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5.1. Introduction 

Mobile Ad-hoc NETwork (MANET) is a technology used to model 

wireless communication among hosts in absence of physical 

infrastructure [1]. In a MANET, hosts are autonomous agents: they can 

enter or leave the network, and they can change their relative position. 

This implies that these networks lack a predefined topology. Each host 

can communicate with the others inside a predefined range only; 

communication outside this area is possible only by means of 

cooperation between intermediate hosts. They can act as initiator, 

intermediate and destination of a communication, following a  

predefined protocol. 

This technology may be used in a number of sensitive applications, 

where malfunctioning or not adequate performance could result in severe 

damage to people, environment, or other systems; for instance, rescue 

operations in case of disasters, data tracking of environmental 

conditions, health-care, intelligent transportation, and environmental 

emergency management. This raises several problems about the analysis 

of performance, synchronization and concurrency of the network, and it 

is important to be able to verify qualities like responsiveness, robustness, 

correctness and performance, starting from the early stages of the 

development. This research area is receiving special attention in the last 

few years, in the context of smart mobile computing, cloud computing, 

Cyber Physical Systems and Internet of Things ([2] and [3]). 
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In general, the analysis and the evaluation of MANET's properties can 

be done by means of simulators (focusing on performance's metrics), or 

by means of formal models of the system (studying computational 

properties). For instance, [3-7] compare some routing protocols 

performances; [8-10] study congestion adaptive routing; [11, 12] discuss 

about managing synchronization among components involved in 

simulation; [13] evaluates a topology control approach. Nevertheless, 

some Authors show that the results obtained using simulators can be 

inaccurate or unreliable [9, 10, 14, 15]. Simulators are suitable to 

evaluate and compare performances, but they don't provide a formal 

model of the MANETs. The network is implemented at a lower level, 

while a higher abstraction level of specification is needed in order to 

study problems such as concurrency, synchronization, or deadlock. On 

the other hand, some examples of the application of formal methods to 

the analysis of MANETs have been proposed, such as process calculi 

[12], CMN (Calculus of Mobile Ad Hoc Networks) [15], and AWN 

(Algebra for Wireless Networks) [10]. They capture some essential 

characteristics of nodes, such as mobility or packet's broadcasting  

and unicasting. 

Another class of formal methods used for studying MANETs is 

represented by state-based models, such as Finite State Machines [16] 

and Petri nets. The latter have been employed to study modeling and 

verification of routing protocols [17], evaluation of protocol 

performance [18], and application to vehicular networks [19]. With 

respect to process calculi, they provide a more suitable way of 

representing algorithms, and they are typically equipped with tools, such 

as CPN Tools [20], that allow to simulate the algorithms, directly. 

However, state-based models lack expressiveness: basically, they 

provide only a single level of abstraction, and cannot support refinements 

to executable code. 

In this chapter, we introduce MOTION (MOdeling and simulaTIng 

mObile ad-hoc Networks), a Java application in which the behavior of 

MANETs is modeled by means of an Abstract State Machine 

representation [21], and then simulated with the simulation engine 

ASMETA [22]. This approach is similar to [17], in which Colored Petri 

Nets are used to model the AODV routing protocol (Ad-hoc On-demand 

Distance Vector), and CPN model is used to simulates the MANET 

behavior. As an improvement, our approach is more general purpose, 

meaning that the implementation of the routing protocol is only one of 

the several services that can be modeled in our layered framework and 
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implemented in the simulator. Thanks to the structured approach, 

services can be easily added, removed and replaced by changing some 

transitions and nested nets, as well as changing classes in software 

implementation. The ASM approach also provides a way to describe 

algorithms in a simple abstract pseudo-code, which can be translated into 

a high-level programming language source code [21]. Finally, from the 

implementation point of view, the capability of translating formal 

specifications into executable code, in order to carry out simulations of 

the models, is provided by tools like CoreASM [23] and ASMETA [22]. 

MOTION can be used to prove properties of the network, formally, as 

well as it can simulate its behavior. We provide a detailed description 

and a platform-independent version of the MOTION environment; the 

initial interface of the application and the dialogue with AsmetaS (i.e., 

ASMETA’s Simulator) are coded entirely in Java, in order to ensure 

compatibility with the main Operating Systems. 

