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Abstract: Nutrition has crucial effects and a significant role in disease prevention. Recently, nutraceu-
ticals have attracted much attention in scientific research due to their pleiotropic effects and relatively
non-toxic behavior. Among the biological effects displayed by plants belonging to the Lamiaceae
family, such as antibacterial, anticancer, anti-inflammatory, and anticholinesterase, sage is well known
for its antioxidant properties and is a rich source of numerous compounds that are biologically active,
amongst them polyphenols, with more than 160 types identified. In this review we summarized
some of the significant studies published in the last decade reporting the most employed extraction
methods and the different assays that are useful for establishing the antioxidant properties of some
sage species. Even though the scientific literature contains plenty of data regarding the antioxidant
properties of many sage species, further studies are needed in order to gain a deeper understanding
of the mechanism of action and the compounds responsible for their antioxidant activity. Finally, it
should be taken into account that the data on the antioxidant properties of sage extracts are often
difficult to compare with each other, since a series of variables in the extraction procedures, the type
of assay used, and standardization may affect the final result.

Keywords: Salvia species; extraction methods; antioxidant assays; antioxidant properties

1. Introduction

In the last decade, increased attention has been paid to healthier lifestyles and nutrition,
with a net trend toward the consumption of foods and supplements rich in phytochemicals
that may prevent different diseases such as cancer, diabetes, neurodegeneration, and car-
diovascular system disorders, among others [1]. More recently, many studies have been
focused on nutraceuticals derived from natural sources, such as plants, able to prevent and
treat a wide range of pathologies and whose mechanisms are still under-investigated [2].
Amongst the several medicinal plants with beneficial effects on human health, sage species
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have attracted the attention of numerous researchers because of their multiple biologi-
cal properties for preserving good health and treat different diseases [3,4]. The genus
Salvia L. is commonly known as sage and includes the most common Salvia officinalis L.
(Dalmatian sage), Salvia lavandulaefolia, Salvia fruticosa, Salvia miltiorrhiza, and others [5],
and is represented by approximately one thousand species worldwide [6,7]. Several bi-
ological activities have been reported for sage extracts, such as antibacterial, anticancer,
anticholinesterase, antinociceptive, hypoglycemic, hypolipidemic, liver-protective, antiox-
idant, etc. (Figure 1) [8–12]. Recently, the anti-radical activity of S. officinalis L. against
uranium toxicity, with uranium being a highly radioactive toxic heavy metal, has been
suggested [13]. It is known that the overproduction of free radicals, namely nitrogen- (RNS)
or oxygen-derived (ROS), is harmful for humans and other living organisms, and that
these free radicals possess high reactivity and a short life, because unpaired electron(s) may
extract electron(s) from biological molecules, such as DNA, proteins, and lipids, for gaining
stability. An overproduction of ROS can occur through environmental causes (pollution,
cigarette smoke, ozone, and ultraviolet (UV) radiation, for instance) or endogenously under
physiologic or pathologic conditions (amino acids oxidation, the mitochondrial electron
transport chain, respiratory burst by phagocytes, ischemia–reperfusion injury, etc.). Nor-
mally, the presence of endogenous and exogenous antioxidants, for instance, from food
intake, balances the produced RNS and ROS, but when this equilibrium is broken, the
oxidative stress becomes harmful and may lead to several chronic diseases.
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Figure 1. Salvia species extracts’ main benefits.

Sage contains many biologically active compounds, including phenolic components [14]
and monoterpenes, sesquiterpenes, diterpenes, and triterpenes, based on the isoprenic
units contained in the structure (two units = monoterpene; three units = sesquiterpenes;
four units = diterpene; six units = triterpene, Figure 2). Phenolic components can be roughly
divided into two groups: flavonoids (luteolin, apigenin, and quercetin) and phenolic acids
(caffeic, vanillic, ferulic, and rosmarinic acid) [15]. The most common terpenes present
in sage include α- and β-thujone, 1,8-cineole, and camphor (monoterpenes); carnosic
acid, carnosol, rosmanol, rosmadial, and manool (diterpenes); oleanolic and ursolic acids
(triterpenes); along with α-humulene and viridiflorol (sesquiterpenes) [16]. Moreover,
the presence of luteolin methyl carnosate, rosmadial, 9-ethylrosmanol ether, epirosmanol,
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isorosmanol, and galdosol has been described in extracts from S. officinalis and S. fru-
ticosa [17–19]. Sage essential oil (EO) mainly contains α-thujone, camphor, viridiflorol,
1,8-cineole, and α-pinene and exerts antibacterial, antifungal, and free radical scavenging
activity [20]. A growing number of studies support the modulation of neurotransmitter
metabolism by S. officinalis extracts, which contribute to the improvement of cognitive
performance in human volunteers [21–23]. However, even though the major components of
the used extracts have been quantitatively and qualitatively characterized, their biological
effects are attributed to the phyto-complex rather than to the single component. Moreover,
particular importance has been recently attributed to S. miltiorrhiza for the treatment of
coronary heart disease, hypertension, ischemic stroke, angina pectoris [24–26], and viral
diseases, including COVID-19 [27,28]. These activities are likely related to the presence of
quinone diterpenes, also known as tanshinones, including tanshinone I, tanshinone IIA,
dihydrotanshinone I, cryptotanshinone, and hydroxytanshinone. Among these, the most
interesting is tanshinone IIA, which demonstrated cardiovascular-protective [29,30] and
renoprotective [31] activities, and antiviral activity [32]. It has also been recently investi-
gated as a natural anticancer compound, due to its inhibitory effect on cancer with a certain
regulatory effect on tumor angiogenesis [33–35]. Several recent papers have also addressed
the large-scale production of Salvia spp. using efficient preservation processes [36–41]. All
substances present in Salvia spp. have been widely studied for their diverse biological
activities. In this review, our interest was focused on the antioxidant activity of several ex-
tracts of sage. The most common extraction methods, as well as several in vitro and in vivo
studies regarding the antioxidant activity of diverse sage species (spp.), are herein reported.
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Figure 2. Representative structures of terpenic compounds and polyphenols.

