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Transient receptor potential ankyrin 1 (TRPA1) mediates
reactive oxygen species-induced Ca2+ entry, mitochondrial
dysfunction, and caspase-3/7 activation in primary cultures of
metastatic colorectal carcinoma cells
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Colorectal carcinoma (CRC) represents the fourth most common cancer worldwide and is the third most common cause of
malignancy-associated mortality. Distant metastases to the liver and lungs are the main drivers of CRC-dependent death. Pro-
oxidant therapies, which halt disease progression by exacerbating oxidative stress, represent an antitumour strategy that is
currently exploited by chemotherapy and ionizing radiation. A more selective strategy to therapeutically exploit reactive oxygen
species (ROS) signaling would consist in targeting a redox sensor that is up-regulated in metastatic cells and is tightly coupled to
the stimulation of cancer cell death programs. The non-selective cation channel, Transient Receptor Potential Ankyrin 1 (TRPA1),
serves as a sensor of the cellular redox state, being activated to promote extracellular Ca2+ entry by an increase in oxidative stress.
Recent work demonstrated that TRPA1 channel protein is up-regulated in several cancer types and that TRPA1-mediated Ca2+

signals can either engage an antiapoptotic pro-survival signaling pathway or to promote mitochondrial Ca2+ dysfunction and
apoptosis. Herein, we sought to assess for the first time the outcome of TRPA1 activation by ROS on primary cultures of metastatic
colorectal carcinoma (mCRC cells). We found that TRPA1 channel protein is up-regulated and mediates enhanced hydrogen
peroxide (H2O2)-induced Ca2+ entry in mCRC cells as compared to non-neoplastic control cells. The lipid peroxidation product
4-hydroxynonenal (4-HNE) is the main ROS responsible for TRPA1 activation upon mCRC cell exposure to oxidative stress. TRPA1-
mediated Ca2+ entry in response to H2O2 and 4-HNE results in mitochondrial Ca2+ overload, followed by mitochondrial
depolarization and caspase-3/7 activation. Therefore, targeting TRPA1 could represent an alternative strategy to eradicate
metastatic CRC by enhancing its sensitivity to oxidative stress.
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INTRODUCTION
Colorectal carcinoma (CRC) represents the fourth most common
cancer worldwide and is the third most common cause of
malignancy-associated mortality, being responsible for 9.2% of
fatalities among oncological patients (International Agency for
Research on Cancer Available from: https://gco.iarc.fr/today,
accessed 4th/04/2023). Involvement of secondary organs, such as
the liver and lungs, is the main driver of CRC-dependent death:
25% of CRC patients show metastatic disease at diagnosis,
whereas ≈50% of the patients develop disease recurrence within
5 years from surgery or adjuvant treatment [1]. The development
of more effective strategies after the failure of conventional
therapies for advanced/recurrent disease represents an unmet

need for CRC patients. Reactive oxygen species (ROS), such as
hydrogen peroxide (H2O2), have long been known to fuel tumor
metastasis and invasion in a variety of cancer types [2], including
mCRC [3]. Nevertheless, human clinical trials showed that dietary
supplementation with antioxidants did not decrease, but rather
enhanced, cancer incidence and cancer-related mortality [4]. Pro-
oxidant therapies [2, 4], which halt disease progression by
exacerbating oxidative stress in cancer cells, may represent an
effective alternative antitumour strategy to current systemic
treatments that are associated with a number of harmful side
effects often leading to impaired quality of life, a worse overall
prognosis and waste of health care resources [5]. A more selective
strategy to exploit ROS signaling for therapeutic purposes would
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consist in targeting a redox sensor that is up-regulated in
neoplastic cells and is tightly coupled to the stimulation of cancer
cell death programs.
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective

cation channel that is located within the plasma membrane and
promotes extracellular Ca2+ entry in response to multiple chemical,
physical, and thermal stimuli, thereby serving a polymodal sensor [6].
TRPA1 may serve as a ROS sensor due to the abundance of hyper-
reactive cysteine residues that are located at the NH2-terminal and
can be oxidized by H2O2 [6, 7]. TRPA1 is the most abundant redox-
sensitive TRP isoform in most cancer types [8], including invasive
ductal breast carcinoma and lung adenocarcinoma, in which it
supports H2O2-evoked intracellular Ca2+ oscillations and Ca2+-
dependent recruitment of pro-survival and antiapoptotic pathways
to prevent ROS-induced cancer cell death [9]. Conversely, TRPA1-
mediated increase in intracellular Ca2+ concentration ([Ca2+]i)
supports H2O2-induced mitochondrial damage and apoptosis in
other types of solid malignancies, such as glioblastoma multiforme
[10, 11] and human oral squamous cell carcinoma (OSCC) [12]. A
series of recent studies demonstrated that intracellular Ca2+ signals
may either stimulate proliferation [13], inhibit the cell-cycle [14], or
induce cell death [15] in primary cultures of metastatic CRC (mCRC)
cells. The Ca2+ source dictates the outcome of [Ca2+]i rise on cell fate,
as distinct Ca2+-permeable channels can be selectively coupled to
different Ca2+-dependent decoders in cancer cells [16, 17]. A further
layer of complexity to the Ca2+-dependent regulation of cancer
hallmarks is added by the evidence that the same TRP isoform, e.g.,
TRP Vanilloid 1 (TRPV1), can exert opposing effects in different cancer
types [18]. Therefore, understanding whether TRPA1-mediated Ca2+

entry stimulates or rather prevents ROS-dependent mCRC dell death
is mandatory to design alternative therapies based upon the
manipulation of TRPA1 activity to sensitize mCRC cells to oxidative
stress.

