMs) are increasingly receiving the at-
tention of researchers in the software engineering �eld, where they
are currently being applied to a variety of tasks such as testing,
code generation, or code summarization [23, 34]. To date, tradi-
tional software engineering (SE) tasks concerned with the analysis
of natural language have been mainly addressed using encoder-
only LLMs, such as BERT [21] and its variants [45, 61, 88], also
including consideration of SE-speci�c optimizations such as Code-
BERT [25] or BERTOver�ow [64]. Also encoder-decoder LLMs have
been explored, such as T5 [58] and CodeT5 [75]. More recently (i.e.,
starting from 2023) decoder-only models, such as GPT [50–52, 57]
or LLaMA [65, 66], have become prominent in SE research [34].

Among the SE tasks that are traditionally addressed as natural
language processing (NLP) problems, issue report classi�cation
based on textual content is a task that has been largely investi-
gated, being regarded as critical for prioritizing and coordinating
work[4, 55]. Early work on issue classi�cation focused on distin-
guishing between bugs and feature requests [4], using traditional
machine-learning techniques and text-based features. Herzig et
al. [32] aimed at distinguishing between six categories: bug, feature
request, improvement request, documentation request, and others.
Kallis et al. [39] proposed Ticket Tagger, a tool that leverages fast-
Text [6] to represent and classify the textual content of issue titles
and bodies in three categories: bug, feature request, and question.

More recently, supervised approaches based on BERT-like lan-
guage models have been proposed by Izadi et al. [35, 36], achieving
state-of-the-art performance. However, evaluation results high-
lighted several challenges in correctly classifying minority classes.
This problem is particularly relevant when trying to implement
�ne-grained labeling schemes, which typically lead to limited data
available for each class. On the other hand, other studies that also
leverage BERT and its variants have shown that crowd-sourced
datasets may contain examples based on di�erent labeling ratio-
nales, making automatic classi�cation attempts even harder [18].
To overcome this limitation and improve classi�cation accuracy, in
our previous work we evaluated the performance of approaches
based on few-shot learning using a reduced training set composed
of issues with manually-veri�ed labels [17]. However, manual an-
notation remains a time-consuming task, even if done on a small
set of manually curated examples. Hence, it is desirable to minimize
related e�orts as much as possible.
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With the advent of recent GPT-like LLMs – which exhibit sur-
prising capabilities, even for tasks they are not speci�cally trained
on – researchers have started investigating to what extent it is pos-
sible to leverage their potential in addressing software engineering
challenges [23, 34]. In this context, generative LLMs leveraging
billions parameters, like GPT3.5-turbo [50], have already demon-
strated their ability to generate code, provide code completions,
and even assist with bug detection and code refactoring [34].

In pursuit of a better understanding of how GPT-like LLMs can
be leveraged in automated issue labeling, we aim to investigate the
following research question.

RQ: To what extent we can leverage GPT-like LLMs to classify
issue reports?

To address it, we �rst explore a zero-shot learning scenario where
GPT-like LLMs are prompted without providing any labeled data
as an example. In line with prior work [84], our prompt simply
includes the input text (i.e., the text content from the issue to be
classi�ed), the task description (i.e., the de�nition of the classes
bug, enhancement, documentation, and questions used for the is-
sue labeling task) and the desired output format. Previous studies
demonstrated that LLMs exhibit variable behaviors also based on
the number of examples provided [48, 84]. As such, we also inves-
tigate the performance of few-shot learning, using examples of
issues in the prompt. Finally, we compare the performance of classi-
�ers based on GPT-like LLMs with �ne-tuned BERT-like LLMs. The
replication package for this study is publicly available for reuse 1.

Inspired by previous work on prompt-based labeling in low-
resource settings [74], we also assess to what extent we can leverage
GPT-like LLMs to reduce the costs associated with human annota-
tion. To this aim, we measure the agreement between the model
and human annotators.

The main contributions of this study can be summarized as
follows. First, we enhance the current understanding of how GPT-
like LLMs can be leveraged to address the task of automatic issue
report classi�cation. Then, we provide evidence that generative
AI can be used to reduce labeling costs for building reliable gold-
standard datasets.

The remainder of this paper is organized as follows. In Section 2,
we provide background information on issue report classi�cation,
LLMs, and their use in software engineering research. In Section 3,
we present the methodology adopted in our study. We outline the
study results in Section 4 and discuss our �ndings in Section 5.
Finally, we conclude our work in Section 6.

2 BACKGROUND AND RELATED WORK
2.1 Large Language Models
Thanks to the recent improvements in hardware capability (e.g., the
accessibility of GPUs), Large Language Models (LLMs) based on the
transformer architecture [70] have introduced a signi�cant advance-
ment in the �eld of Natural Language Processing (NLP) and cur-
rently represent the state of the art for many NLP tasks [21, 51, 85].
Their introduction led to numerous subsequent developments and
improvements by leveraging the concept of self-attention, which
allows the model to attend to di�erent parts of the input sequence

1https://�gshare.com/s/57739c103f4f7bc61032

when computing the representation of each token. This innovation
has made it possible to capture long-range dependencies between
tokens, which was not possible with previous architectures, such as
RNNs [60] and LSTMs [33]. The key to the success of LLMs is the
pre-training phase, which allows the model to learn the language
structure from a large corpus of unlabeled data [21, 57].

Many LLMs have been proposed based on the transformer ar-
chitecture. Among encoder-only models, BERT [21] is built using
two di�erent training objectives: masked language modeling and
next-sentence prediction. The �rst objective consists of masking
some tokens in the input sequence and then predicting them based
on the context. The second objective consists of predicting whether
two sentences follow each other in the original text. After BERT
was released, many variants have been proposed [30, 45, 61, 88].
After learning to model a language, BERT-like models can be fur-
ther �ne-tuned on downstream tasks, achieving state-of-the-art
performance [21, 88]. The success of BERT-like models has fostered
research in this �eld, thus leading to the development of larger
models. It is the case of decoder-only models, like GPT, that include
billions of parameters.