5.2. Models for Routing Protocols 

In this section, we recall the basic concepts related to the routing 

protocols used within MOTION, to the Abstract State Machines 

formalism, and to the ASMETA framework. 

5.2.1. MANET and Routing Protocols 

We have already introduced the Mobile Ad-hoc NETworks; they are 

wireless communication systems in which each host is an autonomous 

agent that can rearrange its position with respect to the other hosts. This 

means that routes connecting the hosts can rapidly change. Several 

routing protocols have been proposed to handle this kind of networks; 

among them, the Ad-hoc On-demand Distance Vector (AODV, [24]) is 

one of the most popular, with many simulation studies dealing with it. 

For this reason, it is a reliable baseline when comparing its simulations’ 

results to those obtained with MOTION. We add two variants of AODV: 

NACK-based Ad-hoc On-demand Distance Vector (N-AODV, [25]), 

that improves the awareness that each host has about the network 

topology, and Blackhole-free N-AODV (BN-AODV, [26]), that detects 

the presence of malicious hosts leading to a blackhole attack. 

Ad-hoc On-demand Distance Vector (AODV). This protocol 

combines two mechanisms, the route discovery and the route 
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maintenance, in order to store into routing tables some knowledge about 

the routes. Each node maintains its routing table, that is a list of the routes 

towards other nodes that have been discovered and are still valid. In 

particular, an entry of the routing table of the node i concerning a node j 

includes: the address of j; the last known sequence number of j; the hop 

count field (expressing the distance between i and j); and the next hop 

field (identifying the next node in the route to reach j). The sequence 

number is an increasing number maintained by each node, that express 

the freshness of the information about the respective node. When an 

initiator wants to start a communication session towards a destination, it 

checks if a route is currently stored in its routing table. If so, the 

communication can start. Otherwise, the initiator broadcasts a control 

packet called route request (RREQ) to all its neighbors. An RREQ 

packet includes the initiator address and broadcast id, the destination 

address, the sequence number of the destination (i.e., the latest available 

information about destination), and the hop count, initially set to 0, and 

increased by each intermediate node. The pair <initiator address; 

broadcast id> identifies the packet; this implies that duplications of 

RREQs already handled by nodes can be ignored. 

When an intermediate node n receives an RREQ, it creates the routing 

table entry for the initiator, or updates it in the fields related to the 

sequence number and to the next hop. Then, the process is iterated: n 

checks if it knows a route to destination with corresponding sequence 

number greater than (or equal to) the one contained into the RREQ (this 

means that its knowledge about the route is more recent). If so, n unicasts 

a second control packet (the route reply - RREP) back to the initiator. 

Otherwise, n updates the hop count field and broadcasts once more the 

RREQ to all its neighbors. 

The process successfully ends when a route to the destination is found. 

While the RREP travels back to the initiator, routes are set up inside the 

routing tables of the traversed nodes, creating an entry for destination, 

when needed. Once the initiator receives back the RREP, the 

communication session can start. If the nodes’ movements break a link 

(i.e., a logical link stored in a routing table is no more available), a route 

maintenance is executed in order to notify the error and to invalidate the 

corresponding routes: to this end the control packet route error  

(RERR) is used. 

NACK-based AODV (N-AODV). With the AODV protocol, the nodes 

have a limited knowledge about the network topology. Each node n is 



Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks 

aware of the existence of a node m only when n receives an RREQ, either 

originated by, or directed to m. The NACK-based AODV routing 

protocol has been proposed and modeled by means of a Distributed ASM 

in [25], in order to improve this awareness. 

This protocol adds a Not ACKnowledgment (NACK) control packet in 

the route discovery phase. Whenever an RREQ originated by n and 

directed to m is received by the node p that doesn’t have any information 

about m, p itself unicasts the NACK to n. In this way, n and all the nodes 

in the path to p receive fresh information about the existence and the 

position of p, and they add an entry in their respective routing tables, or 

they update the pre-existing entry. N-AODV has been experimentally 

validated through simulations, showing its efficiency: the nodes in the 

network improve their knowledge about the other nodes and, in the long 

run, the number of RREQ decreases, with respect to the AODV protocol. 