RESULTS
TRPA1 protein is up-regulated and mediates enhanced Ca2+

entry in mCRC cells
Preliminary evidence indicates that TRPA1 gene is expressed in CRC
[19], but it is still unknown whether it is translated into a functional
protein in mCRC cells. Immunoblots identified a major band of
∼140 kDa in both primary cultures of mCRC and control cells isolated
from adjacent non-neoplastic tissue (Fig. 1A and Fig. S1), as also
observed in other cancer cell types [20, 21], and densitometric
analysis revealed that TRPA1 protein was significantly (p < 0.05) up-
regulated in mCRC cells (Fig. 1B). In order to assess whether TRPA1
protein was able to mediate extracellular Ca2+ entry, both cell types
were loaded with the Ca2+-sensitive fluorophore, Fura-2 acetox-
ymethyl ester (Fura-2/AM), as described elsewhere [14, 22].
TRPA1 stimulation by the selective electrophilic agonist, allyl
isothiocyanate (AITC; 30 µM) induces larger intracellular Ca2+ signals
in primary cultures of mCRC cells as compared to non-neoplastic cells
(Fig. 1C, D). Interestingly, AITC induced a sustained Ca2+ overload in
mCRC cells (Fig. 1A, blue tracing), which is a hallmark of pro-
apoptotic Ca2+ signals [11, 23], while it evoked low-amplitude
intracellular Ca2+ oscillations in non-neoplastic cells (Fig. 1C; red
tracing), which could rather exert a mitogenic effect [13, 24]. AITC
failed to increase [Ca2+]i in the absence of extracellular Ca2+ (0Ca2+)
(Fig. S2), while restoring extracellular Ca2+ concentration (1.5mM)
caused an immediate and long-lasting elevation in [Ca2+]i in mCRC
cells (Fig. S2). Therefore, the Ca2+ response to AITC is mainly
mediated by extracellular Ca2+ entry. In order to confirm that TRPA1
mediates AITC-evoked Ca2+ influx, mCRC cells were pretreated with
HC-030031 (30 µM), which represents the most widespread used
TRPA1 inhibitor [6, 7, 21, 23]. As expected, HC-030031 significantly
(p< 0.05) reduced both the amplitude and the duration of the Ca2+

response to AITC (Fig. 2A, B). In addition, genetic silencing of TRPA1
expression with a selective small interfering RNA (siTRPA1)

Fig. 1 TRPA1 protein is up-regulated and mediates enhanced Ca2+ signaling in primary cultures of mCRC cells. A TRPA1 protein
expression in non-neoplastic cells and primary cultures of mCRC cells. Blots representative of four independent experiments (each conducted
on samples deriving from a distinct patient) were shown. Major bands of the predicted molecular weights for TRPA1 and β-actin proteins were
indicated. BMean ± SE of TRPA1 protein expression in non-neoplastic and mCRC cells. The results were normalized to the corresponding β-actin
(****p < 0.0001; Student’s t-test). TRPA1 protein was significantly more expressed in mCRC cells. C The selective TRPA1 agonist, AITC (30 µM),
evoked intracellular Ca2+ signals in mCRC and non-neoplastic cells. D Mean ± SE of the amplitude of the peak Ca2+ response (scattered dot
plot) to AITC in both mCRC and non-neoplastic cells. Student’s t-test: ***p < 0.001. The numbers placed above the scattered dots represent the
number of responding cells out of the total cell number. N= 4 for each experimental condition.
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significantly (p< 0.05) reduced AITC-evoked extracellular Ca2+ entry
in mCRC cells (Fig. 2C, D). The efficacy of TRPA1 deletion in mCRC
cells by the siTRPA1 was confirmed by comparing TRPA1 protein
expression in mCRC cells transfected with the selective siTRPA1 and
with a scrambled construct (Figs. S3 and S4). Altogether, these data
show that TRPA1 protein is up-regulated and mediated extracellular
Ca2+ entry in primary cultures of mCRC cells.

TRPA1 mediates H2O2-induced Ca2+ signals in mCRC cells
In cancer cells, H2O2 may either stimulate ROS-dependent
apoptosis [11] or engage an anti-oxidant defense program
through intracellular Ca2+ signaling. Preliminary Ca2+ imaging
recordings showed that H2O2 induced a dose-dependent increase
in [Ca2+]i (Fig. S5A), which presented a minimum effective dose of
1 µM, a half-maximal effective concentration (EC50) of 35.37 µM,
and a maximal response at 200 µM (Fig. S5B). Low micromolar
doses of H2O2 (10–25 µM) induced low-amplitude intracellular
Ca2+ oscillations (Fig. S5A), while higher doses evoked a
potentially cytotoxic Ca2+ overload (Figure S5A), as previously
described for AITC (Fig. 1C, blue tracing). H2O2 concentration
within cancer microenvironment may rise to 50 µM [25]. The Ca2+

response to 50 µM H2O2 was significantly (p < 0.05) larger in mCRC
cells as compared to non-neoplastic cells (Fig. 3A, B). Furthermore,
the prolonged increase in [Ca2+]i evoked by 50 µM H2O2 in mCRC
cells was dampened by pharmacological (via 30 µM HC-030031)
and genetic (via the selective siTRPA1) blockade of TRPA1 (Fig. 3C
and Fig. 3D). In addition, the Ca2+ response to was sensitive to
dithiothreitol (DTT) (5 mM) (Fig. 3E, F), a thiol-reducing compound
that reverses H2O2-dependent Ca2+ signals [26, 27], and to the
H2O2 scavenger, catalase (500 U/mL) (Fig. 3E, F) [26, 28]. Oxidative
stress in cancer microenvironment may result in the peroxidation
of ω6 polyunsaturated fatty acids in the plasma membrane,
thereby leading to the formation of 4-hydroxy-nonenal (4-HNE)
[9, 29]. 4-HNE has recently been shown to stimulate TRPA1-