2. Extraction Methods

Sage species have been widely used in popular medicine for their biological properties,
and many different methods for the extraction and identification of these components have
been reported [42]. Today, various techniques are used for obtaining various sage prod-
ucts [43] and are chosen depending on the desired profile of sage’s bioactive compounds in
an extract, and the most used techniques have been recently extensively summarized [16].
Currently, the most employed extraction methods (Table 1) are represented by hydrodis-
tillation (HD) [44], steam distillation (SD) [45], ultrasound-assisted extraction (UAE) [46],
sonohydrodistillation (SHD) [47], microwave-assisted extraction (MAE) [48] including
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microwave-assisted hydrodistillation (MHD or MAHD) [49,50], solid–liquid extraction
(SLE) [51], Soxhlet extraction (SE) [52], infusion [53], freeze drying (FD) [54,55], solvent-
free microwave-assisted extraction (SFME) [56], supercritical fluid extraction (SFE) [57],
subcritical water extraction (SCWE) [58], and supercritical CO2 extraction (SC-CO2) [59,60].
The choice of extraction technique was seen to influence phenolic acids and flavonoid com-
position, where ultrasound-assisted extraction (UAE) gave the highest concentration [61].
They will herein be briefly described, together with their pros and cons. HD is the most
commonly used method to obtain sage products, mainly directed toward the production
of EO, and it uses a Clevenger-type apparatus, with some modifications [62]. Although
HD is an old and simple technique for EO extraction, at the industrial level, it has been
replaced with steam distillation, the parameters of which have been modified in order to
make it less expensive [63]. UAE is an efficient technique, with lower equipment costs
and is used in large-scale applications. It is based on applying high-frequency sounds and
a limited amount of solvent to achieve effective extraction of the components contained
in a solid matrix [64]. Sonohydrodistillation is an innovative approach, as waves gener-
ated from sonication might make hydrodistillation more rapid by creating the physical
amendments for improved mass and heat transfer [65]. MAE is a simple, low-cost, and
modern extraction technique with a reduced extraction time and solvent employment that
can process a high amount of raw material. A limitation is the extraction of volatile or
thermo-sensitive components, because of the cooling or venting periods required after the
extraction process [66]. Numerous studies of S. officinalis L. are carried out on the crude
products obtained by solid–liquid extraction by using different solvents and comparing
both classical and innovative extraction techniques. For instance, maceration is a simple
and the most common form of solid–liquid extraction, in which a proper solvent is added to
the crushed plant material and shaken. In the case of the industrial production of extracts,
solvents are allowed to circulate through the plant material, and multiple extraction is often
used [67]. Soxhlet extraction is another conventionally used method, but needs long ex-
traction times and organic solvents, most of them toxic and flammable [68]. A very simple
and widely used technique, generally employed for galenical preparations, especially in
the past, is infusion that involves macerating the plant’s parts in boiling water for a short
period of time. This technique produces a deposit because of the coagulation of the inert
colloidal material. These kinds of extracts must be used within a few hours due to the high
propensity of microbial growth and are not acceptable for large-scale production; however,
if alcohol is added to the infusion, during or after the extraction process, the problem is
over. This method has been successfully used in some studies [69]. FD, also known as
lyophilization, is a well-known technique for the production of high-quality food powders
and solids [70]. It is a preferred method for drying foods containing compounds that are
thermally sensitive and prone to oxidation since it operates at low temperatures and under
high vacuum. FD of food and biological materials has the advantage of minimal loss of
flavor and aroma. It requires very low pressures or high-vacuum conditions to produce
a satisfactory drying rate [71]. SFME is an efficient and eco-friendly technique, where
the operational aspects of MAE have been maneuvered to make it compatible with the
extraction of EOs [72]. SFE has been highlighted in the literature, thanks to its advantages
related to the protection of photosensitivity, oxidizability, and volatility of biocompounds.
It was also successfully used for the extraction of pigments and aromatic compounds,
including alkaloids, from flowers, which are the most fragile plant organ and may contain
a vast range of variable compounds [73]. SCWE is considered a safe, fast, economical,
and environmentally friendly method, in which the use of water, subjected to high pres-
sure, is needed to increase its temperature to above its normal boiling point. The use of
water as the solvent for the extraction of EO is both cost-effective and environmentally
friendly. Moreover, this technique requires significantly reduced extraction times (around
2–3 times), and the consumption of a lower amount of raw material, to produce a higher
quality and quantity of EO [58]. Finally, SC-CO2 represents a promising and advantageous
technology, with a dissolving ability comparable to organic solvents but with better diffu-
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sion, fast extract/solvent separation, and the possibility to recycle the supercritical fluid,
and has been successfully used for the extraction of thermolabile components [74]. CO2
is an optimal solvent because it is natural, quite inexpensive, non-toxic and chemically
inert, non-flammable, easily to remove, odorless, and flavorless. The use of SC-CO2 at
high pressure has been demonstrated to be good method for the extraction of vegetable
oils [75]. Even though CO2 is optimal for non-polar or slightly polar compounds, it has a
low affinity for polar components, an inconvenience that can be overcome by adding polar
co-solvents [76]. While CO2 is not expensive, the necessary equipment and the extraction
process are, especially at higher pressures and temperatures; however, several approaches,
for instance, maintaining the variable stream circulation of the solvent, have been proposed
to surpass these drawbacks [77].

Table 1. Methods of extraction commonly used for sage species.

Method of Extraction Acronym Refs.

Hydrodistillation HD Aćimović et al., 2022 [44]

Steam Distillation SD Machado et al., 2022 [45]

Ultrasound-Assisted
Extraction UAE Moussa et al., 2022 [46]

Sonohydrodistillation SHD Benmoussa et al., 2023 [47]

Microwave-Assisted
Extraction MAE Peng et al., 2022 [48]

Microwave-Assisted
Hydrodistillation MHD or MAHD Mohamed et al., 2022 [49]

Solid–Liquid Extraction SLE Didion et al., 2022 [51]

Soxhlet Extraction SE Vieira et al., 2020 [52]

Infusion - Nicolescu et al., 2022 [53]

Freeze-Drying FD Mondor et al., 2023 [54]
Wang et al., 2022 [55]

Solvent-Free
Microwave-Assisted

Extraction
SFME Liu et al., 2022 [56]

Supercritical Fluid Extraction SFE Huang et al., 2012 [57]

Subcritical Water Extraction SCWE Samadi et al., 2020 [58]

Supercritical CO2 Extraction SC-CO2
Fikri et al., 2022 [59]
Alara et al., 2021 [60]

