
Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

Chapter 5

A Java Application for Modelling
and Simulating Mobile Ad-hoc NETworks

Emanuele Covino and Giovanni Pani1

5.1. Introduction

Mobile Ad-hoc NETwork (MANET) is a technology used to model

wireless communication among hosts in absence of physical

infrastructure [1]. In a MANET, hosts are autonomous agents: they can

enter or leave the network, and they can change their relative position.

This implies that these networks lack a predefined topology. Each host

can communicate with the others inside a predefined range only;

communication outside this area is possible only by means of

cooperation between intermediate hosts. They can act as initiator,

intermediate and destination of a communication, following a

predefined protocol.

This technology may be used in a number of sensitive applications,

where malfunctioning or not adequate performance could result in severe

damage to people, environment, or other systems; for instance, rescue

operations in case of disasters, data tracking of environmental

conditions, health-care, intelligent transportation, and environmental

emergency management. This raises several problems about the analysis

of performance, synchronization and concurrency of the network, and it

is important to be able to verify qualities like responsiveness, robustness,

correctness and performance, starting from the early stages of the

development. This research area is receiving special attention in the last

few years, in the context of smart mobile computing, cloud computing,

Cyber Physical Systems and Internet of Things ([2] and [3]).

E. Covino (emanuele.covino@uniba.it), G. Pani (giovanni.pani@uniba.it)

Dipartimento di Informatica, Università di Bari, Italy

mailto:emanuele.covino@uniba.it

Book Title

In general, the analysis and the evaluation of MANET's properties can

be done by means of simulators (focusing on performance's metrics), or

by means of formal models of the system (studying computational

properties). For instance, [3-7] compare some routing protocols

performances; [8-10] study congestion adaptive routing; [11, 12] discuss

about managing synchronization among components involved in

simulation; [13] evaluates a topology control approach. Nevertheless,

some Authors show that the results obtained using simulators can be

inaccurate or unreliable [9, 10, 14, 15]. Simulators are suitable to

evaluate and compare performances, but they don't provide a formal

model of the MANETs. The network is implemented at a lower level,

while a higher abstraction level of specification is needed in order to

study problems such as concurrency, synchronization, or deadlock. On

the other hand, some examples of the application of formal methods to

the analysis of MANETs have been proposed, such as process calculi

[12], CMN (Calculus of Mobile Ad Hoc Networks) [15], and AWN

(Algebra for Wireless Networks) [10]. They capture some essential

characteristics of nodes, such as mobility or packet's broadcasting

and unicasting.

Another class of formal methods used for studying MANETs is

represented by state-based models, such as Finite State Machines [16]

and Petri nets. The latter have been employed to study modeling and

verification of routing protocols [17], evaluation of protocol

performance [18], and application to vehicular networks [19]. With

respect to process calculi, they provide a more suitable way of

representing algorithms, and they are typically equipped with tools, such

as CPN Tools [20], that allow to simulate the algorithms, directly.

However, state-based models lack expressiveness: basically, they

provide only a single level of abstraction, and cannot support refinements

to executable code.

In this chapter, we introduce MOTION (MOdeling and simulaTIng

mObile ad-hoc Networks), a Java application in which the behavior of

MANETs is modeled by means of an Abstract State Machine

representation [21], and then simulated with the simulation engine

ASMETA [22]. This approach is similar to [17], in which Colored Petri

Nets are used to model the AODV routing protocol (Ad-hoc On-demand

Distance Vector), and CPN model is used to simulates the MANET

behavior. As an improvement, our approach is more general purpose,

meaning that the implementation of the routing protocol is only one of

the several services that can be modeled in our layered framework and

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

implemented in the simulator. Thanks to the structured approach,

services can be easily added, removed and replaced by changing some

transitions and nested nets, as well as changing classes in software

implementation. The ASM approach also provides a way to describe

algorithms in a simple abstract pseudo-code, which can be translated into

a high-level programming language source code [21]. Finally, from the

implementation point of view, the capability of translating formal

specifications into executable code, in order to carry out simulations of

the models, is provided by tools like CoreASM [23] and ASMETA [22].