mediated Ca2+ influx in several cell types [30, 31], including
melanoma cell lines [29]. Fifty µM H2O2-evoked Ca2+ overload in
mCRC cells was abolished by deferoxamine (100 µM) (Fig. 3E, F),
which prevents H2O2 degradation into the hydroxyl radical (OH•)
[26, 31]. Furthermore, exogenous administration of 4-HNE (30 µM)
induced a slowly rising and protracted increase in [Ca2+]i that was
sensitive to TRPA1 inhibition with HC-030031 (30 µM) (Fig. 3G, H).
Therefore, these data demonstrated that high concentrations of
H2O2 induced cytosolic Ca2+ overload via 4-HNE-dependent
TRPA1 activation in mCRC cells.

TRPA1 mediates H2O2-induced mitochondrial dysfunction and
caspase-3/7 activation in mCRC cells
In order to assess whether H2O2-induced TRPA1 activation affect
mCRC cell viability, we exploited the Trypan blue exclusion assay [14].
AITC (30 µM) and H2O2 (50 µM) caused a significant (p< 0.05)
reduction in the percentage of viable cells at 24 h, 48 h, and 72 h (Fig.
S6A, C, respectively). However, the pharmacological blockade of
TRPA1 with HC-030031 (30 µM) rescued viability in mCRC cells
exposed both to AITC (Fig. S6A) and H2O2 (Fig. S6C). The reduction in
cell viability was associated to a significant (p < 0.05) decrease in cell
growth that was rescued by blocking TRPA1-mediated Ca2+ influx
with HC-030031 (30 µM) (Fig. S6B, S6D for AITC and H2O2,
respectively). Conversely, stimulating TRPA1 with either AITC
(30 µM) or H2O2 (50 µM) did not affect viability (Fig. S6E) and cell
growth (Fig. S6F) in non-neoplastic cells. Therefore, these preliminary
findings indicate that TRPA1-mediated Ca2+ influx affects viability in
primary cultures of mCRC cells, but not in their normal counterparts.
We then evaluated whether TRPA1 activation in mCRC cells

leads to apoptosis. A hallmark of apoptotic cell death is
represented by mitochondrial Ca2+ overload, which causes
mitochondrial depolarization and opening of the mitochondrial
permeability transition pore (mPTP) followed by caspase-3/7
activation [32–34]. The ROS-dependent increase in mitochondrial

Fig. 2 TRPA1 channel mediates AITC-evoked Ca2+ entry in primary cultures of mCRC cells. A Intracellular Ca2+ signals induced by 30 µM
AITC (Ctrl) were abrogated upon pre-treating mCRC cells with the specific TRPA1 inhibitor, HC-030031 (30 µM, 30 min). BMean ± SE of the peak
Ca2+ signal evoked by AITC in the absence (Ctrl) and presence of HC-030031. C Intracellular Ca2+ signals induced by 30 µM AITC in mCRC cells
transfected with a scrambled construct (Ctrl) or with a selective siTRPA1. D Mean ± SE of the amplitude of Ca2+ response to AITC under the
designated treatment. Student’s t-test: ***p < 0.001. The placed above the scattered dots represent the number of responding cells out of the
total cell number. N= 4 for each experimental condition.
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Ca2+ concentration ([Ca2+]mito) was evaluated in mCRC cells
loaded with Rhod-2/AM, the most widely employed fluorophore
to monitor mitochondrial free Ca2+ levels [32, 34, 35]. AITC (30 µM)
evoked a long-lasting elevation in [Ca2+]mito that was abolished by

blocking TRPA1 with either HC-030031 (30 µM) or the selective
siTRPA1 and by inhibiting mitochondrial Ca2+ uptake with the
specific antagonist Ru360 (5 µM) [35] (Fig. 4A, B). Also, 50 µM H2O2

(Fig. 4C, D) and 30 µM 4-HNE (Fig. 4E, 4F) induced a protracted

Fig. 3 TRPA1 mediates H2O2-induced intracellular Ca2+ signals in primary cultures of mCRC cells. A H2O2 (50 µM) induces larger Ca2+