3. Methods for Evaluation of Antioxidant Activity

The evaluation of antioxidant activity has notably evolved in the past decade; indeed,
early methods based on measuring lipid oxidation have been replaced with chemical tests
coupled with innovative detection technologies. A direct measure of the transfer of hy-
drogen atoms or electrons from antioxidants to free radicals, coupled with their ability to
neutralize radical species, may provide information on their intrinsic antioxidant poten-
tial and generally adopts a chemical system composed of an oxidant (ROS or other), an
oxidizing compound, and the antioxidants to be studied [78]. Moreover, the method for de-
termining antioxidant activity should be simple, reproducible, able to analyze hydrophilic
and lipophilic antioxidants, appropriate for a determined in vitro or in vivo experiment,
based on chemically defined reaction(s) and have and endpoint, and record a radical that is
biologically relevant [79]. The available methods for antioxidant capacity evaluation are
generally based on electrochemistry, spectrometry, and chromatography. They are briefly
summarized in Figure 3.
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3.1. In Vitro Chemical Assays

In vitro chemical assays can be divided into hydrogen atom transfer (HAT) and single
electron transfer (SET) methods, on the basis of the chemical reactions possessing different
kinetics and intermediates, but with the same final result for both [67]. Specifically, HAT
methods measure the ability of an antioxidant to quench free radicals by hydrogen donation,
whereas SET ones detect the ability of a potential antioxidant to transfer one electron and
reduce any compound, including metals, carbonyls, and radicals. These tests are fast and
can be automated and used for the initial screening of several antioxidants. Furthermore,
they can be used as single or combined assays. HAT assays determine the ability of an
antioxidant to remove free radicals through a hydrogen atom donation. Some examples
are the Oxygen Radical Absorption Capacity (ORAC), the Hydroxyl Radical Antioxidant
Capacity (HORAC), the Total Peroxyl Radical-Trapping Antioxidant Parameter (TRAP),
and β-carotene bleaching assays [80–86].

Electron transfer (ET) tests, based on SET, detect the ability of an antioxidant to reduce
metallic ions, carbonyl groups, and free radicals by transferring an electron, and are pH-
dependent [87]. The Folin–Ciocalteu (FC), Ferric Reduction of Antioxidant Power (FRAP),
and cupric reducing antioxidant capacity (CUPRAC) tests are included amongst these
methods. The well-known FC test is widely used to measure the total phenolic content (TPC)
in plant extracts and other biological samples, originally used to detect proteins, and then,
developed to determine the antioxidant ability of different extracts [88,89]. Additionally,
the DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) and ABTS (2,2′-azinobis-(3-ethyl-
benzothiazoline-6-sulfonic acid)) assays are the most common ones [69,90,91].

Finally, several authors have used mixed tests which are based on mixed mechanisms
(HAT/SET). Briefly, they involve the elimination of a stable chromophore where HAT, ET,
and proton-coupled electron transfer (PCET) mechanisms play different roles, depend-
ing on the pH, solvent, and other reaction conditions [87]. The main mixed assays are
the ABTS/Trolox equivalent antioxidant capacity (TEAC), DPPH, and N,N-dimethyl-p-
phenylenediamine dihydrochloride (DMPD) ones. The ABTS/TEAC assay is an easy and
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convenient test for measuring the total antioxidant capacity (TAC) of a pure compound, or
extract, by measuring its ability to neutralize the ABTS stable radical cation [92,93].

3.2. In Vitro Cell-Based Assays

The evaluation of the antioxidant activity of several synthetic bioactive compounds
and natural extracts has been conducted using in vitro cell-based assays, taking into account
different variables such as cellular absorption, metabolism, and the cell’s environmental con-
text. Cell models are ideal for developing a better understanding of the antioxidant activity
nearer to that exerted in vivo, which is not always easy to measure directly using animal or
human subjects. One of these tests is represented by the hemolysis inhibition assay, which
is suitable for the determination of both hydrophilic and lipophilic antioxidants [94,95].
The cellular antioxidant assay (CAA) was also developed for the quantitative measure-
ment of antioxidants’ ability to inhibit oxidation using a determined cell model [96,97].
Through this assay, it is possible to evaluate antioxidant capability under physiological
conditions, and the cellular uptake of antioxidants can be correlated with bioavailability
in in vivo systems, and it has been used for the evaluation of several compounds and
extracts [98–100]. Finally, the oxidative hemolysis inhibition assay (OxHLIA) is based on
the inhibition of free radical-induced membrane damage in erythrocytes by antioxidants.
In this assay, the temperature-dependent free radical initiator AAPH is responsible for the
formation of free (peroxyl) radicals, in the in vitro system, which attack the erythrocyte
membranes and eventually cause hemolysis [101]. Since the peroxyl radicals formed in the
in vitro system are also found in the human body, this cell-based assay has been pointed
out as suitable for assessing the antioxidant activity of natural extracts. This method uses
peroxyl radicals as pro-oxidants and erythrocytes as oxidizable targets, so that the results
reflect the biologically relevant radical-scavenging activity and the micro-localization of
antioxidants [94,102].

3.3. In Vivo Assays

Several in vivo animal studies have been performed to evaluate the antioxidant activity
of natural extracts. Usually, oral or intravenous administration to the animals (mice or
rats) at a definite dosage is used and, after a defined period, the animals are sacrificed,
and blood or tissues are used for the evaluation of antioxidant activity using specific
assays. The ferric reducing ability test is a rapid and useful routine test that estimates
the antioxidant activity of a given extract/compound from animals’ blood samples, by
using the FRAP reagent [103]. This assay gives the antioxidant index potential of biological
fluids and is highly reproducible. The levels of reduced glutathione (GSH) can also be
exploited for antioxidant activity determination [86]. Glutathione peroxidase (GSHPx)
is a seleno-enzyme present in the cytosol and mitochondria that catalyzes the reaction
of hydroperoxides with reduced GSH, forming glutathione disulfide (GSSG) and the
reduction product of hydroperoxide. Antioxidant activity is detected by monitoring the
conversion of NADPH to NADP+ [104]. Another assay exploits the following enzymes:
glutathione-S-transferase (GSt) [105], superoxide dismutase (SOD) [106], catalase (CAT) [86],
gamma-glutamyl transpeptidase ac (gGT) [106], and glutathione reductase (GR) [107]. Lipid
peroxidation (LPO) is an autocatalytic process that produces malondialdehyde (MDA) as
one of the end products. The peroxidation level is expressed as nanomoles of thiobarbituric
acid (TBA)-reactive substances (TBARS)/mg protein [10,108]. As discussed, the antioxidant
activity of the various sage extracts can be evaluated through different methods, both
in vitro and in vivo. It is evident that the in vitro methods are the most frequently adopted
and, amongst them all, DPPH, HORAC, and SOD are the most preferred by the scientific
community. Additionally, amongst the in vivo assays, LPO, CAT, and GSHPx exhibit the
highest frequency of use.
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4. Salvia spp. Extracts and the Evaluation of Antioxidant Activity

The scientific literature reports a myriad of studies regarding the biological activities
of several Salvia spp., including the most investigated antioxidant ones. It is commonly
accepted that secondary metabolites, such as phenolic acids, flavonoids, and terpenes,
are responsible for antioxidant activity, and different methods have been developed, as
discussed above. Herein some significative examples taken from studies, published in the
last decade, will be reported.

