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Abstract: This study investigates volatile organic compound (VOC) profiles in the exhaled breath
of normal subjects under different oxygenation conditions—normoxia (FiO2 21%), hypoxia (FiO2
11%), and hyperoxia (FiO2 35%)—using an electronic nose (e-nose). We aim to identify significant
differences in VOC profiles among the three conditions utilizing principal component analysis (PCA)
and canonical discriminant analysis (CDA). Our results indicate distinct VOC patterns corresponding
to each oxygenation state, demonstrating the potential of e-nose technology in detecting physiological
changes in breath composition (cross-validated accuracy values: FiO2 21% vs. FiO2 11% = 63%,
FiO2 11% vs. FiO2 35% = 65%, FiO2 21% vs. FiO2 35% = 71%, and p < 0.05 for all). This research
underscores the viability of breathomics in the non-invasive monitoring and diagnostics of various
respiratory and systemic conditions.

Keywords: volatile organic compounds; exhaled breath; electronic nose; hypoxia; hyperoxia

1. Introduction

The analysis of exhaled breath has emerged as a non-invasive diagnostic tool with the
potential to provide insights into a wide range of physiological and pathological conditions.
Exhaled breath contains a complex mixture of volatile organic compounds (VOCs) that are
byproducts of metabolic processes occurring within the body. These VOCs can serve as
biomarkers for various diseases and conditions, making breath analysis a promising field
for the early diagnosis and monitoring of health status [1,2].

The electronic nose (e-nose) is an innovative technology designed to detect and dis-
criminate among complex odors and VOC profiles. Unlike traditional analytical techniques,
such as gas chromatography–mass spectrometry (GC-MS), which are time-consuming and
require extensive sample preparation, e-noses offer rapid, real-time analysis with minimal
preparation [3]. E-noses comprise an array of sensors that respond to the chemical compo-
sition of exhaled breath, producing unique electronic signals or “smell prints” that can be
analyzed and classified using advanced statistical and machine learning techniques [3].

Oxygenation states, specifically normoxia, hypoxia, and hyperoxia, reflect the varying
levels of oxygen available in the blood. Normoxia refers to a state in which the levels
of oxygen in a given environment (e.g., tissue, blood, or atmosphere) are within the
normal range for a particular organism or condition. For humans, this typically means
oxygen partial pressure (PaO2) in arterial blood of approximately 75–100 mmHg at sea
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level, typically corresponding to a fraction of inhaled oxygen (FiO2) of 21%, which is
equivalent to the oxygen concentration in ambient air. Hypoxia is a condition where
there is a deficiency of oxygen in the tissues or a low level of oxygen in the environment
compared to normal levels, which can result from conditions such as chronic obstructive
pulmonary disease (COPD), sleep apnea, and acute respiratory distress syndrome (ARDS).
Hyperoxia refers to an excess of oxygen in the tissues or an environment where the oxygen
concentration is higher than normal. In the context of arterial blood, hyperoxia typically
refers to an oxygen partial pressure (PaO2) significantly higher than the normal range,
often due to supplemental oxygen or other interventions [4]. While oxygen is essential for
life, hyperoxia can be harmful and lead to oxidative stress, cellular damage, and various
complications, particularly in certain medical contexts or due to prolonged exposure [5].

Although pulse oximetry offers a rapid and non-invasive method for assessing oxy-
genation levels, the use of an e-nose provides additional diagnostic value by capturing
subtle variations in VOC profiles. These variations can reflect underlying metabolic pro-
cesses, offering a deeper understanding of the physiological changes associated with
different oxygenation states.

Understanding how different oxygenation states affect VOC profiles in exhaled breath
is crucial for developing diagnostic and monitoring tools. Changes in oxygen levels
can influence metabolic pathways and the production of VOCs, potentially providing
biomarkers for different physiological and pathological conditions [4].

Previous studies have demonstrated the utility of e-noses in detecting and differen-
tiating between various diseases through breath analysis [6]. For instance, e-noses have
been used to distinguish between lung cancer patients and healthy controls as well as
between individuals with and without head and neck cancer [7,8] to identify bacterial
infections [9] and to monitor metabolic disorders, such as diabetes [10]. However, there
is limited research focusing on how different oxygenation states specifically affect VOC
profiles in exhaled breath.