signals in mCRC as compared to non-neoplastic cells. BMean ± SE of peak Ca2+ signal evoked by H2O2 in both mCRC and non-neoplastic cells.
Student’s t-test: ***p < 0.001. The placed above the scattered dots represent the number of responding cells out of the total cell number. N= 4
for each experimental condition. C Intracellular Ca2+ signals induced by 50 µM H2O2 (Ctrl) were abrogated in mCRC cells pretreated with the
specific TRPA1 inhibitor, HC-030031 (30 µM, 30min), or transfected with the selective siTRPA1. D Mean ± SE of the peak Ca2+ signal evoked by
H2O2 in control (Ctrl) mCRC cells and in mCRC cells transfected with siTRPA1 or pretreated with HC-030031. One-way ANOVA followed by the
post hoc Dunnett’s test: ***p < 0.001. The numbers placed above the scattered dots represent the number of responding cells out of the total
cell number. N= 4 for each experimental condition. E Intracellular Ca2+ signals induced by 50 µM H2O2 in the absence (Ctrl) and presence of
the thiol-reducing compound, DTT (5 µM), the H2O2 scavenger, catalase (500 U/mL) or the iron-chelating compound, deferoxamine (100 µM).
F Mean ± SE of peak Ca2+ signal evoked by H2O2 under the designated treatments. The numbers placed above the scattered dots represent
the number of responding cells out of the total cell number. N= 4 for each experimental condition. G Intracellular Ca2+ signals induced by the
selective TRPA1 agonist, 4-HNE (30 µM), in mCRC cells under control conditions (Ctrl) or upon pharmacological (HC-030031; 30 µM, 30min) or
genetic (with a selective siTRPA1) blockade of TRPA1 activity. H Mean ± SE of peak Ca2+ signal evoked by 4-HNE in control (Ctrl) mCRC cells and
in mCRC cells treated with DTT, catalase, and deferoxamine. One-way ANOVA followed by the post hoc Dunnett’s test: ***p < 0.001. The numbers
placed above the scattered dots represent the number of responding cells out of the total cell number. N= 4 for each experimental condition.
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elevation in [Ca2+]mito that was sensitive to the genetic or
pharmacological blockade of TRPA1-mediated Ca2+ entry and to
the pharmacological blockade of mitochondrial Ca2+ uptake.
Consistently, exposure to 30 µM AITC (Fig. 5A), 50 µM H2O2 (Fig.
5A), and 30 µM 4-HNE (Fig. 5A) caused significant (p < 0.05)
mitochondrial depolarization, which was rescued by blocking
TRPA1-mediated Ca2+ entry with either HC-030031 (30 µM) or the

selective siTRPA1 (Fig. 5A). We finally assessed whether TRPA1-
mediated mitochondrial Ca2+ overload results in caspase activa-
tion in mCRC cells loaded with the with the caspase-3/7-sensitive
DEVD-based dye CellEvent [36, 37]. Single-cell imaging revealed
that both AITC (30 µM) and H2O2 (50 µM) caused a significant
increase in caspase-3/7 activation at, respectively, ∼12.5 and
∼7.5 h, which was maintained until the end of the recording

Fig. 4 TRPA1 activation induces mitochondrial Ca2+ overload in primary cultures of mCRC cells. A Mitochondrial Ca2+ signals induced by
AITC (30 µM) in mCRC cells maintained under control conditions (Ctrl), pretreated with HC-030031 (30 µM, 30min) or with the highly specific
inhibitor of the mitochondrial Ca2+ uniporter, Ru360 (5 µM, 30min), or transfected with the selective siTRPA1. B Mean ± SE of peak
mitochondrial Ca2+ signal evoked by AITC in control (Ctrl) mCRC cells and in mCRC cells transfected with siTRPA1 or pretreated with HC-
030031 or Ru360. One-way ANOVA followed by the post hoc Dunnett’s test. ***p < 0.001. The numbers placed above the scattered dots
represent the number of responding cells out of the total cell number. N= 4 for each experimental condition. C Mitochondrial Ca2+ signals
induced by H2O2 (50 µM) in mCRC cells maintained under control conditions (Ctrl), pretreated with HC-030031 (30 µM, 30 min) or with the
highly specific inhibitor of the mitochondrial Ca2+ uniporter, Ru360 (5 µM, 30min), or transfected with the selective siTRPA1. D Mean ± SE of
peak mitochondrial Ca2+ signal evoked by H2O2 in control (Ctrl) mCRC cells and in mCRC cells transfected with siTRPA1 or pretreated with HC-
030031 or Ru360. One-way ANOVA followed by the post hoc Dunnett’s test. ***p < 0.001. The numbers placed above the scattered dots
represent the number of responding cells out of the total cell number. N= 4 for each experimental condition. E Mitochondrial Ca2+ signals
induced by 4-HNE (30 µM) in mCRC cells maintained under control conditions (Ctrl), pretreated with HC-030031 (30 µM, 30 min) or with the
highly specific inhibitor of the mitochondrial Ca2+ uniporter, Ru360 (5 µM, 30min), or transfected with the selective siTRPA1. F Mean ± SE of
peak mitochondrial Ca2+ signal evoked by 4-HNE in control (Ctrl) mCRC cells and in mCRC cells transfected with siTRPA1 or pretreated with
HC-030031 or Ru360. One-way ANOVA followed by the post hoc Dunnett’s test. ***p < 0.001. The numbers placed above the scattered dots
represent the number of responding cells out of the total cell number. N= 4 for each experimental condition.
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period (45 h) (Fig. 5B and Fig. S7A). Caspase-3/7 activation was
suppressed by blocking TRPA1 with HC-03031 (30 µM), by
inhibiting MCU with Ru360 (5 µM), and by preventing
caspase-3/7 activation with Caspase-3/7 Inhibitor I (20 µM)
(Fig. 5C for AITC and Fig. 5D for H2O2; see also Fig. S7B for both
agonists). These findings indicate that TRPA1-mediated Ca2+ influx
supports H2O2-induced mCRC cell apoptotic death by causing
mitochondria dysfunction and caspase-3/7 activation.