Black hole-free N-AODV (BN-AODV). In general, routing protocols 

assume the trustworthiness of each node; this implies that MANETS are 

very prone to the black hole attack [27]. In AODV and N-AODV a black 

hole node produces fakes RREPs, in which the sequence number is as 

great as possible, so that the initiator sends the message packets to the 

malicious node, and the latter can misuse or discard them. The black hole 

can be supported by one or more colluders, that confirm the 

trustworthiness of the fake RREP. The Black hole-free N-AODV 

protocol [26] allows the honest nodes to intercept the black holes and the 

colluders, thanks to two control packets: each intermediate node n 

receiving an RREP must verify the trustworthiness of the nodes in the 

path followed by the RREP; to do this, n produces a challenge packet 

(CHL) for the destination node, and only the latter can produce the 

correct response packet (RES). If n receives RES, it sends the RREP, 

otherwise the next node towards the destination is considered as a 

possible black hole. 

5.2.2. Abstract State Machines and ASMETA 

An Abstract State Machine (ASM [21]) M is a tuple (, S, R, PM).  is a 

signature, that is a finite collection of names of total functions; each 

function has -arity n, and the special value undef belongs to the range. 

Relations are functions that always evaluate to true, false or undef. 
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S is a finite set of abstract states. The concept of abstract state extends 

the usual notion of state occurring in finite state machines: it is an algebra 

over the signature , i.e. a non-empty set of objects of arbitrary 

complexity, together with interpretations of the functions in . 

R is a finite set of rules of the form "if condition then updates", which 

transform the states of the machine. The concept of rule reflects the 

notion of transition occurring in traditional transition systems: condition 

is a first-order formula whose interpretation can be true or false; updates 

is a finite set of assignments of the form f(t1; t2; … tn): = t, whose 

execution changes in parallel the value of the specified functions to the 

indicated value. 

PM is the main rule of the machine M, of -arity 0, which is the starting 

point of the computation. 

Pairs of function names together with values for their arguments are 

called locations: they are the abstraction of the notion of memory unit. 

Since a state can be viewed as a function that maps locations to their 

values, the current configuration of locations, together with their values, 

determines the current state of the ASM. 

In order to clarify the semantics of the states with respect to the 

computational behavior of the system, we underline that each ASM state 

can be characterized by one or more predicates over the states. More 

precisely, a predicate H over an ASM state s is a first-order formula 

defined over the locations in s, such that s | = H. Each predicate allows 

us to focus on the subsets of locations that turn out to be interesting for 

verification purposes. 

The execution of an ASM is made of computational steps. Given a state 

s, a computational step in s consists in executing all the rules whose 

condition is true in that state. Since different updates could affect the 

same location, it is necessary to impose a consistency requirement: a set 

of updates is said to be consistent if it contains no pairs of updates 

referring to the same location. Therefore, if the updates are consistent, 

the result of a computational step is the transition of the machine from 

the current state to another. Otherwise, the computation doesn't produce 

a next state. A run is a (possibly infinite) sequence of steps: the 

computational step is iterated until no more rules are applicable. 
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The previous notions refer to the so-called basic ASMs. However, there 

exist some generalizations, namely the parallel ASMs and distributed 

ASMs (DASMs) [28]. Parallel ASMs are basic ASMs enriched with the 

forall construct, to express the simultaneous execution of the same ASM 

(i.e., of rules satisfying a given condition) over many independent agents. 

A distributed ASM is intended as a finite number of independent agents, 

each one executing its own underlying ASM: this model formalizes the 

behaviour of multiple agents acting in a distributed environment. A run 

of a DASM is a partially ordered set of the runs of its ASMs: the 

underlying synchronization scheme reflects causal dependencies; 

determining which agent’s move comes before is a single computational 

step of an individual agent, and is only restricted by the consistency 

condition, which is mandatory. Roughly speaking, a global state 

corresponds to the union of the signatures of each ASM, together with 

the interpretations of their functions. 

