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5 ABSTRACT: A sustainable two-step protocol was developed for
6 the synthesis of the antihistamine drug Thenfadil by combining a
7 reductive amination process with a Cu-catalyzed Ullmann-type C−
8 N coupling reaction run in environmentally responsible deep
9 eutectic solvents (DESs), constructed from biobased compounds.
10 Under optimized conditions, both reactions proceed smoothly
11 under aerobic conditions and in the absence of any additional
12 ligand, with the desired active pharmaceutical ingredient isolated in
13 an overall reaction yield of 39% with an effective suppression of the
14 side products arising from competitive Cu-catalyzed C−O coupling
15 reactions. A novel and simplified workup procedure has also been
16 set up, which avoids the need for chromatographic purification,
17 while allowing the recovery and the recycling of the unreacted intermediate secondary amine. The potential application and the
18 robustness of the proposed methodology has been demonstrated (a) in scale-up studies up to 50 g of substrate in 0.5 kg of DES,
19 taking place with no decrease in the reaction yield, and (b) in the synthesis of three other ethylenediamine derivatives (Thenfadil’s
20 analogs) like tripelennamine, methaphenilene, and thonzylamine in 39%−44% overall yield. Typical metrics applied at First and
21 Second Pass, according to the CHEM21 Metrics Toolkit, have been calculated as well for the whole synthetic procedure of Thenfadil
22 and results compared with those of the classical procedure.

23 KEYWORDS: Deep eutectic solvents, Ullmann-type cross-coupling reactions, Amine synthesis, Green chemistry

24 ■ INTRODUCTION

25 According to the European Academy of Allergy and Clinical
26 Immunology (EAACI), more than 150 million Europeans
27 today suffer from chronic allergic diseases, and by 2025, more
28 than half of all Europeans will be affected by at least one type
29 of allergy.1 Therefore, there is a high demand for antihistamine
30 drugs on the market in coming years. Thenfadil belongs to the
31 first generation of antihistamine drugs and is known to show
32 antihistaminic and antiallergic properties for the relief of
33 systemic allergies as urticaria, hay fever, rhinitis, and
34 asthma.2−4 It is also available in combination either with the
35 nasal decongestant neo-synepherine5 or with isoetharine, a
36 potent bronchodilator.6 The peculiarity of this ethylenedi-
37 amine derivative, discovered by Campaigne and LeSuer in
38 1949,7 is an unusually high activity and low toxicity in contrast
39 with methapyrilene, which is one of the most popular drugs
40 used by patients with allergies.8 Thenfadil (3a) is still
41 produced on request at 325 €/50 mg9 by means of a
42 procedure patented in 1951 by Campaigne and LeSuer based
43 on the reaction of a 2-(dimethylaminoethylamino)-substituted
44 pyridine 1 with 3-bromomethylthiophene (2) in dry toluene at

s1 45 reflux in the presence of NaNH2 as a base (Scheme 1a).10 In
46 1954, another synthetic procedure was developed by

47Campaigne and Bourgeois for the preparation of 3a11 through
48refluxing 1 with 5-bromothiophene-3-carbonyl chloride (4) (in
49turn obtained by treating 3-thenoic acid with a solution of Br2
50in glacial acid followed by an excess of thionyl chloride) in
51pyridine for 8 h. After acidic workup and distillation, the
52resulting adduct 5 (a pale orange oil) was reduced with LiAlH4
53in dry Et2O, followed by crystallization with a mixture of i-
54PrOH, hydrochloric acid, and ice methanol, thereby leading to
553a as a white solid in 8% overall yield (Scheme 1b).
56To address the climate crisis, there is a pressing need for the
57development of next-generation technologies able to replace
58extensively used conventional and hazardous volatile organic
59compounds (VOCs) with safer and more environmentally
60responsible solvents.12−16 In this vein, the goal of several
61leading pharmaceutical companies today is to reshape classical
62routes based on the massive use of VOCs and harsh reaction
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63 conditions with alternative milder processes based on waste
64 minimization and eco-efficiency. Owing to their high thermal
65 stability, nonflammability, and practically no vapor pressure,
66 deep eutectic solvents (DESs) are particularly attractive to
67 achieve this goal because of a low ecological footprint. They
68 are binary or ternary mixtures usually made up of at least one
69 hydrogen bond donor and one hydrogen bond acceptor
70 showing an eutectic point temperature far below that of an
71 ideal liquid mixture.17−21 Especially, those mixtures formed by
72 natural compounds (e.g., natural polyols, amino alcohols,
73 natural carboxylic acids, urea derivatives) are highly sought
74 after because they are biodegradable, inexpensive, and have low
75 toxicity, and thus, they are progressively replacing VOCs in
76 several fields of science.22 Nevertheless, the employment of
77 DESs in the synthesis of active pharmaceutical ingredients
78 (APIs) is still in its infancy.21,23−30