There is no consensus on the terminology about LLMs. As an
example, Yang et al. [79] distinguish between BERT-style models,
which are encoder-only or encoder-decoder models, and GPT-style
models, which are decoder-only models. Zhao et al. [85], instead,
distinguish between pre-trained language models (PLMs) and LLMs
based solely on the size of the model instead of the architecture. In
fact, they refer to LLMs also as “large-sized PLMs”. Pan et al. [54]
make no distinction between PLMs and LLMs, but they catego-
rize them based on their architecture. They divide them into three
categories: encoder-only models, such as BERT and his variants,
encoder-decoder models, such as T5 [58] and BART [46] or decoder-
only models, such as GPT [57], XLNet [80]. For the remainder of the
paper, we will refer to encoder-only models as BERT-like models,
and to decoder-only models as GPT-like models.

GPT-like models, – e.g., the GPT family [7, 50, 51], LLaMA [65,
66], PaLM [14], Bard [28], Vicuna [13], Falcon [3], Mistral [37],
Zephyr [67] – have demonstrated the power and versatility of the
transformer architecture when scaling up the number of param-
eters [42]. In particular, they exhibit emergent abilities that arise
suddenly at large scales and cannot be extrapolated from smaller
models. These include few-shot learning on diverse NLP tasks,
multi-step reasoning, question answering using world knowledge,
and instruction following. The mechanisms behind emergence are
not fully understood, but hypothesized factors include model ca-
pacity, depth, and ability to leverage huge amounts of pre-training
data [76]. Many of those models, after their pre-training phase,
are further trained to follow instructions through Reinforcement
Learning for Human Feedback (RLHF) [15, 52, 89], a technique for
training models to align with human goals by providing feedback
in the form of rewards [15]. It is the case of GPT-4 [51], GPT3.5-
turbo [50] and their predecessor InstructGPT [52].

After the release of such models, many researchers have started
to explore their potential applications in the �eld of software engi-
neering (SE). In this context, models like GPT3.5-turbo [50], GPT-
4 [51], CodeX [12] and Copilot [26] have already demonstrated a
surprising ability to generate code, provide code completions, and
even assist with bug detection and code refactoring [8, 12]. These
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models have a huge impact on software development. GitHub de-
clared that 46% of the developers’ code was written by Copilot, lead-
ing developers to code faster than before [23, 27]. GPT-4 can resolve
programming tasks without further training and without adding
related examples in the prompt, with an accuracy of 67% [23, 51].

GPT-like models have been already used in the SE �eld for sev-
eral tasks, such as program repair [9, 10, 44, 63], code summa-
rization [83], software testing [72], natural language to code [82],
code clone detection [22], and code comprehension [81]. Still, GPT-
like models require further investigation as several open issues
have been reported in the literature and require further investiga-
tion [23].

2.2 Issue Report Classi�cation
Nowadays, issue-tracking systems (ITS) (e.g. GitHub2, GitLab3,
Jira4) are widely adopted in software development projects to man-
age the evolution of software products. ITS can lower the barrier to
entry for new contributors, as they provide a simple and e�ective
way to report bugs, request new features, ask questions about the
software product, but also �nd some tasks to work on. However,
especially for open source projects, the use of such tools can com-
plicate the work of developers and maintainers, as they have to deal
with a large number of issues submitted every day, with di�erent
types and quality [5, 24, 56]. Issue reports are used to submit re-
quests for changes, report bugs, or ask questions about the software
product. They typically contain a title and a description, the issue
status (e.g., open, assigned, closed), a comment thread, and a label
indicating the type of issue. Through the issue tracking system,
maintainers can assign issues to the most appropriate teammember,
prioritize them, and track their resolution.

E�ectively labeling issues can be helpful for project management
and prioritization, as the labels act as a classi�cation and �ltering
mechanism [19, 47]. Maintainers can also de�ne custom labels to
classify issues according to their type, priority, or other character-
istics. Labels can provide quick hints about issues, such as what
kind of topic an issue is about, what development task the issue is
related to, or what priority the issue has.

Previous studies [4, 32] have shown that developers and main-
tainers often assign an incorrect issue label to the reports. Fur-
thermore, the labeling mechanism is rarely used by contributors
at the time the issue is created [5, 39], thus requiring the e�ort of
manually labeling issue reports [24]. To reduce this e�ort, several
approaches to the automatic categorization of issue reports have
been proposed. Antoniol et al. [4] leverage traditional machine
learning models to distinguish between bugs and any other type
of issue. With the same aim, Zhou et al. [86] leveraged both struc-
tured and unstructured free-text data. Herzig et al. [32], instead,
developed models to distinguish between six categories: bug, fea-
ture request, improvement request, documentation request, and
others. Following this direction, Kallis et al. introduced Ticket Tag-
ger [39, 40], which represents the textual content of issue titles and
bodies using fastText [6] vectors.

2https://github.com
3https://about.gitlab.com/
4https://www.atlassian.com/it/software/jira

Recent progress in the �eld of NLP has led to the development
of LLMs like BERT [21], which have been successfully applied to
several SE tasks. These models have been shown to be e�ective
also for the issue report classi�cation problem [2, 18, 36, 73], thus
currently representing the state of the art. However, in our previous
empirical studies we observed that the performance of these models
is impacted by inconsistent and noisy labels, which are common in
crowd-sourced datasets [17, 18], in line with evidence provided by
Herzig et al. showing that 33.8% of all issue reports are incorrectly
labeled [32]. Vargovich et. al. [69] proposed a recommendation
system that suggests issues to the contributors of open-source
software, based on the skills required. The tool works by labeling
the issues with API domains, instead of using the type of the issue.