The ASM-based method consists in development phases, from 

requirements' specification to implementation, supporting developers in 

designing complex systems. Some environments support this method, 

and among them we use the ASMETA (ASM mETAmodeling) 

framework [5, 29]. This framework is characterized by logical 

components that capture the requirements by constructing the so-called 

ground models, i.e. representations at high level of abstraction that can 

be graphically depicted. Starting from ground models, hierarchies of 

intermediate models can be built, leading to executable code: each 

refinement describes the same system at a finer granularity. The 

framework supports verification, through formal proof, and validation, 

through simulation. 

5.3. Defining MOTION 

MOTION (MOdeling and simulaTIng mObile ad-hoc Networks) is a 

Java application by which the simulation parameters of a network are 

specified, the network is executed, and the simulation’s output data are 

collected. The related web pages can be found at 

https://sourceforge.net/projects/motion-project/. MOTION is developed 

within the ASMETA framework, using the abstract syntax defined in the 

Abstract State Machines Metamodel (AsmM). This is the description of 

a language for ASMs, representing domains, functions, axioms, rules; 

the syntactic constructs occurring in the ASM's states; the syntactic 

elements enabling the transition rules, and so on. The MANET is 
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modelled using the ASMETA Language (AsmetaL), and it is executed 

by the ASMETA Simulator (AsmetaS). Since the latter simulates 

instances of the model expressed by means of the AsmetaL, the 

information concerning each instance, such as the number of agents and 

their features, must be recorded into the AsmetaL file. 

The executions of MOTION and ASMETA are interleaved. MOTION 

provides the user interface and accepts the parameters of the simulation; 

then, it includes these data into the AsmetaL file, and it runs AsmetaS. 

AsmetaS executes an ASM move, simulating the behavior of the network 

protocol, then it records the values of the locations in a log file, for each 

state. The control is returned to MOTION, that gets the information 

about the results of the move (such as, the relative position of the hosts, 

the sent/received packets, and the values of waiting time) and records 

them into the AsmetaL file. Then, MOTION calls AsmetaS for the next 

move. At the end of the simulation session, MOTION stores the contents 

of the log file into a csv file. 

5.3.1. The Mobility Model 

In a realistic scenario, the hosts of a MANET follow the rules of a routing 

protocol, and they play two different roles. On one hand, they are 

communication agents, acting as initiators, destinations, or as 

intermediate hosts of a communication. At the same time, they move into 

the MANET space, breaking and creating new links. Because of the 

wireless nature of MANET, each host is associated with a radio range, 

which specifies the maximum distance the signal sent by a host can be 

received by another host. Amplitude of the radio range and movement of 

the hosts determine the topology of the network. 

A realistic simulation should consider all these features, but the 

simulation of all aspects of a MANET can be cumbersome, and 

sometimes impossible; according to [30], the model of the systems to be 

simulated must be tailored depending on the goals of the simulation 

project itself. Therefore, the movement issues and the amplitude of the 

radio range are abstractly defined within the mobility model. In this 

sense, we assume that the whole network topology is expressed by the 

connections among nodes, implicitly, and for each node we consider only 

its current neighborhood. More precisely, in MOTION the network 

topology is expressed by a connectivity matrix C, such that cij = 1 if i and 

j are neighbors; 0 otherwise, for each pair of nodes i and j. Within the 

ASM model, C is expressed by the predicate isLinked(a1;a2), which 
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evaluates to true when a1 is linked to a2; to false otherwise. Changes of 

isLinked represent the transitions of each node from one set of neighbors 

to another. 

The mobility model is implemented into a Java class that, before 

executing any ASM move, updates the connectivity matrix. In order to 

do this, each cij is set to 0 or 1 randomly, according to a parameter defined 

by the user. The new values of the connectivity matrix are then stored 

into the AsmetaL file, so that the ASM move can be executed, 

accordingly. 

5.3.2. Models Based on Abstract State Machine 

The AODV routing protocol has been formally modelled through ASMs 

in [31]. It is defined as a collection of agents, each one representing a 

node. The high-level machine in MOTION is: 

MAIN RULE = 

forall a  Agents do AODVSPEC(a) 
where 

AODVSPEC(a) = 

forall dest  Agents with dest  self do 
if WaitingForRouteTo(self, dest) then 

if Timeout(self, dest) > 0 then 
Timeout(self, dest): = Timeout(self, 
dest)-1 

else 
WaitingForRouteTo(self, dest): = false 

if WishToInitiate(self) then PREPARECOMM 
if not Empty(Message) then ROUTER 

If a node has to start a communication, the function WishToInitiate 

evaluates to true, and the PREPARECOMM submachine is called. The 

function WaitingForRouteTo evaluates to true if the discovery process 

previously started is still running; in this case, if the waiting time for 

RREP is not expired (Timeout( ) > 0), the time-counter is decreased. 