79 Building on our research on the use on nonconventional,
80 environmentally friendly solvents like DESs31−37 and
81 water25,38−41 in synthetic organic chemistry, herein, we wish
82 to report the first sustainable procedure for the preparation of
83 Thenfadil (3a) by combining a reductive amination process
84 between thiophene 3-carbaldehyde (6a) and N,N-dimethyle-
85 thylenediamine (7) with a Cu-catalyzed Ullmann-type C−N

86coupling reaction between the resulting adduct 8a and 2-
87bromopyridine (9a) (Scheme 1c). The following features of
88the proposed protocol are in order: (i) Both reaction steps
89have been fully optimized in DESs with an overall reaction
90yield of 39%, working under aerobic conditions. (ii) Impurities
91have been isolated and characterized, and a novel workup/
92purification procedure has been set up to increase the purity of
93the product and to favor the recycling of the unreacted
94intermediate secondary amine. (iii) The whole procedure has
95been scaled up to 50 g of substrate in 0.5 kg of DES, thereby
96bridging the gap between fundamental chemistry and industrial
97applications. (iv) The reproducibility and the robustness of the
98methodology has been demonstrated in the synthesis of three
99analogs of Thenfadil (3a), that is tripelennamine (3b),
100methaphenilene (3c), and thonzylamine (3d).

101■ EXPERIMENTAL SECTION
102Preparation of DESs. Deep eutectic solvents [choline chloride
103(ChCl)/glycerol (Gly) (1:2 mol mol−1); ChCl/urea (1:2 mol
104mol−1)] were prepared by heating under stirring at 60−80 °C for
10510−30 min the corresponding individual components until a clear
106solution was obtained. Cyclopentyl methyl ether (CPME) was used as
107the solvent in the workup procedures.
108Experimental Procedures: Synthesis of Thenfadil. Typical
109Procedure. First Step. Reductive Amination of 6a in ChCl/Gly:
110Synthesis of N1,N1-Dimethyl-N2-(thiophen-3-ylmethyl)ethane-1,2-
111diamine (8a). To a stirred solution of 6a (0.5 mmol) in ChCl/Gly
112(1:2 mol mol−1, 1 g), at room temperature and under air, first, N,N-
113dimethylethylenediamine 7 (1 equiv, 0.5 mmol, 44 mg) was added,
114followed by the addition of NaBH4 (1.1 equiv, 0.55 mmol, 20.7 mg)
115after 1 h stirring. The progress of the reaction was monitored by GC.
116After completion of the reaction (reaction time, 2 h), water (1 mL)
117was added, and the corresponding mixture was extracted with CPME
118(2 mL × 1 mL). Evaporation of the solvent under reduced pressure
119afforded amine 8a in 98% isolated yield (81 mg).
120Second Step. Ullmann Coupling Reaction in ChCl/Gly between
1212-Bromopyridine (9a) and Diamine 8a: Synthesis of Thenfadil (3a).
122In a vial with a Teflon screw tap, diamine 8a (0.5 mmol), 2-
123bromopyridine (9a) (1 equiv, 0.5 mmol), CuI (10 mol %, 0.05 mmol,
1249.5 mg), and a base (t-BuOK, 3 equiv, 1.5 mmol, 168 mg) were
125suspended in ChCl/Gly (1:2 mol mol−1, 1 g), under air and vigorous
126stirring at 80 °C. After 12 h, the mixture was cooled to room
127temperature, and 1 mL of 10% NaOH aq solution was added. The
128corresponding mixture was vigorously stirred for 10 min and
129subsequently centrifugated for 30 min. A brown oil was separated
130from the water phase in the bottom of the tube. The separation of the
131oil from the water phase afforded the target product 3a in 40%
132isolated yield as a free base.
133Recovery of Diamine 8a. The water phase was extracted with
134CPME (2 mL × 1 mL), and the organic phase was dried over
135anhydrous Na2SO4, thereby providing the starting diamine 8a. Then,
136an HCl solution (7N) in i-PrOH was added to the crude, and the
137diamine hydrochloride 8a was precipitated as a white solid (1H NMR
138purity, 97%) and thus purified by impurities which remained in the
139organic phase. After solubilizing the diamine hydrochloride 8a in
140water, treatment with NaOH 30%, followed by extraction of the water
141phase with EtOAc, afforded 8a as a yellow oil.
142Scaling Up the Synthesis of Thenfadil (3a) in DES. The
143reductive amination reaction proceeded uneventfully at room
144temperature in air also on a 1 g (9 mmol) scale of 6a, using 10 g
145of ChCl/Gly (1:2 mol mol−1) in a 50 mL round-bottomed flask,
146thereby affording 8a in 98% yield (1.62 g), according to the procedure
147detailed for a 0.5 mmol scale reaction (vide supra). By scaling up
148further the reaction either on a 10 g (90 mmol) or a 50 g (450 mmol)
149scale of 6a, in a round-bottomed flask of 500 mL or 1 L filled with 100
150or 500 g ChCl/Gly, respectively, diamine 8a could again be isolated in
15198% yield (10 g scale, 16.2 g; 50 g scale, 81.0 g). As for the second
152step, by performing the synthesis of 3a (vide supra) on a 1.62 (10 g of