MOTION can be used to prove properties of the network, formally, as

well as it can simulate its behavior. We provide a detailed description

and a platform-independent version of the MOTION environment; the

initial interface of the application and the dialogue with AsmetaS (i.e.,

ASMETA’s Simulator) are coded entirely in Java, in order to ensure

compatibility with the main Operating Systems.

5.2. Models for Routing Protocols

In this section, we recall the basic concepts related to the routing

protocols used within MOTION, to the Abstract State Machines

formalism, and to the ASMETA framework.

5.2.1. MANET and Routing Protocols

We have already introduced the Mobile Ad-hoc NETworks; they are

wireless communication systems in which each host is an autonomous

agent that can rearrange its position with respect to the other hosts. This

means that routes connecting the hosts can rapidly change. Several

routing protocols have been proposed to handle this kind of networks;

among them, the Ad-hoc On-demand Distance Vector (AODV, [24]) is

one of the most popular, with many simulation studies dealing with it.

For this reason, it is a reliable baseline when comparing its simulations’

results to those obtained with MOTION. We add two variants of AODV:

NACK-based Ad-hoc On-demand Distance Vector (N-AODV, [25]),

that improves the awareness that each host has about the network

topology, and Blackhole-free N-AODV (BN-AODV, [26]), that detects

the presence of malicious hosts leading to a blackhole attack.

Ad-hoc On-demand Distance Vector (AODV). This protocol

combines two mechanisms, the route discovery and the route

Book Title

maintenance, in order to store into routing tables some knowledge about

the routes. Each node maintains its routing table, that is a list of the routes

towards other nodes that have been discovered and are still valid. In

particular, an entry of the routing table of the node i concerning a node j

includes: the address of j; the last known sequence number of j; the hop

count field (expressing the distance between i and j); and the next hop

field (identifying the next node in the route to reach j). The sequence

number is an increasing number maintained by each node, that express

the freshness of the information about the respective node. When an

initiator wants to start a communication session towards a destination, it

checks if a route is currently stored in its routing table. If so, the

communication can start. Otherwise, the initiator broadcasts a control

packet called route request (RREQ) to all its neighbors. An RREQ

packet includes the initiator address and broadcast id, the destination

address, the sequence number of the destination (i.e., the latest available

information about destination), and the hop count, initially set to 0, and

increased by each intermediate node. The pair <initiator address;

broadcast id> identifies the packet; this implies that duplications of

RREQs already handled by nodes can be ignored.

When an intermediate node n receives an RREQ, it creates the routing

table entry for the initiator, or updates it in the fields related to the

sequence number and to the next hop. Then, the process is iterated: n

checks if it knows a route to destination with corresponding sequence

number greater than (or equal to) the one contained into the RREQ (this

means that its knowledge about the route is more recent). If so, n unicasts

a second control packet (the route reply - RREP) back to the initiator.

Otherwise, n updates the hop count field and broadcasts once more the

RREQ to all its neighbors.

The process successfully ends when a route to the destination is found.

While the RREP travels back to the initiator, routes are set up inside the

routing tables of the traversed nodes, creating an entry for destination,

when needed. Once the initiator receives back the RREP, the

communication session can start. If the nodes’ movements break a link

(i.e., a logical link stored in a routing table is no more available), a route

maintenance is executed in order to notify the error and to invalidate the

corresponding routes: to this end the control packet route error

(RERR) is used.

NACK-based AODV (N-AODV). With the AODV protocol, the nodes

have a limited knowledge about the network topology. Each node n is

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

aware of the existence of a node m only when n receives an RREQ, either

originated by, or directed to m. The NACK-based AODV routing

protocol has been proposed and modeled by means of a Distributed ASM

in [25], in order to improve this awareness.

This protocol adds a Not ACKnowledgment (NACK) control packet in

the route discovery phase. Whenever an RREQ originated by n and

directed to m is received by the node p that doesn’t have any information

about m, p itself unicasts the NACK to n. In this way, n and all the nodes

in the path to p receive fresh information about the existence and the

position of p, and they add an entry in their respective routing tables, or

they update the pre-existing entry. N-AODV has been experimentally

validated through simulations, showing its efficiency: the nodes in the

network improve their knowledge about the other nodes and, in the long

run, the number of RREQ decreases, with respect to the AODV protocol.