4.1. Antioxidant Activities of S. officinalis L. spp. Individually

Hamrouni-Sellami et al., (2013) [109] studied the influence of different drying methods
on phenolics’ and flavonoids’ qualitative and quantitative content and the antioxidant
activity of methanol extract from S. officinalis L. aerial parts (Table 2). The authors found
out that the two drying techniques allowed for the improvement in antioxidant activity, as-
sessed by DPPH and β-carotene bleaching assays, namely microwave (output power from
600 to 800 W) and far-infrared drying at 65 0C. Fischedick et al., (2013) [110] isolated some
phenolic diterpenes from an acetone extract of S. officinalis L. dried aerial parts, namely
carnosic acid, carnosol, epirosmanol, rosmanol, 12-methoxy-carnosic acid, sageone, and
carnosaldehyde, using hexane soluble material over a polyamide column, followed by
centrifugal partition chromatography, and reverse-phased semi-preparative HPLC. Iso-
lated compounds were identified by 1H-NMR, 2DCOSY, and LC-MS, and then, tested for
their ability to regulate antioxidant and cytoprotective gene expression mediated by Nrf2
through quantitative PCR (qPCR). Their outcomes indicated that almost all the isolated
compounds activated Nrf2-mediated gene expression in mouse primary cortical cultures
and that, in particular, carnosol and carnosaldehyde were able to protect the cultures
from H2O2 and oxidative stressors used to induce cell death. Martins et al., (2015) [111]
prepared aqueous (infusion and decoction) and methanol/water (80:20, v/v) extracts of S.
officinalis L. flowering aerial parts, and tested their antioxidant and antifungal activities,
identifying some bioactive molecules, mainly phenolics (rosmarinic acid derivatives) and
flavonoids (luteolin derivatives). Four different in vitro assays were performed: DPPH,
reducing power, the inhibition of β-carotene bleaching, and lipid peroxidation inhibition.
The best antioxidant properties were exhibited by the methanol/water extract, followed
by the aqueous extracts obtained by decoction and infusion. Smach et al., (2015) [112]
proved that the administration in mice of an aqueous extract of S. officinalis L. aerial parts
produced antioxidant effects and inhibited acetylcholinesterase activity in the brain. These
results suggest an important role of the extract in the prevention and amelioration of
neurodegenerative disease symptoms. Antioxidant ability was measured with the DPPH
scavenging assay (IC50 = 14.5 µg/mL), and the detected GSH and ascorbic acid levels in
mouse brains were higher than in the control group. Reis et al., (2016) [113] prepared solid
lipid nanoparticles (NPs), made of Witepsol and Carnauba waxes, loaded with rosmarinic
acid, obtained from leaves of sage (S. officinalis L.) and savory (Satureja montana), and
studied their antioxidant and safety profiles using in vitro and in vivo approaches. The
NPs loaded with rosmarinic acid (0.15 mg/mL) exerted antioxidant/protective effects
on the damage to DNA and reduced lipid peroxidation in rats. These results highlight
the effectiveness and safety of NPs in protecting rosmarinic acid from gastrointestinal
degradation and enhancing its bioavailability. Pavlić et al., (2016) [114] produced an extract
from S. officinalis L. herbal dust, discarded as a by-product from filter tea, using the SCWE
method, performed in a batch-type high-pressure extractor. In this way, total phenol (TP)
and total flavonoid (TF) yields, together with antioxidant activity, determined by DPPH,
ABTS, and a reducing power assay, were notably improved compared to the extraction by
maceration. The authors propose that this technique can be applied for the smart reuse of
this by-product for obtaining valuable bioactive compounds. Cutillas et al., (2017) [115]
described the composition of S. officinalis L. subsp. Lavandulifolia (Vahl) Gams or Spanish
sage EOs, obtained using the HD technique, by fast gas chromatography, with high per-
centages of camphor (30.8–37.2%), 1,8-cineole (21.7–25.7%), camphene (7.2–9.4%), α-pinene
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(4.8–5.5%), β-pinene (4.0–5.6%), limonene (2.8–4.4%), myrcene (1.3–1.6%), and sabinene
(1.3–1.8%). The extensive enantiomeric distribution of EO components, such as sabinene
hydrate, camphor, bornyl acetate, and borneol, was obtained in an enantioselective gas
chromatography–mass spectrometry (EsGC-MS) study; then, the antioxidant activity was
measured using ORAC, DPPH, ABTS, and reducing power methods. All the tested oils
possessed noteworthy antioxidant activity, albeit with some differences between the diverse
types of oil, mainly due to their individual composition and, obviously, to the adopted
test. Pavić et al., (2019) [116] obtained carnosol and carnosic acid from S. officinalis L. leaves
using SFE and demonstrated that only the adopted pressures (ranging from 10 to 30 MPa)
significantly affected carnosol extraction, whereas pressure, temperature, and CO2 flow rate
together significantly affected the amount of carnosic acid. The antioxidant activity was
evaluated by the DPPH assay, and the extract obtained at 30 MPa and 40 ◦C with a 2 kg h−1