Finally, if the node has received a message (either RREQ, RREP, or 

RERR), the ROUTER submachine is called: 

ROUTER = 
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ProcessRouteReq 
ProcessRouteRep 
ProcessRouteErr 

where each submachine expresses the behavior of the node, that depends 

on the type of the message received. 

The ASM model for N-AODV is similar: the main difference concerns 

ROUTER, that includes a submachine PROCESS-NACK, in order to unicast 

the NACK packet, if needed. The BN-AODV model is more structured, 

because it describes the behavior of three different types of agents: 

honest, black holes, and colluders. Thus, the main rule has the form: 

MAIN RULE = 

forall a  Blackhole do BLACKHOLESPEC(a) 

forall a  Colluder do COLLUDERSPEC(a) 

forall a  Honest do HONESTSPEC(a) 

HONESTSPEC submachine describes the behavior of the honest nodes, 

and it's analogous to AODVSPEC. BLACKHOLESPEC and COLLUDERSPEC 

are the specifications for the non-honest nodes and the colluders, 

respectively. Moreover, the ROUTER submachine for the honest nodes 

includes a submachine that verifies the trustworthiness of the RREP’s. 

5.3.3. Specific Behavior of MOTION 

A simulation in MOTION is performed in sessions, whose number is 

established by the user. Hosts included in each session depend on the 

specific evolution of the network (due to movements, some of them can 

be disconnected, meaning that they cannot be reached by the other hosts). 

Moreover, during each session, each host is the initiator for some 

attempts to establish a communication towards a destination different 

from the initiator itself: the user expresses the probability that each host 

will act as an initiator by setting the value of the parameter Initiator 

Probability (in Fig. 5.1, the value is 10%). For each communication 

attempt (in what follows, CA), both initiator and destination are 

randomly defined. Thanks to the intrinsic parallelism in the execution of 

the ASM's rules, more attempts can be simultaneously executed. A CA 

is considered successful if the initiator receives an RREP packet within 

the waiting time expressed by the parameter RREP Timeout; otherwise, 



Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks 

the attempt is considered failed. The elapsed time is measured as the 

number of times the main rule of the ASM has been executed. 

 

Fig. 5.1. MOTION user interface. 

The hosts mobility is defined by the user by means of two parameters, 

the Initial Connectivity and the Mobility level. The former defines the 

initial topology of the MANET: it is the probability that each host is 

directly linked to any other host. During the simulation, for each pair of 

hosts <ai;aj>, and for each move of the ASM, the hosts mobility is 

expressed by changing the value of isLinked(ai;aj) with a probability 

expressed by Mobility level. 

When the BN-AODV protocol is simulated, the user interface includes 

the definition of the number of black holes and colluders, together with 

two parameters establishing the increment of the fake sequence number 

produced by the black hole. 

In Fig. 5.1, the current state of the simulation can be found in the window 

under the two buttons START and STOP. From the ASM perspective, 

there are two different machines, both called by the ASMETA's main 

rule. First, OBSERVERPROGRAM is used to manage the execution. It 

initializes the locations and data structures for all the hosts, manages the 
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mobility (setting the initial topology and resetting the connectivity 

matrix at each move), and updates the counter for the time expiration. 

The second machine, called by the main rule, is the model of the hosts' 

behavior. MOTION allows the users to study AODV, N-AODV, and 

BN-AODV, specified according to the ASMs presented in [31, 25, 26], 

respectively. Note that, for all of them, the MANET is modeled by a 

Distributed ASM. In both AODV and N-AODV all the nodes behave in 

the same way, described by the respective DASM, so the machine 

specifying the protocol is called; at each move the machine randomly 

decides if the current node will initiate new communication attempts by 

invoking the R-PREPARECOMM submachine, then it acts as a router by 

processing the proper control packets (R-ROUTER submachine). 