To the best of our knowledge, GPT-like models have not been
applied yet to the problem of issue classi�cation, in spite of the
promising results reported for many SE tasks [23]. In this study,
we aim to �ll this gap in the literature by exploring to what extent
we can leverage GPT-like models in automatic issue labeling in a
low-resource setting, i.e. when a gold standard for �ne-tuning is
not available.

3 METHODOLOGY
3.1 Dataset
In this study, we experiment with a subset of a publicly available
dataset of GitHub issues reports extracted from open-source soft-
ware projects. Each issue receives a label, which represents the
classi�cation target. Possible class values are (i) bug, indicating that
the issue contains a bug report, (ii) feature, indicating that the issue
contains suggestions for improvements or requests for new fea-
tures, (iii) question, assigned to issues containing users’ questions
about software usage, and (iv) documentation, assigned to issues
that suggest improvements, updates, or corrections to a software’s
documentation. The dataset was collected and distributed in the
scope of the challenge on issue classi�cation organized within the
2nd Intl. Workshop on Natural Language-based Software Engineer-
ing (NLBSE ’23) [41].

Speci�cally, we use a manually veri�ed subset of the challenge
benchmark, which we created and distributed in the scope of our
previous work [17]. The dataset 5 was obtained by extracting 400
issue reports from the NLBSE’23 challenge dataset using strati�ed
sampling and then manually labeled, with a substantial agreement
(a kappa = 0.739 was reported by the authors of the original study).
The dataset is split into two subsets: 200 issue reports for training
and 200 for testing. The distribution of the labels is shown in Table 1.
As a result of the annotation, the dataset also contains an indication
of the items that were discarded, a label used to identify the cases
for which the annotators couldn’t agree on the label to assign, e.g.,
due to the insu�cient text available. The discarded issues are not
considered in the evaluation of the models.

3.2 Choice of the LLMs
Several GPT-like LLMs have been recently proposed, with a preva-
lence of studies leveraging GPT3.5-turbo [53] —i.e., the model that
powers ChatGPT at the time of this writing. Therefore, we decided

5https://nlbse2023.github.io/, Last accessed: November 2023
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Table 1: Distribution of labels of the dataset from Colavito et
al. [17], which we use for this study.

Hand labeling
Label Train set Test set
Bug 47 24% 53 27%
Feature 60 30% 55 28%
Question 44 22% 47 24%
Documentation 33 17% 32 16%
Discarded 16 8% 13 7%
Total 200 200

to use GPT3.5-turbo [50] for evaluating the performance of LLMs
in the issue classi�cation domain. While running our experiments,
OpenAI released new versions of ChatGPT, which we also included
in our benchmark. At present, the models adopted in this study are
available on the OpenAI API and named respectively: gpt-3.5-turbo-
0301, gpt-3.5-turbo-0613, gpt-3.5-turbo-16k-0613. Both the �rst and
the second have a context length of 4097 tokens, while the third
supports up to 16385 tokens. For all our experiments, we invoked
these models using the OpenAI API.

We decided to compare the performance of models with di�erent
context lengths as, in the wild, the length of issue reports can vary
considerably and, at times, be quite extensive. This is especially
problematic for experiments in the few-shot setting (see Section 3.3)
in which – beyond the issue text – prompts include examples for
each label from the train set, as shown in Figure 1. This could result
in exceeding the allowed number of tokens, thus requiring more or
less severe cuts depending on the model context length.

On the other hand, we decided to include two di�erent versions
of GPT supporting the same context length – i.e., 4097 tokens – to
see if, regardless of this parameter, we would observe improved
model performance with the new model version. Indeed, previous
research on ChatGPT and GPT-4 [11] have shown that these models
may exhibit noticeable changes in their behavior and ability on
some tasks when new versions are released. Another reason to
experiment with models having a lower context length is that LLMs
can easily “lose themselves” when the context becomes too long [48]
and provide less accurate responses. By experimenting with models
enabling di�erent context lengths, we aim to investigate how this
factor in�uences classi�cation performance.

As for the model con�guration, we need the temperature pa-
rameter to be low. This is necessary to minimize the likelihood of
the language model generating incorrect or unpredictable outputs.
Indeed, a low temperature makes language models less random and
more deterministic in generating text[1]. For this reason, we set
the temperature parameter to 0.

SETFIT baseline. In our previous work, we propose and evalu-
ate few-shot learning for issue classi�cation [17] using SETFIT [68],
a framework optimized for the �ne-tuning of transformer models
like Sentence-BERT (SBERT) [59] on small training sets. Sentence
transformers are a family of models that use transformer architec-
tures to generate sentence embeddings. This approach is particu-
larly e�ective for semantic similarity tasks, for which BERT-like
models are not optimized [59].

Train set
(200 issues)

GPT-like 
models

SETFIT 
(baseline)Fine-tuning 

Test set
(200 issues)

Manually verified
GitHub Issues

Assessment of performance

Few-Shot Prompting

Figure 1: Experimental setting.

The SETFIT model achieved state-of-the-art performance on the
manually veri�ed subset of the NLBSE’23 challenge dataset [41]
– i.e., the same dataset used in our experiments. For this reason,
we choose SETFIT as a baseline for evaluating the performance of
GPT-like models in this study. In order to do so, we replicate the
SETFIT �ne-tuning and evaluation approaches by executing the
scripts from the replication package distributed with the original
study. 6 In doing so, we use the same train-test partition: speci�cally,
we �ne-tune the SETFIT model on the 50% of the gold standard
dataset; then, we test the performance of both the SETFIT model
and the GPT-like models on the remaining 50% (see Figure 1).