CO2 flow rate, a carnosic acid content of 72 µg mg−1, and a carnosol content of 55 µg mg−1

showed the highest antioxidant activity, at a concentration of 25 µg mg−1. Salević et al.,
(2019) [117] developed poly(ε-caprolactone) (PCL) films, loaded with a solid dispersion
obtained from the maceration (water/ethanol 50% v/v) of S. officinalis L., through an elec-
trospinning technique and annealing treatment. The authors prepared three PLC-loaded
films, with sage contents equal to 5%, 10%, and 20%, and evaluated the physicochemical
and functional properties of the films, together with some biological properties, namely
the antioxidant profile, finding that in the PCL-based films there was an almost two-fold
increase in the antioxidant power evaluated by the DPPH assay, suggesting potential em-
ployment of this type of system in food products. Tundis et al., (2020) [118] obtained three
different EOs from fresh aerial parts S. officinalis L. by HD using a Clevenger-type apparatus.
The herbal parts were harvested from Calabria (Italy) and characterized qualitatively and
quantitatively by gas chromatography (GC) and gas chromatography–mass spectrometry
(GC-MS), revealing that the oxygenated monoterpenes, particularly camphor and 1,8 ci-
neole, were the most represented. The antioxidant capacity of EOs was evaluated in vitro
by means of DPPH, ABTS, FRAP, and β-carotene bleaching assays, which, together with
the potential inhibitory activity against AChE and BChE enzymes, makes these extracts
potentially useful for neurodegenerative disorders management. The aim of Siakavella
et al., (2020)’s [119] work was to prepare silver nanoparticles (AgNPs), using green chem-
istry, and hydroglycolic extracts of medicinal plants, amongst them S. officinalis L. These
NPs were mainly spheric and possessed good antioxidant activity, due to the phenolic and
flavonoid content of their surface. The antioxidant activity was determined using the DPPH
method. AgNPs showed strong antioxidant activity (IC50 = 0.77 ± 0.04 mg/mL) compared
to the extract of sage (15.05 ± 0.49 mg/mL), almost comparable to that of ascorbic acid
(0.24 ± 0.00 mg/mL). Francik et al., (2020) [69] prepared methanol–acetone extracts and
infusions from S. officinalis L. variety Bona leaves, collected during the plant’s blossom-
ing period (June and July) and dried naturally or at 35 ◦C. The antioxidant activity was
assayed in methanol–acetone extracts and infusions of dried leaves with the DPPH and
FRAP assays. The natural drying conditions allowed for better antioxidant activity than
drying at 35 ◦C; however, the authors indicated that the July harvest, regardless of the
drying method, possesses the best antioxidant activity, together with a higher presence of
polyphenolic compounds. In both extracts and infusions from the leaves dried at 35 ◦C,
3,5-dicaffeoylquinic acid, sinapinic acid, p-coumaric acid, isorhamnetin, and catechin were
present in the same amounts, whereas ferulic acid, hesperidin, and rutin were found in
higher amounts in naturally dried leaf extracts. Thus, the authors suggested that the
methanol–acetone extracts and infusions of dried leaves from S. officinalis L. (variety Bona)
had different antioxidant capacities related to the harvesting time and drying method.
Jedidi et al., (2020) [86] investigated the individual and synergistic protective properties
of S. officinalis L. flower decoction extract and sulfasalazine in a rat model of an ethanol-
induced peptic ulcer. The dried flowers were powdered and extracted by decoction with
distilled water (1/5; w/v) at 100 ◦C. The antioxidant activity was tested in vitro by the
β-carotene bleaching inhibition assay, with an IC50 of 56.77 ± 2.34 µg mL−1, and in vivo,
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measuring SOD, CAT, and GSHPx activities in the stomach and intestinal mucosa. The
loss of acute EtOH-induced oxidative stress was due to the high levels of phenolic acids,
flavonoids, and polyols, such as quinic, protocatechuic, 1,3-di-O-caffeoyquinic, p-coumaric,
and salviolinic acids, and naringin, quercetin, kampherol, apigenin-7-O-glucoside, luteolin-
7-O-glucoside, and cirsilineol, present in the extract, and was increased in the co-treatment
with sulfasalazine. Ueda et al., (2021) [120] developed an enriched extract from dried
leaves of S. officinalis L., using optimized ultrasound-assisted extraction (UAE), with the
aim of boosting their antioxidant and antimicrobial properties to be exploited as natural
preservatives in yogurts. By determining antioxidant activity through OxHLIA, IC50 values
were calculated for time periods of 120 and 180 min, i.e., the extract concentration required
to protect 50% of the erythrocyte population from the hemolytic action of AAPH for 120
and 180 min (2.6 ± 0.2 µg/mL and 8.8 ± 0.4 µg/mL, respectively) compared to Trolox
(41 ± 1 µg/mL and 63 ± 1 µg/mL, respectively). Moreover, sage extract was demonstrated
to be not hepatotoxic. Cvitković et al., (2021) [121] studied the chlorophyll and carotenoid
profiles in the extracts obtained from leaves of various plants, including S. officinalis L.,
using successive extraction with three solvents of different polarities (hexane, acetone 80%,
and ethanol 96%). The antioxidant capacity, determined by the FRAP method, was found
to be high for S. officinalis L., and it was related to the levels of lutein, β-carotene, zeaxan-
thin, 9-cis lutein, and chlorophyll b in S. officinalis L. extracts. Ðurović et al., (2022) [122]
investigated the effects of the preparation procedure on the chemical composition, thermal
behavior, and antioxidant activity of EOs extracted through classical HD and MHD from
S. officinalis L. leaves. They found out that, in all samples, viridiflorol was the principal
compound, followed by 1,8-cineole (eucalyptol), α-and β-thujones, camphor, borneol, and
verticiol, whereas the concentrations of minor compounds were significantly different. The
antioxidant activity was determined by DPPH, CUPRAC, FRAP, ABTS, HRSA, and TBARS
and α-thujone and menthone content was related to the most positive effect in the first
five assays, whereas verticiol and valencene had a negative influence. Finally, α-thujone,
menthone, camphor, and carvyl acetate positively influenced the TBARS assay. Jedidi et al.,
(2022) [123] evaluated the antioxidant properties of S. officinalis L. flower aqueous extract.
By means of the HPLC-PDA/ESI-MS method, four phenolic acids, including quinic acid,
protocatechuic acid, 1,3-di-O-caffeoyquinic acid, and p-coumaric acid, and eight flavonoid
compounds, amongst which the main ones were trans-cinnamic acid, catechin (+), naringin,
and quercetin, were identified. The presence of these compounds has been related to their
strong ABTS scavenging ability (IC50 = 52.58 ± 4.13 µg/mL) and to their in vivo protective
effect against oxidative stress in rats. Indeed, S. officinalis L. flower aqueous extract treat-
ment diminished the depletion of SOD, CAT, and GPx enzymatic activities, counteracting
lipoperoxidation and, overall, protecting the gastrointestinal tract from inflammation and
peptic ulcers. The study of Hrebień-Filisińska and Bartkowiak (2022) [124] assessed the
quality of a macerate obtained from S. officinalis L., variety Bona, and fish oil that extended
the shelf life of fish oil and is characterized by the presence of polyphenols, particularly
carnosic acid, and plant pigments. This natural “green” macerate possesses good antioxi-
dant properties and is safe; thus, it could also be used for the preservation of other food
products. Mot et al., (2022) [125] analyzed, by GC-MS, three samples of S. officinalis L. EOs
indicating the presence of 1,8-cineole, thujones, borneol, camphor, sabinene, camphene,
and caryophyllenes as the principal components. Even though the antioxidant capacity
determined by DPPH and ABTS assays was low (33.61% and 84.50% inhibition, respec-
tively), the authors suggest the use of EO with a high borneol content in aromatherapy for
hospitalized patients.
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Table 2. Antioxidant activity of S. officinalis L. coming from different countries.