5.4. Experiments with MOTION 

In this section, we show the results of some simulations made with 

MOTION, in order to evaluate the performances of the AODV and the 

N-AODV protocols, as well as to test the usability of the tool. The results 

have been compared to those already discussed in literature, with the 

exception of studies about BN-AODV, that are not available. The first 

analysis compares performances measured by MOTION to those 

obtained with other simulators. The second one deepens into the 

relationships existing among some simulation parameters. 

Each simulation is performed on a specific number of hosts in the 

MANET: 10, 20, and 30 hosts, respectively. For each population, three 

different values of the Mobility level parameter are taken into 

consideration: 25, 50, and 75 %, respectively. This leads to nine different 

simulation, and all the remaining parameters are left unchanged. Each 

simulation includes ten sessions, each of which lasting 50 ASM moves; 

the initial connectivity value is 50 %; each host is an initiator of a CA 

with a probability of 10 %; a CA is successful if the packet RREP is 

received by the initiator within 10 ASM moves. The following metrics 

have been defined and collected, for each simulation: 

M1 the rate of success, that is the ratio between successful and overall 

number of CA's; 

M2 the control overhead, that is the total number of control packets 

produced for each CA (i.e., RREQs, RREPs, and REERs for both 

protocols); 



Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks 

M3 the RERR amount, that is the total number of RERR packets 

produced as a result of a link breakage; 

M4 the RREQ percentage, that is the percentage of RREQs w.r.t. the 

overall number of control packets. 

The results of the previously mentioned simulations can be found in  

Figs. 5.2-5.5. Each data point represents an average of 10 simulation 

sessions with identical parameter setting, but with different initialization 

of the connectivity matrix. The figures show the protocol's rate of 

success (Fig. 5.2), the control overhead (Fig. 5.3), the number of RERRs 

(Fig. 5.4), and the percentage of RREQs (Fig. 5.5), for each population 

and for each mobility level. 

 

Fig. 5.2. Rate of success. 

 

Fig. 5.3. Control overhead. 
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The Kruskal-Wallis test has been performed in order to check the null 

hypothesis, i.e., to check if the median of control overhead and route 

errors is equal for the MANET populations under consideration. The null 

hypothesis has been tested (1) for groups with different mobility levels 

and fixed network size, or (2) groups with different network sizes and 

fixed mobility level. We used this test because we have more than two 

independent groups to be compared, and the normality assumption is 

violated. The same approach has not been adopted for the rate of success 

and for the RREQ percentage, because they are only expressed as 

percentages. There isn’t any statistically significant difference (at the 

significance level 0,01) between the control overhead induced by 

networks with the same population (10, 20 or 30 hosts), varying the 

mobility level (25, 50, and 75 %). Conversely, there is always a 

statistically significant difference (p-value < 0,0001) between the control 

overhead induced by networks with different populations and fixed 

mobility level. This suggests that the increasing of control overhead 

depends on the increasing of the network size, mainly. 

 

Fig. 5.4. Number of RERRs. 
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Fig. 5.5. Percentage of RREQs w.r.t. the overall number of control packets. 

As for the spread of route errors along the network, it has been found that 

there is no statistical difference (at the significance level 0,01) between 

networks with 10 or 20 hosts, with a variable mobility level; this 

difference is statistically significant in the case of 30 hosts. Since 

rejecting the null hypothesis doesn't indicate which of the groups differ, 

the analysis has been refined by performing a pairwise comparison, using 

the Mann-Whitney test. As a result, there exists a statistical difference at 

the significance level 0,01 only between 25 % and 75 % of mobility level 

(p-value = 0,0002). Instead, there is always a statistically significant 

difference (p-value < 0,0001) between the route errors injected into the 

networks with different populations and fixed mobility level. These 

results suggest that the increasing of RERRs largely depends on the 

network size. 

5.5. Conclusions and Future Work 

In this chapter, we have introduced MOTION, a Java environment for 

modeling MANETs and for simulating their behavior. This tool has been 

used to analyze the performances of three routing protocols, and to 

compare the results to those that can be found in the literature. A sensible 

prosecution of this work could be the attempt to modeling a larger set of 

MANET behavior, in order to establish the usefulness of the tool, and to 

improve the user interface of our system, showing how the network 

evolves, during the computations. 



