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Abstract
Type 2 diabetes (T2D) is a global epidemic disease. The prevalence of T2D in 
adolescents and young adults is increasing alarmingly. The mechanisms leading 
to T2D in young people are similar to those in older patients. However, the 
severity of onset, reduced insulin sensitivity and defective insulin secretion can be 
different in subjects who develop the disease at a younger age. T2D is associated 
with different complications, including bone fragility with consequent suscept-
ibility to fractures. The purpose of this systematic review was to describe T2D 
bone fragility together with all the possible involved pathways. Numerous studies 
have reported that patients with T2D show preserved, or even increased, bone 
mineral density compared with controls. This apparent paradox can be explained 
by the altered bone quality with increased cortical bone porosity and compr-
omised mechanical properties. Furthermore, reduced bone turnover has been 
described in T2D with reduced markers of bone formation and resorption. These 
findings prompted different researchers to highlight the mechanisms leading to 
bone fragility, and numerous critical altered pathways have been identified and 
studied. In detail, we focused our attention on the role of microvascular disease, 
advanced glycation end products, the senescence pathway, the Wnt/β-catenin 
pathway, the osteoprotegerin/receptor-activator of nuclear factor kappa B ligand, 
osteonectin and fibroblast growth factor 23. The understanding of type 2 myeloid 
bone fragility is an important issue as it could suggest possible interventions for 
the prevention of poor bone quality in T2D and/or how to target these pathways 
when bone disease is clearly evident.
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Core Tip: Type 2 diabetes (T2D) patients show increased susceptibility to bone fractures, despite their bone 
mineral density being normal or increased, leading to difficult identification for clinicians. The prevalence 
of T2D in adolescents and young adults is increasing alarmingly. Different researchers highlighted the 
mechanisms leading to bone fragility, and different critical altered pathways have been identified and 
studied. In this review, we described the different metabolic pathways responsible for bone fragility in 
patients with T2D. They can be useful for its management, although further studies are needed to deepen 
our understanding of the mechanisms underlying bone fragility in T2D.
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INTRODUCTION
The prevalence of type 2 diabetes (T2D) mellitus in adolescents and young adults is increasing 
alarmingly. Data from the SEARCH study showed an annual increase of approximately 7% in the 
incidence of T2D among people aged 10-years-old to 19-years-old in the United States, with increases in 
all ethnic groups[1]. Increases in children, adolescents and young adults with T2D have been described 
across most regions of the world[2]. The highest T2D incidence rates in youth have been registered in 
Canadian First Nations, American Indian and Navajo nation, Australian Aboriginal and Torres Strait 
Islander and African American populations (31-94/100000 each year), while youths from non-Hispanic 
Caucasian populations (i.e., United States and Europe) display the lowest incidence rates (0.1-0.8/100000 
each year). Studies show the highest prevalence in youth from Mexico and Brazil, indigenous 
populations in Canada and the United States, together with Black populations in the Americas (160-
3300/100000). Conversely, the lowest prevalence was registered in European populations (0.6-
2.7/100000)[2].

A recent literature review examined country-specific prevalence and incidence data of youth-onset 
T2D published between 2008 and 2019[3]. The highest prevalence rates of youth-onset T2D were 
observed in China (520 cases/100000 people) and the United States (212 cases/100000) and the lowest in 
Denmark (0.6 cases/100000) and Ireland (1.2 cases/100000). However, the highest incidence rates were 
reported in Taiwan (63 cases/100000) and the United Kingdom (33.2 cases/100000), with the lowest in 
Fiji (0.43 cases/100000) and Austria (0.6 cases/100000). These differences in epidemiology data may be 
partially explained by variations in the diagnostic criteria used within studies, screening recommend-
ations within national guidelines and race/ethnicity within countries.

The main predisposing risk factors for the development of T2D in pediatric age are represented by 
obesity, family history and sedentary lifestyle[4]. The mechanisms leading to T2D in young people are 
similar to those in older patients. However, the severity of onset, reduced insulin sensitivity and 
defective insulin secretion can be different in subjects who develop the disease at a younger age[5]. In 
particular, the phase of nutrient-induced insulin secretion might be impaired earlier in children and 
adolescents than in older subjects[6].