3.3 Prompting GPT-like LLMs
In line with previous work [7, 65, 84], we build prompts for the
GPT-like models in order to experiment with zero-shot and few-
shot settings. In fact, the performance of GPT-like models has been
shown to vary signi�cantly based on how the prompt is crafted [84]
and on the context length [48]. By comparing the performance
achieved in the zero-shot setting with those obtained by adding to
the prompt N examples per class (with N either equal to 1 or 2), we
aim to assess if the performance of the model improves when an
increasing number of examples are provided in combination with
the label de�nition.

Prompt template. The prompts we used in this study adhere to
the template shown in Figure 2, which we describe in the following.

Input format. The format of the issue report provided as input
to the model, comprising a title and a body.

Task Description. The description of the classi�cation task, pro-
vided to instruct the model on what to do. It includes the list of
possible labels.

Label Descriptions. A list of de�nitions, one for each class label.
To prepare the label descriptions for our issue classi�cation task,
we follow a semi-automatic procedure. A �rst description of the
labels is obtained by querying ChatGPT. Then, we manually ver-
ify that the descriptions are correct and representative of the four

6https://github.com/collab-uniba/Few-Shot-Learning-for-Issue-Report-
Classi�cation
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You are provided with a GitHub issue in this format:
Title : """the title of the issue"""
Body : """the body of the issue"""

You have to assign it a label.
Possible labels are: {label_list}

  The "bug" label is used to identify an issue report that describes a problem or error within the 
software or codebase. It indicates that something is not functioning as intended or producing unexpected 
results. Bug reports help developers identify and fix issues to improve the overall quality and 
reliability of the software.
 The "feature" label is applied to an issue report that suggests the addition or enhancement of a new 
capability or functionality within the software. It indicates a request for the implementation of a 
specific feature that does not currently exist. Feature requests help the development team understand 
the needs and requirements of the users and can influence the future development roadmap.
 The "question" label is used when a user or contributor has a query or needs clarification regarding 
the software or codebase. It indicates that the issue report is seeking information, guidance, or 
assistance. Questions can be related to functionality, usage, best practices, or any other topic that 
requires clarification.
  The "documentation" label is applied to an issue report that suggests improvements, updates, or 
corrections to the software's documentation. It indicates that the issue is focused on the written 
instructions, guides, or explanations provided alongside the codebase. Documentation issues help ensure 
that the information available to users and contributors is accurate, comprehensive, and up-to-date, 
thus facilitating better understanding and adoption of the software.
  The "discard" label is used when you can't decide due to lack of information contained in the issue.

{examples}

Title: """{title}"""
Body: """{body}"""

{output_format_instructions}

Prompt template with label explanation

Input format

Task description

Label descriptions

Examples

Input issue

Output format instructions

Figure 2: Prompt template. In the zero-shot setting we do not include examples.

issue-report classes considered in this study, i.e., bug, feature, doc-
umentation, and question. Label descriptions are always provided
in the zero-shot experimental setting, to partially compensate for
the lack of examples from which a model can learn how to perform
a classi�cation. On the other hand, in the few-shot experimental
setting, we experiment with both including and omitting label de-
scriptions. In the �rst case, we keep the de�nition of the labels
and add classi�cation examples. In the second case, we remove
the label de�nitions and only include classi�cation examples. This
is done for two reasons: on the one hand, to understand if label
explanations are still bene�cial when examples are provided to
the model; on the other hand, to explore a setting in which more
space is reserved for examples within the model context window.
In both cases, we experiment with one-shot and two-shot settings
—i.e., for each label, we include one or two examples in the prompt,
respectively.

Examples. Examples of labeled issues, taken from the train set
of our gold standard dataset. The examples are provided to further
instruct the model on how to perform the classi�cation task. No-
ticeably, the “examples” part of the prompt is kept empty in the
zero-shot setting.

Input Issue. The issue to be classi�ed, provided in the input for-
mat declared in the ‘Input format’ section at the beginning of the
prompt.

Output format instructions. The desired format for the model
output. Speci�cally, in the zero-shot setting, we ask the model

to output a JSON object containing the predicted label and the
reasoning behind its assignment. Indeed, it has been shown that
requesting the model to think step-by-step and reason about its
answer – a technique known as Chain-of-Thought prompting [77]
– can boost the performance of LLMs in zero-shot settings [43]. It
is important to notice, however, that such reasoning serves as a
prompt-engineering strategy and is not used to evaluate the model
— i.e., model evaluations are solely based on the labels explicitly
predicted by the models. Conversely, in the few-shot learning ex-
perimental setting, we only ask the model to provide a label by
completing the last line of the prompt, which starts with “Label:”.
In this case, we do not apply the chain-of-thought strategy: to do
so, we would need to provide examples of chain-of-thought reason-
ing for each example issue included in the prompts, which are not
available in our dataset.

Dealing with the context length. Input issues as well as the
issues provided as examples in the classi�cation prompts may not
�t the available context length o�ered by GPT-like LLMs. To handle
this problem, we adopt di�erent strategies for the zero-shot and
the few-shot experimental settings.

In the zero-shot setting, when the input issue does not �t the
model context length, we cut the exceeding part of the issue body.
This choice is in line with the practices adopted in previous studies
on issue classi�cation leveraging transformer-based models, such
as RoBERTa [18, 35], and SETFIT [17].