Scheme 1. Synthesis of Thenfadil (3a) by (a)
Functionalization of a Preformed 2-
(Dimethylaminoethylamino)-Substituted Pyridine 1 with 2-
Bromomethylthiophene (2) through Refluxing in Dry
toluene, (b) Functionalization of 1 with 5-Bromothiophene-
3-carbonyl Chloride (4) through Refluxing in Pyridine,
Followed by Reduction with LiAlH4 in Dry Et2O, (c)
Combining a Reductive Amination Reaction between
Thiophene 3-Carbaldehyde (6a) and N,N-
dimethylethylenediamine (7) with a Cu-Catalyzed Ullmann-
Type C−N Coupling Reaction between Adduct 8a and 2-
Bromopyridine (9a), Both Run in DES under Aerobic
Conditions
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153 ChCl/Gly, 16.2 g (100 g of ChCl/Gly) or 81.0 g (500 g of ChCl/
154 Gly) scale of 8a, Thenfadil was finally isolated in 0.919, 9.2, or 45.9 g,
155 respectively. The round-bottomed flasks used were only equipped
156 with a reflux condenser, while monitoring the temperature and the
157 stirring throughout the reaction. No other special equipment was
158 required, and there was no increase either in the formation of main
159 byproducts 11 and 12.
160 Synthesis of Thenfadil Analogues. To a stirred solution of
161 aldehyde 6b or 6c or 6d (9 mmol) in ChCl/Gly (1:2 mol mol−1, 10
162 g), at room temperature and under air, N,N-dimethylethylenediamine
163 7 (1 equiv, 9 mmol, 793 mg) was first added, followed by the addition
164 of NaBH4 (1.1 equiv, 9.9 mmol, 373 mg) after 1 h stirring. The
165 progress of the reaction was monitored by GC. After completion of
166 the reaction (reaction time: 2 h), water (10 mL) was added, and the
167 corresponding mixture was extracted with CPME (2 × 5 mL).
168 Evaporation of the solvent under reduced pressure afforded amine 8b
169 or 8c or 8d in 98% yield each. The isolated diamine was finally
170 suspended in ChCl/Gly (1:2 mol mol−1, 10 g), previously dried under
171 reduced pressure, and CuI (10 mol %, 0.9 mmol, 171 mg), t-BuOK (3
172 equiv, 27 mmol, 4.536 g) and the corresponding aryl halide 9a or 9b
173 or 9c (1 equiv, 9 mmol) were added. After 12 h reaction time, the
174 desired targets 3b−d were isolated in 40−45% yield. Isolation and
175 purification of 3b−d was achieved according to the procedure
176 reported for Thenfadil (3a) (vide supra).

177 ■ RESULTS AND DISCUSSION
178 Our study commenced by focusing on the reductive amination
179 process between 6a and diamine 7 in DES. Inspired by a recent
180 paper by Heydari et al. on the reductive amination of
181 aldehydes/ketones in the presence of DES choline chloride
182 (ChCl)/urea (1:2 mol mol−1) as a catalyst and NaBH4 as a
183 reducing agent in MeOH,42 we worked on setting up a
184 straightforward one-pot, two-step procedure in DES only. To
185 this end, a suspension of 6a (0.5 mmol) and 7 (1 equiv) in
186 ChCl/urea (1:2 mol mol−1, 1 g) was vigorously stirred at room
187 temperature (RT, 25 °C), and the imine formation (10) was
188 monitored by GC analysis. After 1 h, the resulting mixture was
189 treated with NaBH4 in the absence of additional solvents and
190 then stirred for additional 2 h. After this time, a complete
191 conversion of 10 into 8a took place. After extraction with
192 cyclopentyl methyl ether (CPME),43 the desired diamine 8a
193 was isolated in 98% yield, with a purity of 98% (1H NMR
194 analysis). Of note, the effectiveness of this transformation was
195 still maintained when switching to ChCl/glycerol (Gly) (1:2

s2 196 mol mol−1, 1 g) as the DES (Scheme 2).