Black hole-free N-AODV (BN-AODV). In general, routing protocols

assume the trustworthiness of each node; this implies that MANETS are

very prone to the black hole attack [27]. In AODV and N-AODV a black

hole node produces fakes RREPs, in which the sequence number is as

great as possible, so that the initiator sends the message packets to the

malicious node, and the latter can misuse or discard them. The black hole

can be supported by one or more colluders, that confirm the

trustworthiness of the fake RREP. The Black hole-free N-AODV

protocol [26] allows the honest nodes to intercept the black holes and the

colluders, thanks to two control packets: each intermediate node n

receiving an RREP must verify the trustworthiness of the nodes in the

path followed by the RREP; to do this, n produces a challenge packet

(CHL) for the destination node, and only the latter can produce the

correct response packet (RES). If n receives RES, it sends the RREP,

otherwise the next node towards the destination is considered as a

possible black hole.

5.2.2. Abstract State Machines and ASMETA

An Abstract State Machine (ASM [21]) M is a tuple (, S, R, PM).  is a

signature, that is a finite collection of names of total functions; each

function has -arity n, and the special value undef belongs to the range.

Relations are functions that always evaluate to true, false or undef.

Book Title

S is a finite set of abstract states. The concept of abstract state extends

the usual notion of state occurring in finite state machines: it is an algebra

over the signature , i.e. a non-empty set of objects of arbitrary

complexity, together with interpretations of the functions in .

R is a finite set of rules of the form "if condition then updates", which

transform the states of the machine. The concept of rule reflects the

notion of transition occurring in traditional transition systems: condition

is a first-order formula whose interpretation can be true or false; updates

is a finite set of assignments of the form f(t1; t2; … tn): = t, whose

execution changes in parallel the value of the specified functions to the

indicated value.

PM is the main rule of the machine M, of -arity 0, which is the starting

point of the computation.

Pairs of function names together with values for their arguments are

called locations: they are the abstraction of the notion of memory unit.

Since a state can be viewed as a function that maps locations to their

values, the current configuration of locations, together with their values,

determines the current state of the ASM.

In order to clarify the semantics of the states with respect to the

computational behavior of the system, we underline that each ASM state

can be characterized by one or more predicates over the states. More

precisely, a predicate H over an ASM state s is a first-order formula

defined over the locations in s, such that s | = H. Each predicate allows

us to focus on the subsets of locations that turn out to be interesting for

verification purposes.

The execution of an ASM is made of computational steps. Given a state

s, a computational step in s consists in executing all the rules whose

condition is true in that state. Since different updates could affect the

same location, it is necessary to impose a consistency requirement: a set

of updates is said to be consistent if it contains no pairs of updates

referring to the same location. Therefore, if the updates are consistent,

the result of a computational step is the transition of the machine from

the current state to another. Otherwise, the computation doesn't produce

a next state. A run is a (possibly infinite) sequence of steps: the

computational step is iterated until no more rules are applicable.

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

The previous notions refer to the so-called basic ASMs. However, there

exist some generalizations, namely the parallel ASMs and distributed

ASMs (DASMs) [28]. Parallel ASMs are basic ASMs enriched with the

forall construct, to express the simultaneous execution of the same ASM

(i.e., of rules satisfying a given condition) over many independent agents.

A distributed ASM is intended as a finite number of independent agents,

each one executing its own underlying ASM: this model formalizes the

behaviour of multiple agents acting in a distributed environment. A run

of a DASM is a partially ordered set of the runs of its ASMs: the

underlying synchronization scheme reflects causal dependencies;

determining which agent’s move comes before is a single computational

step of an individual agent, and is only restricted by the consistency

condition, which is mandatory. Roughly speaking, a global state

corresponds to the union of the signatures of each ASM, together with

the interpretations of their functions.