In the few-shot setting, the length of the prompt depends not
only on the length of input issue but also on the length of the set of
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examples provided. Thus, in this case, the strategy for dealing with
the limited model context length is strictly related to the strategy
adopted for the example selection, which can be summarized as
follows. First of all, we make sure that examples are always sampled
from the training set, i.e., that no examples from the test set are
used for building prompts. Then, to select the set of examples to
be included in the prompt for the N-shot setting, we go through a
random subset of all the possible example combinations containing
N issues per class. We stop exploring the combination space when
we �nd the �rst set of examples that can be fully contained within
the available context length together with the rest of the prompt. If
no such combination can be found, we use the shortest examples
available for each class. Although thismay introduce a potential bias
toward shorter issue reports, this approach enables us to reserve the
maximum number of tokens for the input issue while still providing
a set of complete examples. It is important to note that distinctive
elements associated with speci�c issue classes (e.g., a question for
the Question class) may appear anywhere in the issue body, even
at the very end. In case the prompt exceeds the context length
despite employing minimal examples, we construct the prompt by
truncating the input body as done in the zero-shot setting.

3.4 Evaluation Strategy
We perform 10 experimental runs for each experimental setting
and report the average performance of each model evaluated on
the test set. Indeed, as in the few-shot setting the examples in the
prompt are randomly selected, this ensures a more reliable estimate
of the model performance.

Speci�cally, to address our RQ, we assess and report the perfor-
mance of the evaluated models in terms of precision, recall, and
f1-measure for all the issue classes. This choice is in line with previ-
ous work [35, 39] and re�ects the standard methodology to assess
the performance of text categorization approaches [62]. Precision
is the ratio between the true positive and all the predicted items
for a given class. Recall represents the ratio of true positives and
all items belonging to a given polarity class. F1-measure is com-
puted as the harmonic mean of precision and recall. To assess the
overall performance of each classi�er, we also compute the micro-
and macro-averaged values for precision, recall, and f1-measure,
thereby enabling a quick comparison of the overall performance
of each model. The overall performance is computed by adopting
micro-averaging as an aggregated metric. Furthermore, we report
macro-average, i.e., precision and recall are �rst evaluated locally
for each issue class and then globally by averaging the results of the
di�erent categories. The reason for providing both values is that mi-
cro and macro- averaging may lead to di�erent results in presence
of class imbalance. For instance, the performance on classes with
few positive training instances is emphasized by macro-averaging.
Conversely, micro-averaging tends to be mainly in�uenced by the
performance on the majority class. It is important to note that,
whether it is better to optimize by precision, recall, or f1-measure
depends on the particular application scenario. As such, we pro-
vide a comparison based on the full set of metrics (see Section 4).
Additionally, we compute the Cohen’s :0??0 [16] and assess the
agreement level between the studied GPT-like models and human
raters.

4 RESULTS
To answer our RQ, we experimented with di�erent versions of GPT-
3.5 in both the zero-shot and few-shot settings. In the following, we
report the results of our experiments in the di�erent settings: zero-
shot (Table 2), one-shot (Table 3), and two-shot (Table 4). Then, we
compare the best-performing model against the SETFIT baseline
(see Table 5). In all the tables, we highlight in bold the best f1-
measure, both, by class and overall.

Despite providing formatting instructions, the models might
struggle to follow them, thus failing to predict a label —i.e. they can
produce nonsensical output such as code, a replication of the input
text, or they can simply omit the requested label. In case the output
contains zero labels or more than one label, we consider these
issues as not classi�ed and discard them. To enable a comprehensive
assessment of the performance achieved in each setting, we report
the percentage of discarded predictions in each results table.

Looking at Table 2, the most recent model with a 16k context
length (16k-0613) achieves the overall best performance (f1-micro
= .8155, f1-macro = .8095). Also, it is important to note that the
16k model does not output nonsensical predictions (see ‘Discarded’
in the last row of the table). However, its overall performance is
very close to the one observed for the model with a smaller context
window (f1-micro = .8133, f1-macro = .8073). Also, the performance
reported across the individual classes is comparable, with the higher
performance observed for the Bug class, while the Documentation
appears as the more problematic one, due to a lower recall.

As for the few-shot setting, we observe a general tendency to
a slight performance decrease as we leverage models with higher
context length and a higher number of examples provided in the
prompt. Di�erently from what was observed for the zero-shot set-
ting (see Table 2) the best performance is achieved by the model
with the smaller context (4k-0301). Speci�cally, we observe a f1-
micro = .8099 and f1-macro = .8008 in the one-shot classi�cation
setting (Table 3) which improves when label explanations are also
included in the prompt (see f1-micro = .8158 and f1-macro = .8086
in Table 3). In particular, we observe that keeping the label expla-
nations in the prompt is bene�cial for all the settings, with larger
improvements for the more recently released models. We also ob-
serve that the older model (4k-0301) seems to bene�t more from
the availability of examples in the prompt compared to the newer
models (4k-0613 and 16k-0613). In particular, there is a signi�cant
improvement in the metrics for the 4k-0301 model when adding
one example for each class in the prompt.

Conversely, the newermodels are better at following instructions
thus performing better in the zero-shot setting. Conversely, the
older model is better at learning from issue data examples in the
few-shot setting. Moreover, when adding examples to the prompt
and keeping the label explanations, all models tend to output more
nonsensical predictions. This is probably due to the fact that the
prompt becomes too long and the model struggles in focusing on
the relevant information and following the instructions.

As for the comparison with the SETFIT baseline, we include
consideration of the 16k-0613 model as this achieves the best per-
formance in terms of a combination of f1-measure and percentage
of discarded items due to nonsensical outputs of the model. Specif-
ically, none of the predictions was discarded by this model (see
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Table 2). We observe that the zero-shot GPT-3.5 model achieves a
slightly lower performance (F1 micro = .8155, F1 macro = .8095)
than SETFIT (F1 micro = .8321, F1 macro = .8246), while still being
comparable.