The primary objective of this study is to investigate VOC profiles in the exhaled
breath of normal subjects under three different oxygenation states: normoxia (FiO2 21%),
hypoxia (FiO2 11%), and hyperoxia (FiO2 35%). Using an e-nose, we intend to identify
possible differences in VOC patterns among these conditions. Notably, the aim of this
investigation is not to compare the use of e-nose technology with pulse oximetry, which
is a well-established tool for measuring oxygenation levels in the blood. Instead, we aim
to assess whether different oxygen concentrations may influence the spectrum of exhaled
VOCs. This is a key methodological question, as understanding how oxygenation affects
VOC profiles is critical for future studies involving the e-nose.

2. Results

Baseline characteristics showed a predominant number of males, normal lung function
and Body Mass Index (Table 1).

Table 1. Baseline characteristics of study population. Values are intended as mean ± standard deviation.

Parameter Value

Number 30

Age (years) 29.9 ± 7.8

Males (n) 20

FEV1 (%pred) 99.2 ± 0.3

FVC (%pred) 103.1 ± 0.4

BMI (kg/m2) 24.8 ± 3.9
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The principal component analysis identified four principal components (PCs). PC1
accounted for most of the variance, explaining 97.619% of the total variance. PC4 was
the only component found to be significant in the ANOVA test and was, thus, included
alongside PC1 in the discriminant analysis.

The groups were defined as follows: Group 0 (FiO2 21%), Group 1 (FiO2 11%), and
Group 2 (FiO2 35%). When comparing these groups across the four principal components,
no significant differences were observed in PC1, PC2, and PC3 among the groups, as their
p-values were 0.991, 0.513, and 0.429, respectively. However, a significant difference was
found in PC4, with a p-value of 0.000. Specifically, Group 0 differed significantly from both
Group 1 and Group 2 in PC4, and Group 1 differed significantly from Group 2 in PC4.

The discriminant analysis used PC1 and PC4 to differentiate between the groups. The
cross-validated accuracy values for discriminating between the groups were 71% for FiO2
21% versus FiO2 35% (p < 0.05, Figure 1), 63% for FiO2 21% versus FiO2 11% (p < 0.05,
Figure 2) and 65% for FiO2 11% versus FiO2 35% (p < 0.05, Figure 3).
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gles) based on principal components 1 and 4. The analysis achieved a cross-validated value of 63%
(p < 0.05).
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3. Discussion

The present study aimed to investigate the VOC profiles in the exhaled breath of
healthy individuals under different oxygenation states—normoxia (FiO2 21%), hypoxia
(FiO2 11%), and hyperoxia (FiO2 35%)—using an electronic nose (e-nose). Our findings
demonstrate significant differences in VOC patterns among the three conditions, high-
lighting the potential of e-nose technology to detect physiological changes related to
varying oxygen levels. This research holds significant potential for advancing the field
of breathomics and non-invasive diagnostics. By elucidating the effects of different oxy-
genation states on exhaled VOC profiles, we could improve the accuracy and reliability of
e-nose-based diagnostic tools. This study also contributes to the broader understanding of
metabolic changes associated with varying oxygen levels, which can have implications for
the management of respiratory and systemic diseases.

Our results show distinct VOC profiles corresponding to each oxygenation state.
principal component analysis (PCA) and canonical discriminant analysis (CDA) revealed
significant variations, particularly for principal component 4 (PC4), which exhibited notable
differences across the groups. The ANOVA test confirmed these differences, and subsequent
pairwise comparisons identified specific group differences. The CDA further supported
the classification accuracy between the different oxygenation states, with cross-validated
values indicating the ability to differentiate between normoxia, hypoxia, and hyperoxia
with reasonable accuracy.