The ASM-based method consists in development phases, from

requirements' specification to implementation, supporting developers in

designing complex systems. Some environments support this method,

and among them we use the ASMETA (ASM mETAmodeling)

framework [5, 29]. This framework is characterized by logical

components that capture the requirements by constructing the so-called

ground models, i.e. representations at high level of abstraction that can

be graphically depicted. Starting from ground models, hierarchies of

intermediate models can be built, leading to executable code: each

refinement describes the same system at a finer granularity. The

framework supports verification, through formal proof, and validation,

through simulation.

5.3. Defining MOTION

MOTION (MOdeling and simulaTIng mObile ad-hoc Networks) is a

Java application by which the simulation parameters of a network are

specified, the network is executed, and the simulation’s output data are

collected. The related web pages can be found at

https://sourceforge.net/projects/motion-project/. MOTION is developed

within the ASMETA framework, using the abstract syntax defined in the

Abstract State Machines Metamodel (AsmM). This is the description of

a language for ASMs, representing domains, functions, axioms, rules;

the syntactic constructs occurring in the ASM's states; the syntactic

elements enabling the transition rules, and so on. The MANET is

Book Title

modelled using the ASMETA Language (AsmetaL), and it is executed

by the ASMETA Simulator (AsmetaS). Since the latter simulates

instances of the model expressed by means of the AsmetaL, the

information concerning each instance, such as the number of agents and

their features, must be recorded into the AsmetaL file.

The executions of MOTION and ASMETA are interleaved. MOTION

provides the user interface and accepts the parameters of the simulation;

then, it includes these data into the AsmetaL file, and it runs AsmetaS.

AsmetaS executes an ASM move, simulating the behavior of the network

protocol, then it records the values of the locations in a log file, for each

state. The control is returned to MOTION, that gets the information

about the results of the move (such as, the relative position of the hosts,

the sent/received packets, and the values of waiting time) and records

them into the AsmetaL file. Then, MOTION calls AsmetaS for the next

move. At the end of the simulation session, MOTION stores the contents

of the log file into a csv file.

5.3.1. The Mobility Model

In a realistic scenario, the hosts of a MANET follow the rules of a routing

protocol, and they play two different roles. On one hand, they are

communication agents, acting as initiators, destinations, or as

intermediate hosts of a communication. At the same time, they move into

the MANET space, breaking and creating new links. Because of the

wireless nature of MANET, each host is associated with a radio range,

which specifies the maximum distance the signal sent by a host can be

received by another host. Amplitude of the radio range and movement of

the hosts determine the topology of the network.

A realistic simulation should consider all these features, but the

simulation of all aspects of a MANET can be cumbersome, and

sometimes impossible; according to [30], the model of the systems to be

simulated must be tailored depending on the goals of the simulation

project itself. Therefore, the movement issues and the amplitude of the

radio range are abstractly defined within the mobility model. In this

sense, we assume that the whole network topology is expressed by the

connections among nodes, implicitly, and for each node we consider only

its current neighborhood. More precisely, in MOTION the network

topology is expressed by a connectivity matrix C, such that cij = 1 if i and

j are neighbors; 0 otherwise, for each pair of nodes i and j. Within the

ASM model, C is expressed by the predicate isLinked(a1;a2), which

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

evaluates to true when a1 is linked to a2; to false otherwise. Changes of

isLinked represent the transitions of each node from one set of neighbors

to another.

The mobility model is implemented into a Java class that, before

executing any ASM move, updates the connectivity matrix. In order to

do this, each cij is set to 0 or 1 randomly, according to a parameter defined

by the user. The new values of the connectivity matrix are then stored

into the AsmetaL file, so that the ASM move can be executed,

accordingly.