As a further assessment of the labeling ability of GPT-like models,
we evaluated the agreement between GPT-3.5 and human annota-
tors using Cohen’s :0??0. In Table 6, we report the agreement of
the three GPT-like models with the human-provided labels, for all
settings. For the interpretation of kappa values, we follow a consoli-
dated interpretation [71] suggesting that the agreement is less than
chance if  ^  0, slight if 0.01  ^  0.20, fair if 0.21  ^  0.40,
moderate if 0.41  ^  0.60, substantial if 0.61  ^  0.80, and
almost perfect if 0.81  ^  1. According to this interpretation,
we observe a substantial agreement when using the older model
(4k-0301), regardless of the experimental setting. As for the newer
models, we observe substantial agreement only when the zero-shot
setting is enabled.

5 DISCUSSION
Our results highlight the potential of leveraging GPT-like LLMs
for automated issue labeling, while also revealing some limitations.
Based on the empirical evidence provided in this paper, we answer
our research question by also discussing the implications of our
�ndings for research and practice. Then, we report the threats to
validity of this study and how we address them.

Classi�cation performance in di�erent settings (zero-shot
vs. few-shot). Classi�cation performance of GPT-like models is
known to be a�ected by the size of the context [48] as well as by the
choice of the prompt [7]. As such, in this study, we experimented
with models implementing a di�erent context size as well as with
di�erent experimental settings for prompt de�nition, i.e. zero-shot
vs. few-shot setting and, within the few-shot setting, by including
or not the label de�nition.

We observe comparable performance in all settings, with no
signi�cant di�erences. In particular, we do not observe an improve-
ment in performance when examples are provided in the prompt
(few-shot setting), compared to the setting in which the prompt only
contains the de�nition of labels used for classi�cation (zero-shot
setting). Overall, the best performance models achieve f1-micro
equal to .8155 (16k-016 in the zero-shot setting), .8158 (4k-0301 in
the one-shot learning, when the explanation of labels is provided
in the prompt), and .8159 (4k-0301 in the two-shot learning, with
label explanations). Furthermore, we observe that keeping the label
explanation is useful to yield better performance for the 1-2-shot
settings. However, we also observe the models give more non-sense
responses in such settings.

In the zero-shot setting, the best performance is achieved by the
more recently released, longer context model (16k). Conversely,
when examples are provided in the few-shot learning, we observe
the best performance with the oldest model, using a context of 4k.
However, the di�erence in performance between the settings is
negligible.

GPT-like vs. BERT-like models. Our results demonstrate that
GPT-like models are able to achieve a performance comparable to
the state of the art represented by BERT-like models. In particular,
in this study, we compare the performance of GPT-like models

with the baseline [17] that uses SETFIT for few-shot �ne-tuning
of BERT-like models. For the sake of comparison with the SETFIT
baseline, we select the performance of the GPT-like model obtained
in the zero-shot learning with the 16k model, as this is the one for
which no output was discarded (see Table 5).

The GPT-like model achieves comparable performance (f1 micro
= .8155, f1-macro = .8095) to the SETFIT baseline (f1 micro = .8321,
f1-macro = .8246). It is important to note that the SETFIT model was
�ne-tuned on a subset of the issue report gold standard dataset (see
Figure 1), while GPT-3.5 was used in a zero-shot setting and without
performing �ne-tuning. This suggests that GPT-3.5 can be used to
classify issue reports without any task-speci�c �ne-tuning with
a negligible loss in performance compared to BERT-like models,
which is a signi�cant advantage in the absence of labeled data.

While not directly comparable due to the use of di�erent datasets,
we also discuss the comparison with previous work leveraging
BERT-like LLMs for issue classi�cation. Most of the recent papers
were published in the scope of an issue-labeling competition [38].
All classi�ers participating in the evaluation campaign implemented
supervised approaches by �ne-tuning BERT and its variants using
the challenge dataset of Github issues collected by the organizers.
These issues were annotated using three classes, namely Bug, En-
hancement7, and Question, based on the label provided by either
the project contributors or the users. All the proposed classi�ers
achieved an overall f1-measure higher than .82. We can conclude
that, despite we assess them on four classes rather than three, GPT-
like models achieve comparable performance to state-of-the-art
BERT-like models. However, while the overall classi�cation perfor-
mance is comparable, the BERT-like LLMs report a lower perfor-
mance of the minority class question, for which they achieve .447
 5 1  .692. This problem is addressed when using SETFIT on
a small, manually validated, and equally distributed dataset [17],
which achieves f1 = .8528 for question (see Table 5). Similarly, the
GPT-like models report more consistent performance across the
various classes, without requiring a �ne-tuning step, thus repre-
senting a valid approach whenever a gold standard dataset is not
available for training.

Reducing the Cost of Annotation with GPT-like LLMs. De-
veloping and maintaining software modules that leverage LLMs
can be problematic, in spite of their huge potential and unquestion-
able capabilities. In fact, deploying LLMs for classi�cation purposes
might not be a feasible option when computational resources are
limited. In such cases, building traditional machine-learning classi-
�er models might be a viable solution. However, this requires build-
ing a gold standard dataset for training. In our study, we observe
a Cohen’s kappa > .7 in all settings, thus indicating a substantial
agreement between GPT-3.5 and human annotators. Then, in line
with recommendations of previous work [31, 74, 87], we suggest
using a GPT-like model as a part of an annotation team, to reduce
labeling costs associated with human annotation [74] or for data
augmentation [20, 49]. Alternatively, it can be used to sample data
for human annotation when a high imbalance is expected by apply-
ing random sampling to a data source. It is the case, for example, of
the imbalance observed in crowdsourced datasets [38, 41] for issue
labeling, for which a majority of bug is observed. In these cases, the

7Enhancement was renamed as Feature in the NLBSE’23 edition of the challenge.
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Table 2: Performance in the zero-shot classi�cation setting with GPT-3.5. The best f1 by class and overall is highlighted in bold.