The comorbidities associated with T2D in young people include hypertension, cardiovascular disease, 
kidney impairment and retinopathy. Furthermore, psychosocial problems are often observed[7]. Altered 
bone quality has been reported in patients with T2D, possible mechanisms for the effect of T2D on bone 
mineral density (BMD) include the toxic effects of hyperglycemia, which may impair differentiation and 
proliferation of osteoblasts[8]. In addition, hyperglycemia can increase urine calcium excretion, which 
inhibits bone formation[8]. Thus, the objective of this review was to describe T2D bone fragility together 
with all the possible involved pathways.

T2D AND BONE IMPAIRMENT
Most studies have found that patients with T2D have preserved, or even increased, BMD compared 
with controls but display bone fragility with consequent increased susceptibility to fractures[9-11]. This 
apparent paradox is due to the altered bone quality in these patients. In detail, the spine trabecular bone 
score is decreased in patients with T2D, and it is a predictor of fracture risk independently of the BMD
[12].

https://www.wjgnet.com/1948-9358/full/v13/i11/900.htm
https://dx.doi.org/10.4239/wjd.v13.i11.900


Faienza MF et al. T2D and bone

WJD https://www.wjgnet.com 902 November 15, 2022 Volume 13 Issue 11

Furthermore, different studies have evaluated T2D effects on bone microarchitecture of the peripheral 
skeleton (radius and tibia) through high-resolution peripheral quantitative computed tomography. 
These studies have generally shown preserved, or even improved, trabecular bone microarchitecture in 
patients with T2D compared with controls[12-17]. Furthermore, some[14,15,17-19], but not all[16,20,21], 
studies report augmented cortical porosity in patients with T2D, and interestingly this parameter 
independently predicts fracture risk.

Another aspect of bone quality that might be impaired in patients with T2D is the mechanical charac-
teristics that can be assessed through the measurement of the bone material strength index. However, 
discordant results have been reported on this issue. In detail, some authors found reduced bone material 
strength index in T2D in comparison with controls[20,22,23], whereas others reported no significant 
variation[16]. These different results could be associated to the different comorbidities characterizing 
T2D.

Several studies have noted reduced bone turnover in patients with T2D[20,24,25]. It has been reported 
that patients with T2D have reduced markers of bone formation [serum levels of procollagen type 1 
amino-terminal propeptide and osteocalcin (OC)] as well as resorption (carboxy-terminal telopeptide of 
type 1 collagen)[20,24,26,27]. Moreover, Starup-Linde et al[28] demonstrated an inverse relationship 
between glycemic control (hemoglobin A1c) and OC levels and a similar trend for carboxy-terminal 
telopeptide of type 1 collagen and procollagen type 1 amino-terminal propeptide. N-terminal 
telopeptide of type 1 collagen and bone-specific alkaline phosphatase levels are not significantly 
different between patients with T2D and controls[29]. Very recently, it has been reported that thyroid 
homeostasis could affect bone turnover markers[30] and that follicle-stimulating hormone levels may 
contribute to the suppression of the same markers[31].

MECHANISMS AND MOLECULAR PATHWAYS INVOLVED IN T2D BONE FRAGILITY
An indication of mutual regulatory control of both bone and glycemic homeostasis recognizes the close 
interplay between these two systems. The common regulatory mechanisms involve microvascular 
disease, advanced glycation end products (AGEs), osteoprotegerin (OPG)/receptor-activator of nuclear 
factor kappa B ligand (RANKL), the Wnt/β-catenin pathway, osteonectin and fibroblast growth factor 
23 (FGF23) (Table 1).

Microvascular disease
Microvascular disease is a common complication (retinopathy, nephropathy or neuropathy) of diabetes
[32]. Angiopathy has been demonstrated in the iliac crest of diabetic patients[33]. Recently, decreased 
microvascular blood flow has been demonstrated to be linked with cortical porosity in patients with 
T2D, suggesting that microvascular disease negatively affects bone microarchitecture in T2D[16]. 
Consistently, cortical porosity of the distal radius and tibia is most pronounced in patients with T2D 
with microvascular disease[19]. In contrast, in 2022 it was found that the poorest femoral trabecular 
microarchitecture was associated with vascular complications in patients with T2D[34]. Patients with 
T2D with microvascular disease display a significantly lower trabecular bone score, after adjusting for 
confounders. Moreover, multivariable analysis demonstrated a significant correlation between low 
25(OH) vitamin D levels and microvascular disease[35].