Species Material Country Extract Antioxidant Activity
Determination Method Refs.

S. officinalis L. aerial parts Tunisia methanol extract DPPH, β-carotene bleaching Hamrouni-Sellami et al., 2013 [109]

S. officinalis L. dried aerial parts Netherlands acetone extract CAA Fischedick et al., 2013 [110]

S. officinalis L. flowering aerial parts Spain methanol/water (80:20, v/v)
extract

DPPH, β-carotene bleaching,
lipid peroxidation inhibition Martins et al., 2015 [111]

S. officinalis L. aerial parts Tunisia aqueous extract DPPH, GSH Smach et al., 2015 [112]

S. officinalis L. and savory
(Satureja montana) leaves Portugal solid-lipid NP aqueous

extract TBARS Reis et al., 2016 [113]

S. officinalis L. herbal dust Montenegro subcritical water extraction FRAP Pavlić et al., 2016 [114]

S. officinalis L. subsp.
Lavandulifolia (Vahl) Gams or

Spanish sage
aerial part of plants Spain EOs ORAC, DPPH, ABTS, FRAP Cutillas et al., 2017 [115]

S. officinalis L. ground leaves Bosnia and Herzegovina CO2 extract DPPH Pavić et al., 2019 [116]

S. officinalis L. plant Serbia solid dispersion DPPH Salević et al., 2019 [117]

S. officinalis L. fresh aerial parts Italy EO DPPH, ABTS, FRAP, β-carotene Tundis et al., 2020 [118]

S. officinalis L. commercial-grade
cosmetics Greece AgNPs and hydroglycolic

extracts DPPH Siakavella et al., 2020 [119]

S. officinalis L. variety Bona leaves Poland water/ethanol (50% v/v)
extract DPPH, FRAP Francik et al., 2020 [69]

S. officinalis L. dried flowers Tunisia aqueous extract β-carotene, SOD, CAT, GPx Jedidi et al., 2020 [86]

S. officinalis L. leaves Croatia ethyl acetate FRAP Cvitković et al., 2021 [121]

S. officinalis L. leaves Serbia EO DPPH, CUPRAC, FRAP, ABTS,
HRSA, TBARS Ðurović et al., 2022 [94]

S. officinalis L. flowers Tunisia aqueous extract ABTS, SOD, CAT, GPx Jedidi et al., 2022 [123]

S. officinalis L. var Bona leaves Poland fish oil extract DPPH Hrebień-Filisińska & Bartkowiak
2022 [124]

S. officinalis L. commercial EO Romania EO DPPH, ABTS Mot et al., 2022 [125]
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4.2. Antioxidant Activities of S. officinalis L. and Other Species (S. elegans, S. greggii, S. sclarea, S.
hispanica, S. africana, and S. mexicana)

Pereira et al., (2018) [126] investigated the phenolic profiles and antioxidant activity of
decoctions from three Salvia species, namely Salvia elegans Vahl., Salvia greggii A. Gray, and
S. officinalis L. (Table 3). The S. elegans decoction was the most active, as demonstrated by
the DPPH assay, with an EC50 of 10.7 ± 2.1 µg/mL, and its ability to reduce Fe3+, with an
EC50 of 31.3 ± 5.0 µg/mL, and was correlated with a high concentration of caffeic acid and
its derivatives, whereas the S. officinalis L. decoction inhibited xanthine oxidase activity,
because of its richness in flavones, such as the glycosidic forms of apigenin, scutellarein, and
luteolin. Afonso et al., (2019) [127] explored the phenolic composition and the antioxidant,
anti-inflammatory, cytotoxic, and antibacterial activities of aqueous extracts of S. africana, S.
officinalis ‘Icterina’, and S. mexicana, which are not commonly studied cultivars. Rosmarinic
acid was the main phenolic compound in all extracts, but 40% of total phenolics was
represented by yunnaneic acid isomers in S. africana, whereas S. officinalis ‘Icterina’ extract
included the apigenin, luteolin, and scuttelarein glycosidic forms. High antioxidant activity
was exerted by the aqueous extract of S. africana, as determined by the DPPH, iron-reducing
power, inhibition of β-carotene bleaching, and TBARS assays. Ovidi et al., (2021) [92]
reported the liquid- and vapor-phase chemical composition, investigated by the GC-MS
and HS-GC/MS techniques, of S. sclarea and S. officinalis EOs and hydrolates (HYs) from
Tuscany (Italy). The antioxidant activity was assessed by DPPH and ABTS assays, together
with an analysis of antibacterial activity by microdilution and the disc diffusion method.
1,8-cineole was the most abundant molecule in the EO liquid and vapor phases (30.4% and
48.4%, respectively) and HYs (61.4%) of S. officinalis L. Linalyl acetate was the main molecule
detected in S. sclarea EOs (62.6% and 30.1% in liquid and vapor phases, respectively),
whereas linalool was majorly present in HY (89.5%). The work by Gad et al., (2022) [128]
reported the chemical profiles and the antioxidant activities of EOs extracted from the aerial
parts of S. officinalis L., S. virgata, and S. sclarea. The samples were air-dried in the shade
and EOs were hydro-distilled using Clevenger-type apparatus; the antioxidant activity
of the EOs was evaluated using six in vitro assays. The S. virgata EO showed moderate
antioxidant activity in the DPPH, ABTS, CUPRAC, and FRAP assays in comparison with
the other two EOs. The major identified compounds were cis-thujone, 2,4-hexadienal,
and 9-octadecenoic acid in S. officinalis L., S. virgata, and S. sclarea EOs, respectively. The
principal component analysis (PCA) score plot suggested significant discrimination of the
three species, without identifying the responsible compounds, as supported, as well, by
the hierarchical cluster analysis. Dziadek et al., (2022) [129] investigated how different
drying methods and periods of storage affected the antioxidant properties of Chia (S.
hispanica L.), in comparison with S. officinalis L. and S. sclarea L. The fresh Chia methanolic
extract possessed antioxidant activity of 713.26 ± 36.72 µmol Trolox g−1 of dry weight,
determined using the ABTS method, which increased when the extract underwent freeze-
drying to 1069.05 ± 33.52 µmol Trolox g−1 of dry weight. Amongst the different drying
methods (freeze-drying, natural drying, and drying at 30, 40, and 50 ◦C), freeze-drying
allowed for the best preservation of polyphenols and carotenoids. S. hispanica L. was found
to be rich in rosmarinic acid, sinapinic acid, naringin, rutin, and carnosol, and storage up to
12 months reduced this content and, consequently, antioxidant activity.
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Table 3. Antioxidant activity of S. officinalis L. and other Salvia species from different countries.