DISCUSSION
In this investigation, we demonstrated for the first time that the
redox-sensitive TRPA1 channel is up-regulated, mediates
enhanced Ca2+ entry and thereby leads to mitochondrial
dysfunction and caspase-3/7 activation in primary cultures of
mCRC. Therefore, TRPA1 stimulation could represent an
alternative therapeutic approach to sensitize mCRC to ROS-
dependent cell death [38].
TRPA1 is emerging as the primary redox-sensitive TRP isoform

in cancer microenvironment [7–9]. TRPA1 protein is up-regulated
in multiple solid malignancies, such as invasive ductal breast
carcinoma and lung adenocarcinoma [9], OSCC [12], pancreatic
adenocarcinoma [20], and prostate cancer [21]. The outcome of
TRPA1 stimulation by oxidative stress may vary depending on

the tumor type: for instance, TRPA1-mediated Ca2+ entry
engages a non-canonical anti-oxidant defense program in lung
and breast cancers [8, 9], while it stimulates mitochondrial
dysfunction and apoptosis in glioblastoma multiforme [10, 11].
Herein, we found that TRPA1 protein expression was remarkably
enhanced in primary cultures of mCRC cells, which represent a
suitable model to investigate the impact of intracellular Ca2+

signals on a therapeutically relevant model of human CRC
[13–15, 39, 40], as compared to non-neoplastic cells. In addition,
the electrophilic TRPA1 agonist, AITC, evoked a sustained
increase in [Ca2+]i that was sensitive to both pharmacological
(via HC-030031) and genetic blockade of TRPA1 activity (via a
selective siTRPA1). The waveform of this Ca2+ response is quite
different from the repetitive oscillations in [Ca2+]i evoked by
TRPA1 activation in lung and breast cancer cells [9]. Interestingly,
intracellular Ca2+ oscillations in cancer cells have long been
known to stimulate cell proliferation and survival [41, 42], while
long-lasting elevations in [Ca2+]i lead to apoptotic cell death
[32, 41, 43]. In accord, AITC-evoked cytosolic Ca2+ overload
reduced viability in OSCC cells [12].
Similar to AITC, mid-to-high micromolar concentrations of H2O2

evoked a long-lasting increase in [Ca2+]i, which was inhibited by
blocking TRPA1-mediated Ca2+ entry via either HC-030031 or the
selective siTRPA1. Reactive lipid mediators generated by lipid

Fig. 5 TRPA1-mediated extracellular Ca2+ entry causes mitochondrial depolarization and caspase-3/7 activation in mCRC cells.
AMean ± SE of ΔΨm measured under control conditions (Ctrl) and after the following treatments: (1) AITC (30 µM, 6 h); AITC (30 µM, 6 h)+HC-
030031 (30 µM, 30min); AITC (30 µM, 6 h)+ siTRPA1; (2) H2O2 (50 µM, 6 h); H2O2 (50 µM, 6 h)+ HC-030031 (30 µM, 30min); H2O2 (50 µM,
6 h)+ siTRPA1; (3) 4-HNE (30 µM, 6 h); 4-HNE (30 µM, 6 h)+HC-030031 (30 µM, 30min); 4-HNE (30 µM, 6 h)+ siTRPA1. One-way ANOVA
followed by the post hoc Dunnett’s test. ***p < 0.001. The numbers placed above the histogram bars represent the number of responding cells
out of the total cell number. N= 4 for each experimental condition. ΔΨm was measured by evaluating tetramethyl rhodamine methyl ester
(TMRM) fluorescence. B Tracings show the changes in CellEventTM fluorescence, signifying caspase-3/7 activation, in the absence (Ctrl) and
presence of either AITC (30 µM) or H2O2 (50 µM). Each tracing is representative of 113 cells (Ctrl), 91 cells (AITC), and 86 cells (H2O2) from 3
independent experiments. Every recording lasted 45 h at a sampling rate of 1 image/15 min. CMean ± SE of CellEventTM fluorescence intensity
under the following conditions: Control (Ctrl); AITC (30 µM, 6 h); AITC (30 µM, 6 h) + HC-030031 (30 µM, 30min); AITC (30 µM, 6 h) + Ru360
(5 µM, 30 min); AITC (30 µM, 6 h) + Caspase-3/7 Inhibitor I (20 µM, 30min). One-way ANOVA followed by the post hoc Dunnett’s test.
***p < 0.001. The numbers placed above the histogram bars represent the number of responding cells out of the total cell number. N= 4 for
each experimental condition. D Mean ± SE of CellEventTM fluorescence intensity under the following conditions: Control (Ctrl); H2O2 (50 µM,
6 h); H2O2 (50 µM, 6 h)+ HC-030031 (30 µM, 30min); H2O2 (50 µM, 6 h)+ Ru360 (5 µM, 30min); H2O2 (50 µM, 6 h)+ Caspase-3/7 Inhibitor I
(20 µM, 30min). One-way ANOVA followed by the post hoc Dunnett’s test. ***p < 0.001. The numbers placed above the histogram bars
represent the number of responding cells out of the total cell number. N= 4 for each experimental condition.
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peroxidation of polyunsaturated fatty acids in the plasma
membrane, such as 4-HNE, are involved in cancer initiation and
progression [9, 29, 44]. TRPA1 is highly sensitive to 4-HNE [30, 31]
and 4-HNE-induced TRPA1 activation has been reported in
melanoma cell lines [29]. In the presence of iron, H2O2 is degraded
into OH• via the Fenton reaction, thereby inducing lipid peroxida-
tion and 4-HNE formation [45, 46]. Of note, the Ca2+ response to
H2O2 was abolished by preventing the Fenton reaction with
deferoxamine. In addition, exogenous administration of 4-HNE
caused a cytosolic Ca2+ overload in mCRC cells that resembled
those induced by AITC and H2O2 and was dependent on TRPA1
activation. These findings strongly indicate that 4-HNE is the more
likely agonist to induce TRPA1 activation by oxidative stress in
mCRC cells. Moreover, the long-lasting Ca2+ elevation resulting
from TRPA1 stimulation in mCRC cells is seemingly more suitable
to stimulate mitochondrial dysfunction and apoptotic cell death
rather than promoting cell proliferation or survival. In accord,
prolonged exposure of primary cultures of mCRC cells to AITC and
H2O2 reduced their viability and proliferation rate in a TRPA1-
dependent manner. Furthermore, stimulation with AITC, H2O2, and
4-HNE caused mitochondrial Ca2+ overload that was suppressed
by the pharmacological and genetic blockade of TRPA1-mediated
extracellular Ca2+ entry. This is the first evidence that TRPA1
activation leads to mitochondrial Ca2+ uptake in cancer cells.
However, previous studies showed that TRPA1 mediates ROS-
induced mitochondrial Ca2+ entry in OLN-93 oligodendrocytes [47]
and THP-1-derived macrophages [48]. In both cell types, TRPA1-
dependent mitochondrial Ca2+ overload led to mitochondrial
depolarization and apoptotic cell death [47, 48]. In accord, aberrant
mitochondrial Ca2+ rise induces mPTP opening and thereby leads
to the dissipation of the mitochondrial membrane potential and
the release of pro-apoptotic factors that activate the executioner
caspase-3 and caspase-7 [33, 49, 50]. Similarly, we first found that
stimulation of TRPA1 with AITC, H2O2, and 4-HNE caused a
significant reduction in mitochondrial membrane potential in
mCRC cells. Then, by using the commercial kit CellEvent™ Caspase-
3/7 Green Detection Reagent [36, 37], we demonstrated that AITC
and H2O2 evoked an early increase in caspase-3/7 activation, which
was suppressed by inhibiting TRPA1-mediated Ca2+ entry. Like-
wise, TRPA1 was found to mediate oxidative stress-dependent
caspase-3 activation and apoptosis in temozolomide-treated SH-
SY5Y neuroblastoma cells [51] and in mouse retina undergoing
ischemia-reperfusion injury [52]. Therefore, TRPA1 activation in
mCRC cells supports ROS-dependent apoptosis rather than cell
survival, as otherwise reported in breast and lung cancers [8, 9].
The distinct outcome of ROS-dependent TRPA1 activation in