Book Title 

References 

[1]. D. P. Agrawal, Q.-A. Zeng, Introduction to Wireless and Mobile Systems, 

Fourth Edition, Cengage Learning, Boston, 2016. 

[2]. A. P. Pandian, J. I.-Z. Chen, Z. A. Baig, Sustainable mobile networks and 

its applications, Mobile Networks and Application, Vol. 24, Issue 2, 2019, 

pp. 295-297. 

[3]. A. Garcia-Santiago, J. Castaneda-Camacho, J. F. Guerrero-Castellanos,  

G. Mino-Aguilar, V. Y. Ponce-Hinestroza, Simulation platform for a 

VANET using the true time toolbox: Further result toward cyber-physical 

vehicle systems, in Proceedings of the IEEE 88th Vehicular Technology 

Conference (VTC-Fall’18), 2018, pp. 1-5. 

[4]. S. Basagni, M. Mastrogiovanni, A. Panconesi, C. Petrioli, Localized 

protocols for ad-hoc clustering and backbone formation: A performance 

comparison, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 4, 2006, 

pp. 292-306. 

[5]. P. Arcaini, A. Gargantini, E. Riccobene, P. Scandurra, A model-driven 

process for engineering a toolset for a formal method, Software: Practice 

and Experience, Vol. 41, Issue 2, 2011, pp. 155-166. 

[6]. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, J. G. Jetcheva, A 

performance comparison of multi-hop wireless ad hoc network routing 

protocols, MobiCom, Vol. 98, 1998, pp. 85-97. 

[7]. S. R. Das, R. Castaneda, J. Yan, R. Sengupt, Comparative performance 

evaluation of routing protocols for mobile, ad-hoc networks, in 

Proceedings of the 7th International Conference on Computer 

Communications and Networks (ICCCN’98), 1998, pp. 153-161. 

[8]. D. A. Tran, H. Raghavendra, Congestion adaptive routing in mobile  

ad-hoc networks, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 11, 

2006, pp. 1294-1305. 

[9]. S. Kurkowski, T. Camp, M. Colagrosso, MANET simulation studies: The 

incredibles, ACM SIGMOBILE Mobile Computing and Communications 

Review, Vol. 9, Issue 4, 2005, pp. 50-61. 

[10]. A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann,  

W. L. Tan, A process algebra for wireless mesh networks, in Proceedings 

of the European Symposium on Programming (ESOP’12), 2012,  

pp. 295-315. 

[11]. L. Bononi, G. D'Angelo, L. Donatiello, HLA-based adaptive distributed 

simulation of wireless mobile system, in Proceedings of the Seventeenth 

Workshop on Parallel and Distributed Simulation (PADS’03), 2003, p. 40. 

[12]. A. Singh, C. Ramakrishnan, S. A. Smolka, A process calculus for mobile 

ad-hoc networks, Science of Computer Programming, Vol. 75, Issue 6, 

2010, pp. 440-469. 

[13]. J. Wu, F. Dai, Mobility-sensitive topology control in mobile ad-hoc 

networks, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 6, 2006,  

pp. 522-535. 



Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks 

[14]. D. Cavin, Y. Sasson, A. Schiper, On the accuracy of MANET simulators, 

in Proceedings of the Second ACM International Workshop on Principles 

of Mobile Computing (POMC’02), 2002, pp. 38-43. 

[15]. M. Merro, An observational theory for mobile ad hoc networks, 

Information and Computation, Vol. 207, Issue 2, 2009, pp. 194-208. 

[16]. G. Delzanno, A. Sangnier, G. Zavattaro, Parameterized verification of  

ad-hoc networks, in Proceedings of the International Conference on 

Concurrency Theory (CONCUR’10), 2010, pp. 313-327. 

[17]. C. Xiong, T. Murata, J. Leigh, An approach for verifying routing protocols 

in mobile ad-hoc networks using Petri nets, in Proceedings of the IEEE 6th 

Circuits and Systems Symposium on Emerging Technologies: Frontiers of 

Mobile and Wireless Communication, 2004, Vol. 2, pp. 537-540. 