4k-0301 4k-0613 16k-0613
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Support

Bug 0,6684 0,9509 0,7850 0,7100 0,9792 0,8232 0,7133 0,9811 0,8261 53
Documentation 0,9488 0,5511 0,6971 0,8627 0,6149 0,7180 0,8853 0,6191 0,7285 32
Feature 0,8916 0,8018 0,8442 0,8883 0,8527 0,8701 0,8861 0,8491 0,8672 55
Question 0,7849 0,8438 0,8129 0,8869 0,7594 0,8181 0,8668 0,7719 0,8164 47
Micro avg 0,7899 0,7882 0,7891 0,8137 0,8128 0,8133 0,8155 0,8155 0,8155 187
Macro avg 0,8234 0,7869 0,7848 0,8370 0,8016 0,8073 0,8379 0,8053 0,8095 187
Discarded prediction 0,2% 0,11% –

Table 3: Performance in the one-shot classi�cation setting with GPT-3.5. The best f1 by class and overall is highlighted in bold.

4k-0301 4k-0613 16k-0613
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Support

(a) Without label explanations in the prompt
Bug 0,7212 0,9792 0,8305 0,7115 0,8302 0,7658 0,7049 0,8358 0,7643 53
Documentation 0,9360 0,6128 0,7400 0,8500 0,5745 0,6839 0,8380 0,5553 0,6674 32
Feature 0,8541 0,8491 0,8513 0,8862 0,6564 0,7524 0,9105 0,6582 0,7625 55
Question 0,8316 0,7375 0,7813 0,5204 0,8438 0,6416 0,5296 0,8688 0,6569 47
Micro avg 0,8123 0,8075 0,8099 0,7175 0,7171 0,7173 0,7195 0,7187 0,7191 187
Macro avg 0,8357 0,7947 0,8008 0,7420 0,7262 0,7109 0,7458 0,7295 0,7128 187
Discarded prediction 0,59% 0,05% 0,11%

(b) With label explanations in the prompt
Bug 0,7332 0,9792 0,8385 0,7018 0,8774 0,7791 0,7006 0,8962 0,7863 53
Documentation 0,9208 0,6426 0,7566 0,8196 0,6234 0,7074 0,8310 0,6064 0,7010 32
Feature 0,8664 0,8255 0,8453 0,8750 0,6709 0,7582 0,8687 0,6909 0,7689 55
Question 0,8570 0,7406 0,7939 0,6454 0,7875 0,7066 0,6516 0,7594 0,7006 47
Micro avg 0,8231 0,8086 0,8158 0,7502 0,7374 0,7437 0,7546 0,7396 0,7470 187
Macro avg 0,8443 0,7970 0,8086 0,7604 0,7398 0,7378 0,7630 0,7382 0,7392 187
Discarded prediction 1,77% 1,71% 1,98%

Table 4: Results of the two-shot classi�cation setting with GPT-3.5. The best f1 by class and overall is highlighted in bold.

4k-0301 4k-0613 16k-0613
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Support

(a) Without label explanations in the prompt
Bug 0,7394 0,9623 0,8361 0,7151 0,8132 0,7606 0,7187 0,8132 0,7627 53
Documentation 0,9335 0,6532 0,7683 0,7383 0,6319 0,6803 0,7279 0,6085 0,6618 32
Feature 0,8640 0,8182 0,8402 0,9152 0,4764 0,6254 0,9112 0,5055 0,6490 55
Question 0,7972 0,7906 0,7930 0,4905 0,8750 0,6278 0,4847 0,8625 0,6201 47
Micro avg 0,8181 0,8128 0,8154 0,6806 0,6791 0,6799 0,6797 0,6797 0,6797 187
Macro avg 0,8335 0,8061 0,8094 0,7148 0,6991 0,6735 0,7106 0,6974 0,6734 187
Discarded prediction 0,64% 0,21% –

(b) With label explanations in the prompt
Bug 0,7351 0,9604 0,8325 0,7199 0,8472 0,7779 0,7112 0,8585 0,7774 53
Documentation 0,9327 0,6617 0,7731 0,6763 0,6553 0,6643 0,6481 0,6468 0,6469 32
Feature 0,8723 0,8145 0,8419 0,8893 0,5691 0,6934 0,8985 0,5600 0,6893 55
Question 0,8068 0,7813 0,7934 0,6113 0,7875 0,6873 0,6214 0,7688 0,6854 47
Micro avg 0,8201 0,8118 0,8159 0,7160 0,7070 0,7114 0,7089 0,7021 0,7055 187
Macro avg 0,8367 0,8045 0,8102 0,7242 0,7148 0,7057 0,7198 0,7085 0,6998 187
Discarded prediction 1,02% 0,86% 0,96%
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Table 5: Comparison between SETFIT and GPT-3.5.

SETFIT GPT-3.5 (16k-0613), zero-shot
Label Precision Recall F1-Score Precision Recall F1-Score Support
Bug 0.8723 0.8472 0.8590 0,7133 0,9811 0,8261 53
Documentation 0.9039 0.6594 0.7616 0,8853 0,6191 0,7285 32
Feature 0.7494 0.9182 0.8251 0,8861 0,8491 0,8672 55
Question 0.8754 0.8319 0.8528 0,8668 0,7719 0,8164 47
Micro average 0.8321 0.8321 0.8321 0,8155 0,8155 0,8155 187
Macro average 0.8502 0.8142 0.8246 0,8379 0,8053 0,8095 187

Table 6: Agreement between GTP-like models and gold labels
provided by human annotators. We highlight in bold the best
values for Cohen’s :0??0.