different cancer types, e.g., survival in breast and lung cancers [8, 9]
and apoptosis in mCRC and glioblastoma multiforme [11], is likely to
be associated to the heterogeneity of TRPA1-mediated Ca2+ signals.
Takahashi and coworkers reported that H2O2 evoked intracellular
Ca2+ oscillations in several breast and lung cancer cell lines. These
repetitive Ca2+ transients in turn recruit the Ca2+/Calmodulin-
dependent protein tyrosine kinase 2 (PYK2), which engages the
anti-oxidant and antiapoptotic signaling pathways that protect
cancer cells from oxidative stress [8, 9]. Of note, repetitive oscillations
in [Ca2+]i are nicely suited to recruit Ca2+-dependent effectors that
promote cancer cell proliferation and survival, including Pyk2
[24, 53, 54], while avoiding mitochondrial Ca2+ overload [55]. It is
still to understand why TRPA1-mediated Ca2+ entry does not result in
repetitive Ca2+ spikes also in mCRC cells. The spiking Ca2+ response
observed in breast and cancer cell lines resembles the inositol-1,4,5-
trisphosphate-evoked Ca2+ release events from the endoplasmic
reticulum (ER) that could be triggered by Ca2+ entry through TRP
channels via the Ca2+-induced Ca2+ release process [26, 56]. Future
work will have to examine the possibility that TRPA1 channels on the
plasma membrane are juxtaposed to ER-located inositol-1,4,5-
trisphosphate receptors in some, e.g., lung and breast cancers, but
not all solid malignancies.

CONCLUSIONS
Our results show that the redox-sensitive TRPA1 channel is up-
regulated and mediates enhanced extracellular Ca2+ entry in mCRC
cells as compared to non-neoplastic controls. The enhanced
expression of TRPA1 results in cytosolic Ca2+ overload in mCRC cells
exposed to H2O2 and this influx of Ca2+ is likely to depend on H2O2

degradation to OH• and subsequent formation of the lipid
peroxidation-derived 4-HNE. ROS-dependent TRPA1 activation in
turn causes mitochondrial Ca2+ overload and thereby leads to
mitochondrial depolarization and caspase-3/7 activation. Therefore,
TRPA1 activation contributes to ROS-dependent mCRC apoptosis.
These findings suggest that TRPA1 stimulation could represent a
promising therapeutic avenue to sensitize mCRC cell to oxidative
stress, possibly in combination with pro-oxidant therapies [2, 4].

MATERIALS AND METHODS
Isolation and expansion of mCRC cells from CRC patients
Primary mCRC cells were isolated and expanded how illustrated in [15, 39, 40].
Patients (>18 years) suffering mCRC, previously undergoing surgery interven-
tion to excise primary CRC tumor and/or liver metastases, signed an informed
consent before being enrolled. The whole procedure was carried out in
according with the rules of the revised (2013) Declaration of Helsinki of 1975
(https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/).
The Foundation IRCCS Policlinico San Matteo in Pavia (Italy) (Ethical code
20110000996, 17/01/2011) approved the present investigation. Tumor
specimens were treated by using in combination the Tumor dissociation Kit
(Miltenyi Biotec, Bologna, Italy; cat# 130-095-929) and the GentleMACS
Dissociator (Miltenyi Biotec, Bologna, Italy, cat# 130-093-235) to rapidly
generated single-cell suspensions [15, 39, 40]. Subsequently, clusters of mCRC
cells were removed through filtration, and the cells were resuspended at a
concentration of 0.5–1 × 106 cells/mL in CellGro SCGM medium (Cell Genix,
Freiburg, Germany, cat# 20802-0500), which was supplemented with 0.1%
gentamycin (Gibco, Life Technologies Limited, Paisley, UK, cat# 15750-037)
and 20% foetal bovine serum (FBS) (Euroclone, Pero, Mi, Italy; cat# ECS0180D)
(complete medium), seeded and expanded in 25 cm2 tissue flasks (Corning,
Stone Staffordshire, England, cat# 430639) in a CO2 incubator. The adherent
cells were evaluated microscopically every 24–48 h and when they reached
about 70% confluence were trypsinized, washed and cryopreserved in 90%
FBS and 10% dimethyl sulfoxide (DMSO) for later use. To confirm that the
isolated cells derived from neoplastic specimens, at least 3 cytospins were
carried out exploiting 105 cultured cells/cytospin deriving from 4–6 passages,
for morphologic and immunocytochemical characterization, as described in
[14, 39].