5.3.2. Models Based on Abstract State Machine

The AODV routing protocol has been formally modelled through ASMs

in [31]. It is defined as a collection of agents, each one representing a

node. The high-level machine in MOTION is:

MAIN RULE =

forall a  Agents do AODVSPEC(a)
where

AODVSPEC(a) =

forall dest  Agents with dest  self do
if WaitingForRouteTo(self, dest) then

if Timeout(self, dest) > 0 then
Timeout(self, dest): = Timeout(self,
dest)-1

else
WaitingForRouteTo(self, dest): = false

if WishToInitiate(self) then PREPARECOMM
if not Empty(Message) then ROUTER

If a node has to start a communication, the function WishToInitiate

evaluates to true, and the PREPARECOMM submachine is called. The

function WaitingForRouteTo evaluates to true if the discovery process

previously started is still running; in this case, if the waiting time for

RREP is not expired (Timeout() > 0), the time-counter is decreased.

Finally, if the node has received a message (either RREQ, RREP, or

RERR), the ROUTER submachine is called:

ROUTER =

Book Title

ProcessRouteReq
ProcessRouteRep
ProcessRouteErr

where each submachine expresses the behavior of the node, that depends

on the type of the message received.

The ASM model for N-AODV is similar: the main difference concerns

ROUTER, that includes a submachine PROCESS-NACK, in order to unicast

the NACK packet, if needed. The BN-AODV model is more structured,

because it describes the behavior of three different types of agents:

honest, black holes, and colluders. Thus, the main rule has the form:

MAIN RULE =

forall a  Blackhole do BLACKHOLESPEC(a)

forall a  Colluder do COLLUDERSPEC(a)

forall a  Honest do HONESTSPEC(a)

HONESTSPEC submachine describes the behavior of the honest nodes,

and it's analogous to AODVSPEC. BLACKHOLESPEC and COLLUDERSPEC

are the specifications for the non-honest nodes and the colluders,

respectively. Moreover, the ROUTER submachine for the honest nodes

includes a submachine that verifies the trustworthiness of the RREP’s.

5.3.3. Specific Behavior of MOTION

A simulation in MOTION is performed in sessions, whose number is

established by the user. Hosts included in each session depend on the

specific evolution of the network (due to movements, some of them can

be disconnected, meaning that they cannot be reached by the other hosts).

Moreover, during each session, each host is the initiator for some

attempts to establish a communication towards a destination different

from the initiator itself: the user expresses the probability that each host

will act as an initiator by setting the value of the parameter Initiator

Probability (in Fig. 5.1, the value is 10%). For each communication

attempt (in what follows, CA), both initiator and destination are

randomly defined. Thanks to the intrinsic parallelism in the execution of

the ASM's rules, more attempts can be simultaneously executed. A CA

is considered successful if the initiator receives an RREP packet within

the waiting time expressed by the parameter RREP Timeout; otherwise,

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

the attempt is considered failed. The elapsed time is measured as the

number of times the main rule of the ASM has been executed.

Fig. 5.1. MOTION user interface.

The hosts mobility is defined by the user by means of two parameters,

the Initial Connectivity and the Mobility level. The former defines the

initial topology of the MANET: it is the probability that each host is

directly linked to any other host. During the simulation, for each pair of

hosts <ai;aj>, and for each move of the ASM, the hosts mobility is

expressed by changing the value of isLinked(ai;aj) with a probability

expressed by Mobility level.

When the BN-AODV protocol is simulated, the user interface includes

the definition of the number of black holes and colluders, together with

two parameters establishing the increment of the fake sequence number

produced by the black hole.

In Fig. 5.1, the current state of the simulation can be found in the window

under the two buttons START and STOP. From the ASM perspective,

there are two different machines, both called by the ASMETA's main

rule. First, OBSERVERPROGRAM is used to manage the execution. It

initializes the locations and data structures for all the hosts, manages the

Book Title

mobility (setting the initial topology and resetting the connectivity

matrix at each move), and updates the counter for the time expiration.

The second machine, called by the main rule, is the model of the hosts'

behavior. MOTION allows the users to study AODV, N-AODV, and

BN-AODV, specified according to the ASMs presented in [31, 25, 26],

respectively. Note that, for all of them, the MANET is modeled by a

Distributed ASM. In both AODV and N-AODV all the nodes behave in

the same way, described by the respective DASM, so the machine

specifying the protocol is called; at each move the machine randomly

decides if the current node will initiate new communication attempts by

invoking the R-PREPARECOMM submachine, then it acts as a router by

processing the proper control packets (R-ROUTER submachine).