The observed variations in VOC profiles can be attributed to the metabolic changes
induced by different oxygen levels. The e-nose’s ability to detect complex VOC patterns
provides a non-invasive means of monitoring metabolic changes, potentially offering
early indicators of hypoxia or hyperoxia that are not detectable through traditional pulse
oximetry. Hypoxia and hyperoxia are known to influence cellular metabolism and oxidative
stress, which, in turn, affect the production and release of VOCs [4,5]. For instance, hypoxia
can lead to increased anaerobic metabolism and the production of metabolites, such as
lactic acid, which may alter the VOC composition in exhaled breath [4]. Hyperoxia, on
the other hand, can enhance oxidative metabolism and the generation of reactive oxygen
species (ROS), potentially leading to distinct VOC patterns [4,5]. The statistically significant
changes in VOC profiles, although subtle, may serve as early indicators of physiological
shifts that precede clinical symptoms. These findings could be pivotal in developing
non-invasive diagnostic tools for the early detection of hypoxia and hyperoxia.

To the best of our knowledge, this is the first study specifically addressing the differ-
ences in exhaled VOC profiles under normoxia, hypoxia, and hyperoxia using an electronic
nose in healthy subjects.

Several previous studies provide additional context to our findings. Lacey et al. [11]
investigated the use of an e-nose to detect hypoxia-induced changes in VOC profiles at
high altitudes and demonstrated that e-nose technology could identify individuals at risk
of acute mountain sickness (AMS) by analyzing breath samples [11]. This study aligns with
our findings, indicating that hypoxic conditions significantly alter VOC profiles, which
can be detected by e-nose technology. Relatedly, Mazzatenta et al. [12] investigated VOC
changes in subjects experiencing hypoxia triggered by pathological conditions rather than
by breathing in a controlled hypoxic mixture, as in our study. While their study demon-
strated significant changes in VOC profiles under hypoxic conditions, it is important to note
that other underlying pathological processes may have contributed to these changes [12].

Another relevant study by Harshman et al. [13] identified hypoxia biomarkers from
exhaled breath under normobaric conditions using gas chromatography–mass spectrome-
try (GC-MS). They discovered significant changes in specific VOCs, including pentanal,
4-butyrolactone, 2-pentanone, 2-hexanone, 2-cyclopenten-1-one, 3-methylheptane, and
2-heptanone, in response to hypoxic conditions [13]. This study supports our findings by
demonstrating the changes in VOC profiles due to hypoxia and highlights the potential of
VOC analysis in the non-invasive monitoring of hypoxic conditions.
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Concerning hyperoxia, Cronin et al. identified GC-MS 18 VOC biomarkers that precede
pulmonary oxygen toxicity (PO2T) in a swine model exposed to prolonged hyperoxia, with
six VOCs being particularly predictive of PO2T [14]. The predictive breath test developed
from these findings showed potential for the early detection of PO2T [14]. Moreover, de
Jong et al. focused on VOCs identified through GC-MS analysis and identified a collection
of VOCs, primarily methyl alkanes, associated with hyperbaric hyperoxia [15]. Although
no single marker was universally present across all studies, the identified VOCs provided a
robust set of potential biomarkers for PO2T, confirming that a combination of VOCs, rather
than a single marker, is likely necessary to assess hyperbaric oxidative stress [15]. Finally,
van Ooij et al. investigated the effects of hyperbaric oxygen exposure on exhaled VOCs in
male divers using GC-MS and identified significant changes in VOC profiles after oxygen
dives, including a particular increase in methyl alkanes, suggesting a distinct VOC breath
print associated with hyperbaric oxygen exposure [5].

The ability to non-invasively monitor changes in VOC profiles related to oxygenation
states has significant clinical implications. For patients with respiratory conditions, such as
COPD or ARDS, the regular monitoring of exhaled breath could provide valuable insights
into their oxygenation status and metabolic health. The use of e-nose technology could
facilitate the early detection of hypoxia or hyperoxia, allowing for timely interventions and
better management of these conditions.

Moreover, the differentiation of VOC profiles under varying oxygen levels could
enhance the diagnostic capabilities of e-noses. By incorporating specific VOC markers
associated with different oxygenation states, e-noses could improve the accuracy and
reliability of breath-based diagnostics. This advancement could extend to other clinical
scenarios, such as perioperative monitoring and critical care, where maintaining optimal
oxygen levels is crucial.