Solutions to measure changes in [Ca2+]i
Physiological salt solution (PSS) consisted of (in mM): 150 NaCl, 6 KCl, 1.5
CaCl2, 1 MgCl2, 10 Glucose, 10 Hepes. A Ca2+-free solution (0Ca2+) was
obtained by replacing CaCl2 with 2mM NaCl and adding 0.5 mM EGTA.
NaOH was used to titrate solutions to pH 7.4. An osmometer (Wescor 5500,
Logan, UT) was used to measure the osmolality of the solutions, which was
found to be 338mmol/kg.

Intracellular Ca2+ imaging
TRPA1-mediated changes in [Ca2+]i were monitored in mCRC and non-
neoplastic cells loaded with the Ca2+-sensitive ratiometric indicator, Fura-2
acetoxymethyl ester (Fura-2/AM) [40]. The cells were plated on round glass
coverslips (8mm diameter) coated with collagen (5mg/mL; Sigma), bathed
with PSS, loaded with 4 µM Fura-2 and then maintained in the presence of the
Ca2+ indicator for 30min at 37 °C and 5% CO2. Subsequently, the cells were
extensively washed with fresh PSS and the coverslip was gently attached to
the bottom of a Petri dish with silicon grass (Saratoga, Trezzano sul Naviglio,
Mi, Italy). The Petri dish was then moved on the stage of an upright
epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen, Germany) and
the cells were observed with a Zeiss × 40 Achroplan objective (water-
immersion, 0.9 numerical aperture, 2.0mm working distance). Every 3 sec,
Fura-2 was alternately (0.5 Hz) excited at 340 and 380 nm, and the emitted
fluorescence was recorded at 510 nm. A filter wheel (Lambda 10, Sutter
Instrument, Novato, CA, USA) was used to accommodate the excitation filters.
10–40 rectangular “regions of interest” (ROI) were drawn around the cells that
were clearly identifiable in the visual field. At each excitation wavelength,
images of the visual field and the fluorescence within each ROI were acquired
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by an Extended-ISIS Camera (Photonic Science, Millham, UK). A custom
software that was working in the LINUX environment was employed to
control both the Extended-ISIS Camera and the filter wheel. The LINUX-based
software was also used to measure the ratio of the mean fluorescence
emitted at 510 nm when the cells within each ROI were excited alternatively
at 340 and 380 nm (F340/F380). All recordings were carried out at room
temperature (22 °C).

Mitochondrial Ca2+ measurement
Mitochondrial Ca2+ was evaluated with Rhod-2/AM by using the same
single-cell imaging set-up used to detect variations in Fura-2 fluorescence.
Rhod-2 is excited at 545 nm and emits fluorescence at 590 nm. Therefore,
changes in Rhod-2 fuorescence were measured by using a TRITC filter
cube. The mCRC cells were incubated in PSS containing 4 µM Rhod-2/AM
for 45min at 37 °C and 5% CO2. Subsequently, the cells were extensively
washed with fresh PSS and the coverslip was attached to the bottom of a
Petri dish, as described above for Fura-2. Recordings were performed and
plotted on-line every 3 sec. All the recordings were carried out at 22 °C.

Measurement of mitochondrial membrane potential (ΔΨm)
ΔΨm was measured as recently described [14], by incubating mCRC cells in
PSS containing 25 nM TMRM and 200 nM Cyclosporine H for 30min at
37 °C and 5% CO2. Changes in TMRM fluorescence were recorded by using
the same imaging set-up employed to record TRPA1-mediated increases in
Fura-2 and Rhod-2 fluorescence. The TMRM red-orange fluorescence
(excitation 480 nm, emission 510 nm) was measured with the aid of a TRITC
filter cube for live imaging. A round diaphragm was exploited to increase
the contrast. Recordings were carried out and plotted on-line every 10 s.
The experiments were performed at 22 °C.

Measurement of caspase-3/7 activity
Intracellular caspase-3/7 activity was evaluated by single-cell fluorescence
microscopy by using the CellEvent™Caspase-3/7 Green Detection Reagent
according to the manufacturer’s intructions (Thermofisher Scientific, Rodano,
Mi, Italy). This reagent consists of a four-amino acid peptide (DEVD)
conjugated to a nucleic acid-binding dye, which is non-fluorescent when it
is not bound to DNA. The DEVD peptide sequence is a cleavage site for
caspase-3/7 and, therefore, upon caspase-3/7 activation in apoptotic cells, the
free dye can bind to DNA and emit bright green fluorescence. Cells were
seeded in 12-well plates (Corning, Stone Staffordshire, England; cat#3513) and,
upon reaching 70% confluence, were loaded with the CellEvent™ Caspase-3/7
Green Detection Reagent (5 µM) for 30min at 37 °C and 5% CO2. After
extensive washing, the 12-well plate was moved upon the stage of a Confocal
Microscope Leica SP8 equipped with an Okolab stage-top incubator for live
cell imaging at 37 °C and 5% CO2 and a Leica HC PL Fluotar objective 20x
objective (6.9mm working distance, 0.4 numerical aperture). The experiments
were performed at the Confocal Microscopy Facility of the Centro Grandi
Strumenti, University of Pavia.