5.4. Experiments with MOTION

In this section, we show the results of some simulations made with

MOTION, in order to evaluate the performances of the AODV and the

N-AODV protocols, as well as to test the usability of the tool. The results

have been compared to those already discussed in literature, with the

exception of studies about BN-AODV, that are not available. The first

analysis compares performances measured by MOTION to those

obtained with other simulators. The second one deepens into the

relationships existing among some simulation parameters.

Each simulation is performed on a specific number of hosts in the

MANET: 10, 20, and 30 hosts, respectively. For each population, three

different values of the Mobility level parameter are taken into

consideration: 25, 50, and 75 %, respectively. This leads to nine different

simulation, and all the remaining parameters are left unchanged. Each

simulation includes ten sessions, each of which lasting 50 ASM moves;

the initial connectivity value is 50 %; each host is an initiator of a CA

with a probability of 10 %; a CA is successful if the packet RREP is

received by the initiator within 10 ASM moves. The following metrics

have been defined and collected, for each simulation:

M1 the rate of success, that is the ratio between successful and overall

number of CA's;

M2 the control overhead, that is the total number of control packets

produced for each CA (i.e., RREQs, RREPs, and REERs for both

protocols);

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

M3 the RERR amount, that is the total number of RERR packets

produced as a result of a link breakage;

M4 the RREQ percentage, that is the percentage of RREQs w.r.t. the

overall number of control packets.

The results of the previously mentioned simulations can be found in

Figs. 5.2-5.5. Each data point represents an average of 10 simulation

sessions with identical parameter setting, but with different initialization

of the connectivity matrix. The figures show the protocol's rate of

success (Fig. 5.2), the control overhead (Fig. 5.3), the number of RERRs

(Fig. 5.4), and the percentage of RREQs (Fig. 5.5), for each population

and for each mobility level.

Fig. 5.2. Rate of success.

Fig. 5.3. Control overhead.

Book Title

The Kruskal-Wallis test has been performed in order to check the null

hypothesis, i.e., to check if the median of control overhead and route

errors is equal for the MANET populations under consideration. The null

hypothesis has been tested (1) for groups with different mobility levels

and fixed network size, or (2) groups with different network sizes and

fixed mobility level. We used this test because we have more than two

independent groups to be compared, and the normality assumption is

violated. The same approach has not been adopted for the rate of success

and for the RREQ percentage, because they are only expressed as

percentages. There isn’t any statistically significant difference (at the

significance level 0,01) between the control overhead induced by

networks with the same population (10, 20 or 30 hosts), varying the

mobility level (25, 50, and 75 %). Conversely, there is always a

statistically significant difference (p-value < 0,0001) between the control

overhead induced by networks with different populations and fixed

mobility level. This suggests that the increasing of control overhead

depends on the increasing of the network size, mainly.

Fig. 5.4. Number of RERRs.

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

Fig. 5.5. Percentage of RREQs w.r.t. the overall number of control packets.

As for the spread of route errors along the network, it has been found that

there is no statistical difference (at the significance level 0,01) between

networks with 10 or 20 hosts, with a variable mobility level; this

difference is statistically significant in the case of 30 hosts. Since

rejecting the null hypothesis doesn't indicate which of the groups differ,

the analysis has been refined by performing a pairwise comparison, using

the Mann-Whitney test. As a result, there exists a statistical difference at

the significance level 0,01 only between 25 % and 75 % of mobility level

(p-value = 0,0002). Instead, there is always a statistically significant

difference (p-value < 0,0001) between the route errors injected into the

networks with different populations and fixed mobility level. These

results suggest that the increasing of RERRs largely depends on the

network size.

5.5. Conclusions and Future Work

In this chapter, we have introduced MOTION, a Java environment for

modeling MANETs and for simulating their behavior. This tool has been

used to analyze the performances of three routing protocols, and to

compare the results to those that can be found in the literature. A sensible

prosecution of this work could be the attempt to modeling a larger set of

MANET behavior, in order to establish the usefulness of the tool, and to

improve the user interface of our system, showing how the network

evolves, during the computations.