Species Material Country Extract

Antioxidant
Activity

Determination
Method

Ref

Salvia elegans Vahl.,
Salvia greggii A. Gray,

and S. officinalis L.

aerial parts
(flowers, leaves,

and stems)
Portugal hexane extract DPPH; FRAP Pereira et al., 2018 [126]

S. africana, S. officinalis
‘Icterina’, and S.

mexicana,

aerial parts
(flowers, leaves,

and stems)
Portugal hexane extract DPPH; TBARS;

β-carotene Afonso et al., 2019 [127]

Salvia sclarea and Salvia
officinalis inflorescences Italy EO DPPH; ABTS Ovidi et al., 2021 [92]

S. officinalis L., S.
virgata, and S. sclarea. aerial parts Uzbekistan EO DPPH; ABTS;

CUPRAC; FRAP Gad et al., 2022 [128]

S. hispanica L. (Chia),
in comparison with S.

officinalis L. and S.
sclarea L.

whole herb (leaves
and stems) Poland methanolic

extract ABTS Dziadek et al., 2022 [129]

4.3. Antioxidant Activities of S. miltiorrhiza, S. verbenaca, S. chamelaeagnea, S. bulleyana, S.
multicaulis, and S. glutinosa

Fei et al., (2013) [130] reported that salvianolate, a water-soluble compound from S.
miltiorrhiza Bunge, inhibited ROS and NOS production in H2O2-treated mouse cardiomy-
ocytes through the downregulation of Smad2/3 and TGFβ1 expression. This effect was
dose-dependent, but at high concentrations (5 g/L), salvianolate exhibited cytotoxicity
in cardiomyocytes. Liu et al., (2014) [131] isolated two stereoisomers, (R)-norsalvianolic
L and (S)-norsalvianolic acid L, from S. miltiorrhizae radix and rhizoma lyophilized pow-
der. The powder was first dissolved in water, and then, subjected to AB-8 macroporous
resin and polyamide column chromatography, followed by Sephadex LH-20 and ODS
column purification. Finally, the compounds were obtained by preparative HPLC. These
isomers were chemically characterized by different methods (such as 1D and 2D NMR
(1H-1H COSY, HSQC, and HMBC) and circular dichroism experiments) and tested for
their antioxidant properties using DPPH and ABTS microplates, giving IC50 values for
(R)-norsalvianolic acid L of 6.9 and 9.7 µM and for (S)-norsalvianolic acid L of 27.1 and
25.3 µM, respectively. Belkhiri et al., (2017) [94] investigated different biological properties
of S. verbenaca L. aerial part extracts (SVEs) harvested in the East of Algeria (during the
period of April–May, at the flowering stage). The authors used different solvent extraction
methods and, finally, they obtained an organic phase (ethyl acetate extract), which was the
richest in polyphenols and flavonoids, and an aqueous fraction. As expected, the obtained
fractions possessed antioxidant properties, mostly the organic fraction, as demonstrated
using different assays, namely inhibition of AAPH-inducing erythrocyte hemolysis and
chemicals-based assays, such as the reducing power, DPPH free radical, and ferrous ion-
chelating activity ones. They consequently concluded that the potent antioxidant properties
(for instance, with an IC50 of 0.0086 mg/mL for ethyl acetate extract in the DPPH assay)
may be due to the presence of phenolics, flavonoids, tannins, etc., in the examined ex-
tracts. Zhang et al., (2018) [132] examined 50 batches of Chinese S. miltiorrhiza dried root
powder, extracted with 70% methanol and ultrasonication, using ultra-performance liquid
chromatography coupled with triple quadruple mass spectrometry (UPLC-Qqq-MS/MS).
The use of a multivariate, statistical approach, PCA and bivariate correlation analysis,
together with DPPH and ABTS assays, allowed us to understand the correlation between
the identified secondary metabolites, mostly phenolic acids and tanshinones, with the
antioxidant activities of the extracts. Etsassala et al., (2019) [133] reported the in vitro
antioxidant activity of five terpenoids and one flavonoid compound (carnosol, carnosic
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acid, 7-ethoxyrosmanol, ursolic acid, rosmanol, and ladanein) purified through different
techniques, including semi-Prep-HPLC, from a methanolic extract of S. chamelaeagnea leaves
from South Africa. Strong antioxidant activity was recorded for carnosol and rosmanol by
means of TEAC, ORAC, FRAP, and inhibition of Fe2+-induced lipid peroxidation assays,
which mainly depends on the -OH groups, conjugation, and lactone ring present in these
molecules. Grzegorczyk-Karolak et al., (2020) [134] determined the phytochemical profile
of hydromethanolic extracts obtained from S. bulleyana aerial and underground parts, for
the first time. The antioxidant activity of the extracts was studied by FRAP, free radical
scavenging, and inhibition of lipid peroxidation assays. Even though the total content of
phenolic compounds was higher in the roots than in the aerial parts, and the two extracts
exhibited similar antioxidant activity, suggesting that the flavonoids, found only in the
aerial part, gave the high contribution. Rowshan et al., (2020) [135] reported a study on
the aerial parts of S. multicaulis, which contain high amounts of rosmarinic acid, catechin,
vanillin, chlorogenic acid, quercetin, and p-coumaric acid, and possess good antioxidant
activity, equal to 8.44 mg/g, as demonstrated by the DPPH scavenging assay, and with a
content of phenol of 4.39 mg/g of the dried plant. Nicolescu et al., (2022) [53] reported some
interesting results on an unusual species of Salvia, namely S. glutinosa L., the stems and
leaves of which were harvested in two different locations in Romania. Two types of extracts,
infusion (water extraction with heat) and maceration (hydroalcoholic extraction, room
temperature, in the dark), were obtained, characterized qualitatively and quantitatively
by LC-DAD-ESI/MS and investigated for their antioxidant properties by means of DPPH,
ABTS, and FRAP assays. The phytochemical analysis found a polyphenol composition,
rich in rosmarinic acid, luteolin acetyl-glucoside, and some types of O-hexosides. The
antioxidant capacity of these extracts was evaluated in vitro, using DPPH, ABTS, and
FRAP assays, and in vivo, through the assessment of some oxidative stress biomarkers,
such as malondialdehyde (MDA), total thiols (SH), and total serum nitrates and nitrates
(NOx), also useful for the determination of anti-inflammatory ability in a rodent model.
The hydroalcoholic extracts showed higher activity compared to the infusions, and the
prophylactic administration of the extract induced an increase in antioxidant levels in rat
serum, which was associated with the anti-inflammatory effect.