Several mechanisms have been proposed to explain how microvascular disease is associated with 
bone fragility in T2D. It is important to remember that skeletal blood flow provides growth factors, 
hormones, oxygen and nutrients affecting bone remodeling, suggesting that alteration in microvascu-
lature leads to bone impairment. In the same manner as perivascular cells show stem-cell like properties 
and may differentiate in osteoblastic cells, blood vessels also release factors affecting the differentiation 
and activity of osteoblasts and osteoclasts[36]. Blood flow promotes angiogenesis and thus osteogenesis. 
Bone blood flow is reduced in T2D rats[37], and hypoxia increases the canal network in rat cortical bone
[38], suggesting that insufficient oxygen and blood flow associated with microvascular disease alters 
bone microarchitecture. The recruitment of osteoprogenitors from blood vessels is fundamental for bone 
formation following osteoclast resorption[39]. Thus, microvascular disease could uncouple resorption 
and formation in cortical bone by impairing osteoprogenitor recruitment. However, further studies are 
needed to deepen our understanding of the mechanisms and in particular whether bone fragility is a 
comorbidity of T2D or a complication (this item is a matter of debate)[40].

AGEs
Hyperglycemia disturbs both bone cells and the extracellular matrix. The presence of glucose 
determines the production of intermediate products, which eventually generate the irreversible accumu-
lation of AGE[41]. AGE accumulation leads to the synthesis of defective collagens as well as of reactive 
oxygen species, with consequent structural changes in the bone[42]. In detail, considering the organic 
bone matrix, these products lead to diminished bone strength[43,44]. Elevated AGE levels are associated 
with increased fracture risk[45].
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Table 1 Mechanisms of bone fragility in type 2 diabetes

Cytokines/factors Mechanisms Bone effect

Microvascular disease Reduced bone vasculature, blood flow and 
oxygen supply

Increased fracture risk

AGEs Osteoclast and osteoblast alterations Poor bone quality, impaired biomechanical properties, and occurrence of 
fracture

Senescence pathways Osteocyte impairment Reduced biomechanical strength, defective bone microarchitecture and 
increased risk of fracture

Wnt/β-catenin pathway High levels of sclerostin and DKK1 in T2D. 
Involvement in CKD-MBD

Impairment of bone cell activity in murine and human models

OPG/RANKL Decreased OPG/RANKL ratio Suppressed bone turnover

Osteonectin High levels of osteonectin Albuminuria is linked to higher levels of osteonectin

Osteocalcin Reduced levels in T2D Decreased bone formation. Bone fracture, involved in T2D and kidney 
complication

FGF23/klotho High FGF23 and low klotho levels in T2D Dysregulation of mineral metabolism, bone fractures. FGF23 is linked to 
bone fragility; reduced klotho levels are predictors for CKD-MBD

AGEs: Advanced glycation end products; CKD-MBD: Chronic kidney disease-mineral and bone disorder; DKK1: Dickkopf-related protein 1; FGF23: 
Fibroblast growth factor 23; OPG/RANKL: Osteoprotegerin/receptor-activator of nuclear factor kappa B ligand; T2D: Type 2 diabetes.

The AGE-receptor for AGE (RAGE) binding generates reactive oxygen species production, 
macrophage and platelet activation, vascular inflammation and inflammatory cell migration[46]. All 
these events are involved in the onset and progression of typical macro- and microangiopathy 
associated with diabetes, thus leading to brittle bones with diminished strength and less capability to 
deform before fracturing[47].

RAGE is also expressed by immune cells and incites activation of the nuclear factor kappa-light-
chain-enhancer of activated B cells, a central transcription factor of the immune and inflammatory 
response[46]. The AGE-RAGE interaction in immune cells leads to the increased expression of 
chemokines and adhesion molecules, secreting further RAGE ligands, supporting the inflammatory 
tissue response, regulating the activated macrophage reaction to enhance the destructive signals in the 
tissues and inhibiting the repair and remodeling responses[46]. AGEs may determine osteoclastogenesis 
and osteoblast alterations in the bone microenvironment due to the increase in inflammatory cytokines, 
leading to osteoporosis[48].