Immunoblotting
Total protein homogenates from primary mCRC cells were treated with a
RIPA buffer containing (150mM NaCl, 0.5% sodium deoxycholate, 0.1%
SDS, 0.1% Triton X-100, 50 mM Tris-HCl, pH 8, and the protease inhibitor
cocktail cOmplete (cOmplete Tablets EASYpack, 04693116001; Merck,
Milan, Italy). Laemmli buffer was added to the samples, and denaturation
was made by heating in a thermal block for 10min at 80 °C. Twenty
µicrograms of proteins were loaded in precast polyacrylamide gel (4–20%
Mini-PROTEAN TGX Stain-Free Gels, Bio-Rad, Segrate, Italy) and SDS-PAGE
performed [57]. Then, the proteins were transferred out of the gel onto the
PVDF Membrane (Trans-Blot Turbo Transfer Pack, #1704156, Bio-Rad,
Segrate, Italy) with the Trans-Blot Turbo Transfer apparatus (#1704150, Bio-
Rad, Segrate, Italy). Membranes were blocked by incubation for 1 h at 22 °C
in Tris-buffered saline with 5% skimmed dry milk and 0.1% Tween
(blocking solution). Membranes were incubated overnight with anti-TRPA1
rabbit antibody (PA146159, 1:500 dilution; Thermo Fisher Scientific, Monza,
Italy) in the blocking solution. The membranes were washed three times
and incubated for 1 h with goat anti-rabbit IgG antibody, peroxidase-
conjugated (1:100000; AP132P; Millipore part of Merck S.p.a., Vimodrone,
Italy). The detection of the bands was performed with the chemilumines-
cent substrate kit Westar Supernova Western (CYANAGEN, Bologna, Italy)
and the molecular weights of the bands were pinpointed using pre-stained
molecular weight markers (#161-0376, Bio-Rad Laboratories, California,
USA). Stripped membranes were re-probed by incubating with the

housekeeping anti-β-actin rabbit monoclonal antibody (AB-81599, 1:
2000; Immunological Sciences, Rome, Italy) [58]. Protein bands were
visualized using the iBright™ CL1000 Imaging System (Thermo Fisher
Scientific, Monza, Italy). The band intensity was semi-quantified by using
iBright Analysis Software (Thermo Fisher Scientific, Monza, Italy) and the
results were expressed as TRPA1 / β-actin ratio.

Gene silencing
Gene silencing of TRPA1 has been performed by using the same strategy as
that employed to down-regulate the expression of STIM1 and Orai1 [40], TRP
Vanilloid 1 [14] and two-pore channel 1 [13] in primary cultures of mCRC cells.
The esiRNA targeting TRPA1 was purchased from Sigma-Aldrich Inc.
MISSION®esiRNA (human TRPA1) (EHU040601). Negative controls were made
by using scrambled siRNA. In brief, when mCRC cells reached 50% confluency,
the medium was replaced with reduced serum medium Opti-MEM, (Life
Technologies, Milan, Italy). The solution of siRNAs diluted (100 nM final
concentration) with Opti-MEM was combined with Opti-MEM containing the
Lipofectamine™ transfection reagent (Life Technologies, Milan, Italy), following
the manufacturer’s instructions. This solution containing siRNA was incubated
for 20min at room temperature. Finally, the siRNA-Lipofectamin complex was
added to the cells and the cells were then left in a CO2 incubator for 5 h. The
siRNA-Lipofectamin complex was then eliminated, and fresh culture media
was added to the cells. Protein silencing was effective 48 h after transfection.
To check the knockdown efficiency, immunoblot for TRPA1 was performed in
siRNA and Mock treated cells (see Figs. S3 and S4).

Statistics
All the data have been generated by mCRC and non-neoplastic cells
expanded from three distinct patients. Each experiment has been carried
out three times by using cells obtained by each patient in three separate
days. The amplitude of cytosolic and mitochondrial Ca2+ signals evoked by
each agonist (AITC, H2O2, and 4-HNE) was measured as the difference
between the F340/F380 ratio at the peak of the Ca2+ signal and the mean
F340/F380 ratio of 1 min baseline recorded before addition of the agonist.
The dose-response relationship reported in Fig. S5B was fitted by using the
equation [59]:

Y ¼ 100

1þ EC50
H202½ �

(1)

where Y is the amplitude of the Ca2+ response, [H2O2] is the H2O2

concentration, and EC50 is the half-maximal effective concentration.
Pooled data are presented as mean ± SE. The number of cells analyzed

for each condition is indicated in the corresponding bar histograms.
Normality of the data was tested with Shapiro–Wilk test. If the data
distribution was normal, differences between two groups were evaluated
by using the Student’s t-test for unpaired observations, whereas
Differences between multiple groups were evaluated by using one-way
ANOVA analysis followed by the post hoc Dunnett’s or Bonferroni tests as
appropriate. p < 0.05 indicated statistical significance. No statistical
methods were used to predetermine the sample size.

Chemicals
Fura-2/AM and Rhod-2/AM were purchased from Invitrogen (Life
Technologies). All the chemicals were purchased from Sigma-Aldrich .

DATA AVAILABILITY
All the data generated or analyzed in this study are available upon reasonable
request to the corresponding authors.
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