Book Title

References

[1]. D. P. Agrawal, Q.-A. Zeng, Introduction to Wireless and Mobile Systems,

Fourth Edition, Cengage Learning, Boston, 2016.

[2]. A. P. Pandian, J. I.-Z. Chen, Z. A. Baig, Sustainable mobile networks and

its applications, Mobile Networks and Application, Vol. 24, Issue 2, 2019,

pp. 295-297.

[3]. A. Garcia-Santiago, J. Castaneda-Camacho, J. F. Guerrero-Castellanos,

G. Mino-Aguilar, V. Y. Ponce-Hinestroza, Simulation platform for a

VANET using the true time toolbox: Further result toward cyber-physical

vehicle systems, in Proceedings of the IEEE 88th Vehicular Technology

Conference (VTC-Fall’18), 2018, pp. 1-5.

[4]. S. Basagni, M. Mastrogiovanni, A. Panconesi, C. Petrioli, Localized

protocols for ad-hoc clustering and backbone formation: A performance

comparison, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 4, 2006,

pp. 292-306.

[5]. P. Arcaini, A. Gargantini, E. Riccobene, P. Scandurra, A model-driven

process for engineering a toolset for a formal method, Software: Practice

and Experience, Vol. 41, Issue 2, 2011, pp. 155-166.

[6]. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, J. G. Jetcheva, A

performance comparison of multi-hop wireless ad hoc network routing

protocols, MobiCom, Vol. 98, 1998, pp. 85-97.

[7]. S. R. Das, R. Castaneda, J. Yan, R. Sengupt, Comparative performance

evaluation of routing protocols for mobile, ad-hoc networks, in

Proceedings of the 7th International Conference on Computer

Communications and Networks (ICCCN’98), 1998, pp. 153-161.

[8]. D. A. Tran, H. Raghavendra, Congestion adaptive routing in mobile

ad-hoc networks, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 11,

2006, pp. 1294-1305.

[9]. S. Kurkowski, T. Camp, M. Colagrosso, MANET simulation studies: The

incredibles, ACM SIGMOBILE Mobile Computing and Communications

Review, Vol. 9, Issue 4, 2005, pp. 50-61.

[10]. A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann,

W. L. Tan, A process algebra for wireless mesh networks, in Proceedings

of the European Symposium on Programming (ESOP’12), 2012,

pp. 295-315.

[11]. L. Bononi, G. D'Angelo, L. Donatiello, HLA-based adaptive distributed

simulation of wireless mobile system, in Proceedings of the Seventeenth

Workshop on Parallel and Distributed Simulation (PADS’03), 2003, p. 40.

[12]. A. Singh, C. Ramakrishnan, S. A. Smolka, A process calculus for mobile

ad-hoc networks, Science of Computer Programming, Vol. 75, Issue 6,

2010, pp. 440-469.

[13]. J. Wu, F. Dai, Mobility-sensitive topology control in mobile ad-hoc

networks, IEEE Trans. Parallel Distrib. Syst., Vol. 17, Issue 6, 2006,

pp. 522-535.

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

[14]. D. Cavin, Y. Sasson, A. Schiper, On the accuracy of MANET simulators,

in Proceedings of the Second ACM International Workshop on Principles

of Mobile Computing (POMC’02), 2002, pp. 38-43.

[15]. M. Merro, An observational theory for mobile ad hoc networks,

Information and Computation, Vol. 207, Issue 2, 2009, pp. 194-208.

[16]. G. Delzanno, A. Sangnier, G. Zavattaro, Parameterized verification of

ad-hoc networks, in Proceedings of the International Conference on

Concurrency Theory (CONCUR’10), 2010, pp. 313-327.

[17]. C. Xiong, T. Murata, J. Leigh, An approach for verifying routing protocols

in mobile ad-hoc networks using Petri nets, in Proceedings of the IEEE 6th

Circuits and Systems Symposium on Emerging Technologies: Frontiers of

Mobile and Wireless Communication, 2004, Vol. 2, pp. 537-540.