[18]. F. Erbas, K. Kyamakya, K. Jobmann, Modelling and performance analysis 

of a novel position-based reliable unicast and multicast routing method 

using coloured Petri nets, in Proceedings of the IEEE 58th Vehicular 

Technology Conference (VTC-Fall’03), Vol. 5, 2003, pp. 3099-3104. 

[19]. M. H. Jahanian, F. Amin, A. H. Jahangir, Analysis of Tesla protocol in 

vehicular ad-hoc networks using timed colored Petri nets, in Proceedings 

of the 6th International Conference on Information and Communication 

Systems (ICICS’15), 2015, pp. 222-227. 

[20]. K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri nets and CPN tools 

for modelling and validation of concurrent systems, International Journal 

on Software Tools for Technology Transfer, Vol. 9, Issues 3-4, 2007,  

pp. 213-254. 

[21]. E. Börger, R. Stärk, Abstract State Machines: A Method for High-Level 

System Design and Analysis, Springer Verlag, Berlin, 2003. 

[22]. A. Gargantini, E. Riccobene, P. Scandurra, Model-driven language 

engineering: The ASMETA case study, in Proceedings of the Third 

International Conference on Software Engineering Advances (ICSEA’08), 

October 26-31, 2008, Sliema, Malta, pp. 373-378. 

[23]. R. Farahbod, V. Gervasi, U. Glässer, COREASM: An extensible ASM 

execution engine, Fundam. Inform., Vol. 77, Issues 1-2, 2007, pp. 71-103. 

[24]. C. E. Perkins, E. M. Belding-Royer, S. R. Das, Ad hoc on-demand distance 

vector (AODV) routing, RFC 3561, Internet Engineering Task Force, 

2003, pp. 1-37. 

[25]. A. Bianchi, S. Pizzutilo, G. Vessio, Preliminary description of Nack-based 

ad-hoc on-demand distance vector routing protocol for MANETS, in 

Proceedings of the 9th International Conference on Software Engineering 

and Applications (ICSOFT-EA’14), 2014, pp. 500-505. 

[26]. A. Bianchi, S. Pizzutilo, G. Vessio, Intercepting blackhole attacks in 

MANETS: An ASM-based model, in Proceedings of the International 

Conference on Software Engineering and Formal Methods (SEFM’17), 

2017, pp. 137-125. 

[27]. F.-H. Tseng, L.-D. Chou, H.-C. Chao, A survey of black hole attacks in 

wireless mobile ad-hoc networks, Human-Centric Computing and 

Information Sciences, Vol. 1, 2011, 4. 



Book Title 

[28]. U. Glässer, Y. Gurevich, M. Veanes, Abstract communication model for 

distributed systems, IEEE Trans. Software Eng., Vol. 30, Issue 7, 2004, 

pp. 458-472. 

[29]. A. Gargantini, E. Riccobene, P. Scandurra, A metamodel-based language 

and a simulation engine for abstract state machines, J.UCS, Vol. 14,  

Issue 12, 2008, pp. 1949-1983. 

[30]. A. Boukerche, L. Bononi, Simulation and modelling of wireless, mobile 

and ad-hoc networks, in Mobile Ad Hoc Networking (S. Basagni,  

M. Conti, S. Giordano, I. Stojmenovic, Eds.), IEEE Press Wiley, New 

York, 2004, pp. 373-410. 

[31]. E. Börger, A. Raschke, Modeling Companion for Software Practitioners, 

Springer, 2018. 

 

  



Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks 

Abstract State Machine; 2; 5; 9 

AODV; 3 

ASMETA; 2; 3; 5; 7; 8; 11; 17 

BN-AODV; 5 

cloud computing; 1 

Cyber Physical Systems; 1 

formal models; 2 

Internet of Things; 1 

MANET; 1; 2; 3; 7; 8; 11; 12; 14; 

15; 16; 17 

Mobile Ad-hoc NETwork; 1 

MOTION; 2; 3; 7; 8; 9; 10; 11; 12; 

15 

N-AODV; 4 

simulators; 2 

smart mobile computing; 1 

 