In detail, pentosidine, the most studied AGE, accumulates in the trabecular and cortical bone in 
patients with T2D and negatively affects their bone strength as well as probably leading to functional 
changes in osteoblasts and the bone mineralization process[49,50]. Consequently, trabecular and cortical 
bones show impaired biomechanical properties and decreased strength, together with altered osteoblast 
activity as well as adhesion to the collagen matrix and thus negatively affect bone homeostasis[45,50-52].

AGE bone content correlates with worse bone microarchitecture, including lower volumetric BMD, 
bone volume/total volume and increased trabecular separation/spacing[53]. High concentrations of 
AGEs blunt insulin-like growth factor I- mediated osteoblast stimulation and determines the resistance 
of osteoblasts to insulin-like growth factor I effects[54]. Consistently, insulin-like growth factor I serum 
levels have been found to be inversely correlated with the occurrence of vertebral fractures in T2D 
postmenopausal women[55].

The role of cellular senescence in mediating skeletal fragility in T2D
Different forms of stress can lead a cell to enter an irreversible permanent growth arrest known as 
senescence[56]. This is triggered by cyclin-dependent kinase inhibitors, remarkably p16Ink4a and 
p21Cip1, that antagonize the activity of cyclin-dependent kinases to stop cell proliferation[57,58]. 
Senescent cells display a transformed gene expression profile with an increase in senescent cell anti-
apoptotic pathways as well as a senescence-associated secretory phenotype[59], typically consisting of 
proinflammatory cytokines, chemokines and matrix remodeling proteins[60,61]. A premature increase 
in senescent cells is evident in T2D, especially pancreatic β cells and bone[62,63]. In particular, osteocyte 
senescence has been demonstrated using an inducible obese mouse model of T2D. These mice display 
bone quality alterations quite similar to bones from humans with T2D, such as reduced biomechanical 
strength, defective cortical bone microarchitecture and low bone formation rates[63]. Furthermore, in 
this model, senescent osteocytes were identified for the high levels of p16Ink4a and p21Cip1, 
senescence-associated distension of satellites, increased telomere-associated foci (another cell marker of 
senescence) as well as typical increased expression of proinflammatory senescence-associated secretory 
phenotype and nuclear factor kappa-light-chain-enhancer of activated B cells[63].
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Additionally, cellular senescence in T2D has been linked to the incidence of fracture in murine 
models and patients[64,65]. In detail, using a murine model of T2D reflecting both hyperinsulinemia 
caused by insulin resistance induced by a high-fat diet and insulinopenia induced by low dose strepto-
zotocin, increased density of senescent cells has been demonstrated in the callus area in fracture healing
[64]. Additionally, the same authors reported that cells of the osteoblastic lineage cultured with sera 
from patients with T2D displayed increased expression of the p53 responsive genes that are typical of a 
senescent microenvironment[64]. The decreased levels of serum senescent miR-31-5p in older diabetic 
women is linked to incidents of fragility fracture and can significantly predict fracture risk if combined 
with femoral neck and BMD measurements[65].

The Wnt/β-catenin pathway
The Wnt/β-catenin pathway activation promotes osteoblastogenesis and bone formation but inhibits 
osteoclastogenesis. Dickkopf-related protein 1 and sclerostin (encoded by Sost) antagonize the Wnt/β-
catenin pathway by binding to low-density lipoprotein receptor-related protein 5 or 6, thus inhibiting 
osteoblastogenesis and promoting osteoclastogenesis[66].

Bone expression of sclerostin and Dickkopf-related protein 1 has been demonstrated to be high in 
T2D rat models[67,68]. Circulating sclerostin levels have also been found to be increased in patients with 
T2D[69] and correlated to the decrease in bone formation markers[70]. In contrast, in T2D postmeno-
pausal women the high circulating levels of sclerostin are related to vertebral fractures[71]. 
Interestingly, T2D postmenopausal women with previous fractures display thinner cortical bone, 
together with a tendency towards larger volumetric bone density and elevated circulating levels of 
sclerostin compared with diabetic women without fractures and nondiabetic controls with fractures
[72]. More recently, Piccoli et al[53] reported that Sost expression in RNA extracts from the femoral head 
of patients with T2D is significantly increased compared with the controls, although circulating 
sclerostin levels were found to be higher in T2D subjects but not statistically significant.