[18]. F. Erbas, K. Kyamakya, K. Jobmann, Modelling and performance analysis

of a novel position-based reliable unicast and multicast routing method

using coloured Petri nets, in Proceedings of the IEEE 58th Vehicular

Technology Conference (VTC-Fall’03), Vol. 5, 2003, pp. 3099-3104.

[19]. M. H. Jahanian, F. Amin, A. H. Jahangir, Analysis of Tesla protocol in

vehicular ad-hoc networks using timed colored Petri nets, in Proceedings

of the 6th International Conference on Information and Communication

Systems (ICICS’15), 2015, pp. 222-227.

[20]. K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri nets and CPN tools

for modelling and validation of concurrent systems, International Journal

on Software Tools for Technology Transfer, Vol. 9, Issues 3-4, 2007,

pp. 213-254.

[21]. E. Börger, R. Stärk, Abstract State Machines: A Method for High-Level

System Design and Analysis, Springer Verlag, Berlin, 2003.

[22]. A. Gargantini, E. Riccobene, P. Scandurra, Model-driven language

engineering: The ASMETA case study, in Proceedings of the Third

International Conference on Software Engineering Advances (ICSEA’08),

October 26-31, 2008, Sliema, Malta, pp. 373-378.

[23]. R. Farahbod, V. Gervasi, U. Glässer, COREASM: An extensible ASM

execution engine, Fundam. Inform., Vol. 77, Issues 1-2, 2007, pp. 71-103.

[24]. C. E. Perkins, E. M. Belding-Royer, S. R. Das, Ad hoc on-demand distance

vector (AODV) routing, RFC 3561, Internet Engineering Task Force,

2003, pp. 1-37.

[25]. A. Bianchi, S. Pizzutilo, G. Vessio, Preliminary description of Nack-based

ad-hoc on-demand distance vector routing protocol for MANETS, in

Proceedings of the 9th International Conference on Software Engineering

and Applications (ICSOFT-EA’14), 2014, pp. 500-505.

[26]. A. Bianchi, S. Pizzutilo, G. Vessio, Intercepting blackhole attacks in

MANETS: An ASM-based model, in Proceedings of the International

Conference on Software Engineering and Formal Methods (SEFM’17),

2017, pp. 137-125.

[27]. F.-H. Tseng, L.-D. Chou, H.-C. Chao, A survey of black hole attacks in

wireless mobile ad-hoc networks, Human-Centric Computing and

Information Sciences, Vol. 1, 2011, 4.

Book Title

[28]. U. Glässer, Y. Gurevich, M. Veanes, Abstract communication model for

distributed systems, IEEE Trans. Software Eng., Vol. 30, Issue 7, 2004,

pp. 458-472.

[29]. A. Gargantini, E. Riccobene, P. Scandurra, A metamodel-based language

and a simulation engine for abstract state machines, J.UCS, Vol. 14,

Issue 12, 2008, pp. 1949-1983.

[30]. A. Boukerche, L. Bononi, Simulation and modelling of wireless, mobile

and ad-hoc networks, in Mobile Ad Hoc Networking (S. Basagni,

M. Conti, S. Giordano, I. Stojmenovic, Eds.), IEEE Press Wiley, New

York, 2004, pp. 373-410.

[31]. E. Börger, A. Raschke, Modeling Companion for Software Practitioners,

Springer, 2018.

Chapter 5. A Java Application for Modelling and Simulating Mobile Ad-hoc NETworks

Abstract State Machine; 2; 5; 9

AODV; 3

ASMETA; 2; 3; 5; 7; 8; 11; 17

BN-AODV; 5

cloud computing; 1

Cyber Physical Systems; 1

formal models; 2

Internet of Things; 1

MANET; 1; 2; 3; 7; 8; 11; 12; 14;

15; 16; 17

Mobile Ad-hoc NETwork; 1

MOTION; 2; 3; 7; 8; 9; 10; 11; 12;

15

N-AODV; 4

simulators; 2

smart mobile computing; 1