5. Conclusions

Sage is a plant of considerable interest, given its high potential from a nutritional
and biological point of view. Its usefulness in various diseases is widely reported by
an ever increasing number of scientific publications. Among them, the interesting and
well-documented antioxidant properties of this plant have been herein highlighted and
discussed in detail. Fortunately, scientists utilize different methods for determining antiox-
idant properties, making their choice on the basis of the extract or phyto-complex to be
studied. However, this variety of tests could represent, at the same time, one of the most
debated questions, since it is very hard to compare the various methods even for a given
extract. Moreover, the richness in the obtained and published data could be dispersive
for the reader, and the number of variables produces, in most cases, very different results.
Thus, it would be desirable to find a way to select and standardize the method used for
recording and reporting the obtained outcomes. It would also be advantageous for the
extracts to be qualitatively and quantitatively characterized, for the possibility of synergy
and/or antagonism amongst the contained compounds to be considered, and to undertake
the systematic reorganization of specific/thematic existing databases. Moreover, most of
the studies are limited to in vitro or animal ones, lacking an adequate number of reports in
humans. More recently, a trend toward pre-clinical and clinical studies that are focused on
the effects of various Salvia species extracts on cognitive performance has been recorded.
However, the encouraging results obtained are affected by some factors, such as the small
number of participants, the lack of a pharmacopoeia standardization, and the (short) length
of observation periods. Additionally, most of the bioactive components possessing interest-
ing in vitro antioxidant activities could fail in human studies, since other parameters, such
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as bioavailability, intestinal permeability, and liver metabolization, may play a fundamental
role. Finally, is necessary to continue with studies to delve deeper into the mechanism of
action and assess the components responsible for its numerous activities. It must be also
considered that the different species of sage possess very variable composition, influenced,
for instance, by the time and place of harvesting, the soil and microclimate, etc. From this
point of view, a comparison of multiple studies is necessary, in order to allow for easier
tracing of the essential compounds responsible for the different activities. Finally, it is
essential to develop improved knowledge about the bioactive potential of plant metabolites,
aiming for the desirable development of new functional foods, nutraceuticals, and drugs
based on plants.
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AAPH 2,2′–Azobis(2–Amidinopropane) Dihydrochloride
ABTS 2,2′–Azinobis– (3–ethyl-benzothiazoline–6–sulfonic acid)
AgNPS Silver Nanoparticles
CAA Cellular Antioxidant Assay
CAT Catalase
DCFH-DA 2′,7′–Dichlorofluorescin Diacetate
DPPH 2,2–Di(4–tert–octylphenyl)–1–picrylhydrazyl
FRAP Ferric Reduction of Antioxidant Power
CUPRAC Cupric Ion Reducing Antioxidant Capacity
DMPD N,N–Dimethyl-p-phenylenediamine Dihydrochloride
EO Essential Oil
ET Electron Transfer
FC Folin–Ciocalteu
FD Freeze Drying
gGT gamma–Glutamyl Transpeptidase
GR Glutathione Reductase
GSH Glutathione
GSHPx Glutathione Peroxidase
GSSG Glutathione Disulfide
GST Glutathione–S–Transferase
HAT Hydrogen Atom Transfer
HD Hydrodistillation
HORAC Hydroxyl Radical Antioxidant Capacity
LPO Lipid Peroxidation
MAHD Microwave–Assisted Hydrodistillation
MAE Microwave–Assisted Extraction
MDA Malondialdehyde
MHD Microwave–Assisted Hydrodistillation
ORAC Oxygen Radical Antioxidant Capacity
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OxHLIA Oxidative Hemolysis Inhibition Assay
qPCR Quantitative PCR
ROS Reactive Nitrogen Species
RNS Reactive Oxygen Species
SC–CO2 Supercritical CO2 Extraction
SCWE Subcritical Water Extraction
SD Steam Distillation
SFE Supercritical Fluid Extraction
SFME Solvent–Free Microwave-Assisted Extraction
SHD Sonohydrodistillation
SE Soxhlet Extraction
SET Single Electron Transfer
SLE Solid–Liquid Extraction
SOD Superoxide Dismutase
TAC Total Antioxidant Capacity
TBA Thiobarbituric Acid
TEAC Trolox Equivalent Antioxidant Capacity
TF Total Flavonoids
TP Total Phenols
TPC Total Phenolic Content
TPTZ Tripyridyl Triazine
TRAP Total Peroxyl Radical-Trapping Antioxidant Parameter
UAE Ultrasound–Assisted Extraction
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124. Hrebień-Filisińska, A.M.; Bartkowiak, A. Antioxidative Effect of Sage (Salvia officinalis L.) Macerate as “Green Extract” in Inhibiting
the Oxidation of Fish Oil. Antioxidants 2021, 11, 100. [CrossRef] [PubMed]

125. Mot, M.-D.; Gavrilas, , S.; Lupitu, A.I.; Moisa, C.; Chambre, D.; Tit, D.M.; Bogdan, M.A.; Bodescu, A.-M.; Copolovici, L.; Copolovici,
D.M.; et al. Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult
Patients. Antioxidants 2022, 11, 808. [CrossRef] [PubMed]

126. Pereira, O.; Catarino, M.; Afonso, A.; Silva, A.; Cardoso, S. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant
Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169. [CrossRef]

127. Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical
Composition and Bioactive Effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana Aqueous Extracts. Molecules
2019, 24, 4327. [CrossRef]

128. Gad, H.A.; Mamadalieva, R.Z.; Khalil, N.; Zengin, G.; Najar, B.; Khojimatov, O.K.; Al Musayeib, N.M.; Ashour, M.L.; Mamadalieva,
N.Z. GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan. Molecules 2022, 27, 5365.
[CrossRef]
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