OPG/RANKL
OPG is a soluble tumor necrosis factor receptor superfamily member originally discovered in bone[73,
74]. It is an anti-resorptive cytokine that works by binding and neutralizing the receptor activator for 
RANKL. RANKL is a molecule that induces osteoclast differentiation and activity[73,74]. The 
OPG/RANKL axis is also linked to the regulation of glucose homeostasis[75,76]. In detail, 
hyperglycemia downregulates RANKL expression, which inhibits the differentiation and activity of 
osteoclasts[73,76].

The duration of diabetes seems to negatively affect bone metabolism, but poor glycemic control 
(hemoglobin A1c ≥ 7.5%) has also been shown to be associated with an increased risk of fracture[77]. 
Decreased levels of RANKL have been reported in diabetic patients compared to healthy subjects[78]. 
This seems to be due to the increased number of immature osteoblasts and osteoclasts[79]. Other 
authors have reported that serum RANKL levels are reduced and OPG increased in diabetic patients 
with respect to nondiabetics and prediabetic subjects[80,81].

Furthermore, it has also been reported that high RANKL levels are related to a significantly increased 
risk of T2D development[82]. However, other authors did not measure significant differences in 
RANKL levels between patients with T2D and controls[29]. Human osteoblast cultures from cancellous 
bone biopsies of diabetic patients displayed a decreased RANKL/OPG ratio compared to the controls, 
suggesting that the bone turnover process is suppressed[83].

Osteonectin
Osteonectin is produced by osteoblasts and high osteonectin serum levels represent a marker of bone 
formation[84]. Osteonectin induces osteoblast differentiation, commitment and survival. In vivo, 
osteonectin-knock out and haploinsufficient mice show osteopenia with low bone turnover, a decreased 
number of osteoblasts as well as a reduced bone formation rate[85,86]. Additionally, Dole et al[87] 
reported that a single nucleotide polymorphism in the 3’ untranslated region of osteonectin determined 
variability in bone mass by modulating its expression. Patients with albuminuria had significantly 
higher levels of osteonectin compared with normoalbuminuric patients[88].

T2D AND BONE-KIDNEY CROSS-TALK: THE ROLE OF BONE-DERIVED HORMONES
Chronic kidney disease (CKD) represents a serious complication of T2D and impacts 25%-40% of the 
diabetic population[89], thus leading to end stage renal disease with the need for dialysis or kidney 
transplantation[90]. Although kidney replacement therapy improves long-term survival and quality of 
life in CKD patients, this survival highlights bone fragility as an emerging complication[91]. In a large 
cohort of patients with CKD followed between 1990 and 1999, Bal et al[92] demonstrated that the 
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fracture risk was higher with a prolonged period of dialysis before transplantation, and both epidermal 
growth factor receptor decrease and albuminuria increase were considered important risk factors for 
fracture[93]. Bone fragility in CKD patients is dependent on several risk factors, and literature data 
demonstrate the impact of age, race (Caucasian) and sex, low body mass index < 23 kg/m2, glucocor-
ticoid duration and immunosuppressive agents[94]. However, in addition to the described factors and 
dialysis vintage, diabetes and pancreas replacement therapy are also important risk factors for bone 
fragility[95,96].

In 2009, the Clinical Practice Guidelines for the Diagnosis, Evaluation, Prevention, and Treatment of 
CKD-Mineral and Bone Disorder (CKD-MBD) were originally published by Kidney Disease: Improving 
Global Outcomes[97]. This clinical syndrome defines a systemic disorder in CKD patients responsible 
for abnormalities in mineral metabolism, bone remodeling and vascular calcification. Despite the 
completion of several key clinical trials since the 2009 publication of the CKD-MBD guidelines, large 
gaps in the knowledge still remain[98]. Prospective studies are needed to determine the value of BMD 
and bone biomarkers as predictors of fractures[99] as well as the impact of different therapeutic 
approaches on bone fragility, especially in patients with both diabetes and kidney disease. Recent 
studies have demonstrated that CKD patients with T2D are at increased risk of bone diseases[100], 
which could involve FGF23.