Despite the promising results, our study has several limitations. The sample size
was relatively small, which may limit the generalizability of the findings. Future studies
with larger cohorts are necessary to validate the observed differences in VOC profiles.
Additionally, while the e-nose provides rapid and real-time analysis, it lacks the specificity
of traditional analytical techniques like GC-MS. Further research is needed to identify and
quantify the specific VOCs contributing to the observed patterns.

One potential limitation of this study lies in the sequence of administering oxygena-
tion conditions, specifically the choice to expose participants to hypoxia first, followed
by hyperoxia. This decision was made primarily for patient safety, as inducing hypoxia
poses a greater immediate risk and requires careful monitoring and control. However, we
acknowledge that this sequential design could introduce a bias, as the metabolic changes
induced by hypoxia might influence the subsequent VOC measurements during hyper-
oxia. A crossover design for future studies, in which half of the subjects receive hypoxic
conditions first, and the other half begin with hyperoxic conditions, could mitigate such
potential bias by balancing the order of exposure.

Furthermore, this study focused solely on healthy individuals. Investigating VOC
profiles in patients with respiratory or systemic diseases under different oxygenation con-
ditions could provide more comprehensive insights and enhance the clinical applicability
of e-nose technology. The Cyranose 320 e-nose, equipped with an array of 32 polymer
sensors, is designed to detect a broad range of VOCs. However, its sensitivity to specific
oxygen-induced changes in VOC profiles remains an area for further exploration. Our find-
ings suggest that the device can indeed detect these changes, albeit with certain limitations
that warrant additional investigation. Finally, a key limitation to this study is the arbitrary
choice of FiO2 values for hypoxia and hyperoxia. This choice may influence the results,
and we cannot exclude the possibility that different FiO2 values might yield different
outcomes. Additional studies with a more systematic approach to selecting FiO2 values are
necessary to validate these findings. Similarly, the 5 min duration for each oxygenation
cycle was selected to balance participant safety with the need to induce detectable VOC
changes. While this duration was sufficient for our study, future research should investigate
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the effects of prolonged exposure to better understand the temporal dynamics of VOC
production under different oxygenation states.

Future research should aim to expand the sample size and include diverse populations
to validate and generalize the findings. Exploring the specific VOCs responsible for the
observed differences, using complementary techniques such as GC-MS, could provide
deeper insights into the metabolic changes associated with varying oxygen levels.

Additionally, integrating machine learning algorithms with e-nose data could en-
hance the classification accuracy and predictive capabilities of the device. Developing
standardized protocols for breath sample collection and analysis could also improve the
reproducibility and reliability of e-nose-based diagnostics.

4. Materials and Methods
4.1. Participants

A total of 30 healthy volunteers (20 males and 10 females) participated in this study. All
participants were free from any history of chest symptoms and systemic diseases, and none
were taking any medications. The age range was 22 to 45 years, and all subjects exhibited
normal lung function. Individuals with a history of respiratory tract infections in the four
weeks preceding this study were excluded. Exhaled breath samples were collected from
all subjects under three different oxygenation conditions: normoxia (FiO2 21%), hypoxia
(FiO2 11%), and hyperoxia (FiO2 35%). The participants were recruited from hospital staff,
and participation was voluntary. The study was approved by the ethics committee of Bari
Policlinico (protocol number 46403/15), and all participants provided informed consent
before participating.

4.2. Study Design

A longitudinal study design was employed. Participants attended two separate
sessions to complete all measurements. During the first visit, subjects were screened
according to inclusion/exclusion criteria, and those who qualified underwent a flow-
volume spirometry test (MasterscreenPneumo, Jaeger, Würzburg, Germany). Normal
lung function was confirmed through spirometry, using Global Lung Function Initiative
(GLI) reference values to ensure consistency across assessments. During the second visit,
exhaled breath samples were collected after normoxia and during induced hypoxia and
hyperoxia states. The breath samples were immediately analyzed using the e-nose after
each phase. Participants were allowed to drink only still water on the day of testing and
could not perform physical exercise nor brushing teeth with toothpaste. Exhaled breath
was collected while subjects wore a nose clip throughout the procedure. Initially, there
was a 1 min wash-in period with a 3-way non-rebreathing valve coupled to an inspiratory
VOC filter (A2; North Safety, Middelburg, The Netherlands) to minimize environmental
VOC contamination and to ensure baseline stabilization. Measurements were consistently
performed at the same time of day to control potential diurnal variations in VOC levels.
Subjects then exhaled a vital capacity into a Tedlar bag, which was promptly sampled by
the e-nose.