Cohen’s :0??0
Experimental Label 4k-0301 4k-0613 16k-0613

setting Explanation
0-Shot Y 0,7045 0,6806 0,6838
1-Shot Y 0,7102 0,5705 0,5590
1-Shot N 0,7163 0,5846 0,5839
2-Shot Y 0,7247 0,4984 0,5025
2-Shot N 0,7157 0,5515 0,5605

annotation set for manual labeling can be extracted using GTP-like
models for labeling crowdsourced data using opportunistic sam-
pling, to mitigate the problem of class imbalance. In fact, a desirable
property of a training set is that its items are equally distributed
across the existing classes of values [29]. By applying opportunis-
tic sampling to the creation of an annotation set based on labels
provided by GPT-like models, the risk of obtaining an unbalanced
dataset could be reduced. This could not be always feasible, due
to the licensing of the GPT-family models. These limitations could
be addressed by using open-source models, such as LLaMa2[66],
Vicuna [13], Falcon [3], Mistral [37], Zephyr [67], which we plan
to investigate in our future studies.

5.1 Threats to Validity
One potential threat to internal validity could reside in the choice
and design of the prompt templates. Indeed, previous work demon-
strated how prompt engineering is crucial to optimize the classi�-
cation performance of GTP-like models [7]. To mitigate this threat
we experiment with di�erent prompts of various lengths, i.e. by
including the label de�nition only (zero-shot), or by also appending
examples of labeled issues (few-shot). Additionally, we examined
the in�uence of the number of shots in the few-shot setting.

Another potential limitation is associated with the impossibility
of verifying that the Github issues we used in our study have not
been included in the training data for GPT-like models by their
authors, as these are distributed for use as black boxes. Future repli-
cations will have to involve consideration of open-source models
for which the training dataset is accessible (e.g., LLaMa2[66], Fal-
con [3], Mistral [37], Zephyr [67]), to properly address this concern
and control for data leakage.

Furthermore, another threat to internal validity concerns internal
factors such as the con�guration of the parameters, which is a
known limitation of any ML-based approach. Speci�cally, when
using GPT-like models, the model temperature has to be set, as
high values in temperature might result in more unpredictable
output [1]. While this can be seen as an advantage in creative
tasks (i.e. supporting dialogue-based interaction), this could be
detrimental for classi�cation tasks as the model can produce highly
divergent outputs when the same prompt is provided [78]. In this
study, we control for this factor by setting a unique temperature
value for all the experimental conditions. Future studies might
consider investigating the impact of di�erent values of temperature
for classi�cation tasks.

Conclusion validity is in�uenced by the choice of datasets to
include in our benchmark. In our study, we selected a subset of
the dataset mined by the software engineering community for the
NLBSE23 Tool Competition [41]. we manually validated the labels
in this subset in the scope of our previous work [17], thus ensur-
ing that the labels are of high quality. However, we acknowledge
that our methodology could produce di�erent results if applied to
di�erent datasets. Furthermore, our �ndings may not necessarily
generalize to data from other platforms, di�erent from Github. In
this perspective, the choice of focusing on Github issues might have
limited the external validity of our �ndings, thus calling for further
replications to con�rm our conclusions.

Finally, as a further limitation to the external validity, we ac-
knowledge that the choice of focusing on GPT-like models released
by OpenAI further limits the generalizability of our �ndings. We
advocate in favor of future replications, also including considera-
tions of other, possibly open-source models, such as LLaMa2[66],
Falcon [3], Mistral [37], Zephyr [67].

6 CONCLUSION
In this study, we investigate the performance of GPT-like models
for automatic issue classi�cation. Speci�cally, in this study we in-
vestigated to what extent we can leverage GPT-like LLMs to achieve
state-of-the-art performance while reducing the costs associated
with human-annotation of issues. Our study is exploratory in nature
and aims at investigating the opportunities of leveraging gener-
ative LLMs in low-resource settings, i.e. when a gold standard is
not available for �ne-tuning state-of-the-art approaches based on
BERT-like models. It is the case, for example, of (i) new projects
for which issues are not available yet for annotation, or (ii) exist-
ing projects for which resources are not available to support the
time-consuming task of manual creation of a gold standard dataset.
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Our empirical results show that GPT-like LLMs are able to achieve
a performance comparable to the state-of-the-art BERT-like LLMs,
without the need for �ne-tuning. As such, whenever a gold stan-
dard dataset is not available, the issue classi�cation task can still be
addressed successfully. Since we do not observe an improvement in
performance when examples are provided in the prompt (few-shot
setting), we conclude that a zero-shot approach is able to achieve
satisfying performance.

Furthermore, the observed substantial agreement with human
raters suggests that GPT-like models can be used to complement
costly human annotation when creating a gold standard dataset
for supervised learning, whether based on traditional machine
learning or �ne-tuning of BERT-likemodels. This becomes of crucial
importance in the presence of the need for models that have to
be deployed locally or when computational resources represent a
constraint.

As a �nal consideration, we highlight that using LLMs for build-
ing classi�ers might pose important challenges due to computa-
tional and scalability issues during deployment. A cost analysis,
in terms of computational resources, would be very important to
perform in order to learn about how deplyoing LLMs is a feasible
solution in practice. In our setting, we levereage do not require local
deployment of the GPT-like models as they are used through API
calls. However, this setting might not be ideal in practice as it in-
troduce an external dependency and might trigger privacy-related
concerns in case of issues containing sensitive data. License limita-
tions and privacy can also represent issues for proprietary GPT-like
LLMs, when AI-as-a-Service is the approach to model serving. In
such cases, on-premise deployment might be required. As such, in
future work, we plan to replicate the current study by also assessing
the capabilities of open-source LLMs for issue-classi�cation.

Future replications are required also with larger and more varied
benchmark datasets, including issues from di�erent projects and
platforms. This will enable assessing the generalizability of our
�ndings, thus assessing how consistent is the behavior of zero-shot
classi�cation across di�erent models and datasets. A more extended
comparison with other LLMs and datasets would also enable further
our understanding of the potential limits of this approach, towards
informing future research on this topic.
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