FGF23
Ribeiro et al[101] described how the FGF23/klotho axis is a predictive factor for fractures in patients 
with T2D with early CKD and demonstrated that α-klotho and FGF23 independently influenced the 
occurrence of bone fractures. FGF23 is a bone-derived hormone secreted by osteocytes that regulates 
phosphate and vitamin D metabolism. It acts in the kidney through FGF receptors and klotho, thus 
preventing renal tubular reabsorption of phosphorus. FGF23 plays an important role in the 
development of bone and mineral disorders, and many studies over recent years, including patients 
with CKD and diabetes, have demonstrated that FGF23 levels increase in CKD patients and have an 
impact on bone disease, cardiovascular disease and all causes of mortality[102]. FGF23 can also induce 
secondary hyperparathyroidism by increasing the 24-hydroxylation of vitamin D, and these changes are 
associated with an increased risk of fracture in dialysis[103]. FGF23 levels are also further raised in CKD 
patients with diabetes who had had a previous fracture[101], thus underlying the association of a 
history of prior fracture with increased risk of hip fracture, as observed in all dialysis patients[104]. 
Moreover, FGF23 may also promote insulin secretion and insulin resistance[105], thus influencing the 
risk of adverse outcomes, especially under CKD conditions[106]. Thus FGF23 could represent a 
potential biomarker for CKD progression in diabetes[107] and be associated with multiple risk factors
[108], including bone fragility.

FGF23 signaling on target tissues is mediated by FGF receptors and klotho, which functions as a 
coreceptor to increase the binding affinity of FGF23 for FGF receptors. Klotho can also circulate as a 
secreted protein and a physiologically active hormone. It has been demonstrated that insulin can 
stimulate the release of klotho by inducing the cleavage of the extracellular domain of klotho by 
ADAM10 and ADAM17 in the kidney[109]. Cleaved klotho can thus regulate both the phosphorus and 
calcium metabolism in the kidney and mineral homeostasis in the body through 1-alpha hydroxylase 
activity as well as parathyroid hormone and FGF23 secretion[110]. Klotho expression is significantly 
reduced by several kidney injuries such as glomerulonephritis, acute kidney injury, ischemia/ 
reperfusion injury and delayed graft function[111,112], chronic allograft dysfunction[113,114] and renal 
cell carcinoma[115]. Low klotho levels are also associated with accelerated aging that can promote 
dysregulated mineral metabolism and osteoporosis. Thus, reduced klotho levels are considered early 
factors in the development of CKD-MBD[116,117]. Klotho levels are also compromised in patients with 
early CKD and diabetes[101], while lower levels of klotho seem to be an independent predictive factor 
for bone fracture[101].

Sclerostin and OC
The presence of diabetes may also increase sclerostin, an osteocyte-specific protein that inhibits bone 
formation, and higher serum sclerostin levels are associated with increased fracture rates[118]. Thus, 
sclerostin has been described as an important factor contributing to CKD-MBD[119]. In diabetic patients 
with CKD, sclerostin levels start to increase in the CKD-G3 stage, while patients in the CKD-G4/5 stages 
have dramatically increased levels of circulating sclerostin[120].

OC is another bone-derived hormone whose levels reflect the ability of osteoblasts to form bones
[121]. OC is directly associated with glucose metabolism and experimental models show that OC can 
increase insulin production by pancreatic β cells and insulin sensitivity in peripheral tissues[122]. 
Moreover, insulin receptor signaling increases the production of OC in osteoblasts[123]. OC levels have 
been recently associated with the risk of incident diabetes and kidney complications, while increased 
levels have been described in CKD patients[124,125]. In early CKD patients with diabetes, OC levels 
independently influence the occurrence of bone fracture[101]. However, further studies are needed to 
confirm the specific role of OC in the context of diabetes and CKD.
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Further research is also needed to assess the diagnostic and prognostic value of these bone turnover 
biomarkers in the field of CKD-MBD in the context of diabetes. However, the described hormones 
represent important factors for the development of bone diseases in the context of CKD and may be 
considered as targets for future clinical trials.

CONCLUSION
The studies reported in the present review describe altered bone quality and the possible mechanisms 
underlying its pathophysiology. Patients with T2D frequently display bone fragility, which is often an 
underdiagnosed condition in these subjects. The understanding of its pathophysiology is an important 
issue as it could suggest possible interventions for the prevention of poor bone quality in T2D. 
Additionally, the discovery of its pathophysiology could help to target these pathways when bone 
disease is clearly evident. Thus, the simultaneous use of anti-diabetic drugs and bone treating agents 
could help to ameliorate the quality of life of patients with T2D. This issue is of particular interest 
considering the life extension observed. Nevertheless, the possible interventions to improve bone 
quality in T2D require further investigation, which could determine different treatment approaches 
through personalized medicine.
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