4.3. Hypoxia and Hyperoxia Induction

Hypoxia and hyperoxia cycles were induced using an intermittent hypoxic-hyperoxic
training (IHHT) device called CellOxyTM (Rostock, Germany). This device allows for the
precise control of the oxygen content in inhaled air, facilitating cycles of hypoxia (from 9%
to 16% FiO2) and hyperoxia (from 24% to 36% FiO2). Each cycle of hypoxia and hyperoxia
lasted 5 min, followed by e-nose sampling, with participants remaining connected to the
IHHT. The CellOxy device monitors adjusts the oxygen concentration in real time, ensuring
the consistent and accurate induction of the desired oxygenation states. Importantly, no
participants had to interrupt the procedure due to side effects, indicating that the protocol
was well-tolerated. Moreover, no physical effects were observed after the procedures by
all individuals.
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4.4. Electronic Nose

We used a Cyranose 320 electronic nose (Sensigent, Irwindale, CA, USA) for this study.
This device features 32 organic polymer sensors arranged in a nano-composite array. When
exposed to VOCs, these polymers swelled, altering their electrical resistance. The device
recorded the raw data (expressed as dR = (R − Ro)/Ro, where R is the response to the
sample gas, and Ro is the baseline reading, with ambient room air as the reference gas)
from each of the 32 sensors, which was stored in an onboard database. These data create a
unique “breathprint” representing the VOC spectrum, which can be analyzed using pattern
recognition algorithms (Figure 4).
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Figure 4. Comparison between the biological olfactory system and an artificial electronic nose (e-nose)
system for detecting odors.

To ensure accurate measurements, we adhered to the recommended operating param-
eters from the instruction manual. The baseline purge lasted 30 s at a low pump speed. The
sampling time was 60 s at a medium pump speed, followed by a 200 s purge at a high pump
speed. Each sample run lasted a total of 300 s, and the device operated at 42 ◦C. Between
samples, a 5 min post-run purge was conducted. Additionally, before the first sample of the
day, the sensors were stabilized by exposure to the room air for 5 min, followed by a “blank
measurement.” The relative humidity during sample analysis was approximately 55%.

4.5. Statistical Analysis

Statistical analyses were performed using SPSS for Windows 26.0 (SPSS, Chicago,
IL, USA). The Kolmogorov–Smirnov and Shapiro–Wilk tests were used to assess data
distribution. Categorical variables were analyzed using the chi-square test or Fisher’s
exact test as appropriate and reported as n (%). Continuous variables were analyzed
using ANOVA and Student’s t-test for independent samples, with normally distributed
continuous parameters reported as the mean (standard deviation [SD]).

Principal component analysis was used to reduce data dimensions. All four principal
components (PCs) were compared at different times using the ANOVA test. Here, the
ANOVA test indicated significance, and individual groups were compared two-by-two
using Student’s t-test for independent samples. Canonical discriminant analysis (CDA)
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was employed to categorize VOC patterns based on the principal components. The leave-
one-out validation method was used to calculate the cross-validated accuracy percentage
(CVA%), which estimated the predictive model’s practical accuracy. The sample size
was determined to limit the standard error to 10%, assuming an 80% accuracy rate, and
the current sample size per subgroup was adequate. A p-value of <0.05 was considered
statistically significant.

5. Conclusions

In conclusion, our study demonstrates significant differences in exhaled breath VOC
profiles under normoxia, hypoxia, and hyperoxia using an e-nose. These findings highlight
the potential of e-nose technology to non-invasively detect physiological changes related
to oxygen levels. The clinical implications of this research are vast, offering promising
avenues for the early diagnosis and monitoring of respiratory and systemic conditions.
Further research is warranted to validate these findings and explore their applicability in
clinical settings.
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