197 The presence of impurities in a synthetic process, originating
198 mainly from the raw materials, solvents, intermediates, and
199 byproducts, decreases the yield of the desired product
200 significantly. In the case of an API, impurities may also affect
201 its industrial synthesis in terms of quality, efficiency, and
202 safety.44 This is why identification and characterization of
203 impurities are of pivotal importance for the development of a

204good manufacturing procedure, even if this is often
205challenging.45 Under the best conditions previously found for
206the synthesis of aromatic amines in DESs (CuI 10 mol %, t-
207BuOK 3 equiv, 100 °C, 12 h in ChCl/Gly),46 the reaction
208between 2-bromopyridine (9a) (0.5 mmol) and diamine 8a (1
209equiv) provided Thenfadil 3a in 10% yield only, along with
210two main side products, 2,2′-oxydipyridine (11) (46% yield)
211and 3-(pyridin-2-yloxy)propane-1,2-diol (12) (32% yield) (1H
212NMR analysis), the latter being most probably the result of a
213 t1competitive Ullmann-type C−O coupling reaction (Table 1,
214entry 1).47 It was also found that the yield of 3a could be
215increased up to 30% by decreasing the temperature to 60 °C,
216but the formation of 11 still competed strongly (40% yield)
217(Table 1, entry 2). Switching ChCl/Gly for ChCl/urea, the
218yield of ether 11 increased up to 50% at 100 °C (Table 1, entry
2193). By suspending 9a in a mixture of ChCl/Gly, CuI, and t-
220BuOK at 100 °C, without diamine 8a, a full conversion of 9a
221into 11 (70% yield) and 12 (30% yield) took place (Table 1,
222entry 4), whereas 11 was formed in greater than 98% yield as
223the sole product in ChCl/urea (Table 1, entry 5). Conversely,
224by leaving diamine 8a in ChCl/Gly, in the presence of CuI and
225t-BuOK at 100 °C, only the starting material was recovered
226after 12 h (Table 1, entry 6). There was similarly no reaction in
227the absence of any copper salt (Table 1, entry 7). Overall,
228these results are consistent with the fact that diamine 8a is not
229responsible for the formation of the observed side products 11
230and 12. According to the literature, access to symmetrical and
231unsymmetrical diaryl ethers (including ether 11) can be
232achieved by Cu-catalyzed double arylation of a simple oxygen
233source, namely, H2O or hydroxide salts.48 This reaction takes
234place at high temperature (130 °C) and requires a long
235reaction time (up to 30 h). Fortunately, when the copper-
236catalyzed C−N coupling reaction between 8a and 9a was run
237at 60 °C in a previously anhydrified ChCl/Gly eutectic
238mixture, the formations of 11 and 12 were suppressed
239dramatically (<5% yield by 1H NMR analysis), whereas adduct
2403a was isolated in 30% yield (35% conversion) (Table 1, entry
2418). The yield of 3a could be increased up to 40% with
242increasing temperature to 80 °C, the remaining being starting
243material only (conversion, 45%) (Table 1, entry 9). It is worth
244noting that the latter yield value (40%) is the result of an
245optimized workup and purification protocol, which avoids
246chromatography, while privileging extraction, centrifugation,
247and crystallization processes (see Experimental Section and
248Supporting Information).
249Switching from laboratory to production scale, a scale-up
250reaction of 3a in ChCl/Gly was then undertaken, in
251collaboration with Laboratori Alchemia.49 As for the first
252step en route to 8a, the reaction was successfully carried out on
253a 1, 10, or 50 g scale by reacting aldehyde 6a (9, 90, or 450
254mmol) with diamine 7 (1 equiv), at RT for 3 h, in 10, 100, or
255500 g of DES, respectively, using a round-bottomed flask
256(volume: 50 mL, 500 mL, or 1 L) in the presence of NaBH4
257(1.1 equiv). In all cases, diamine 8a was isolated in 98% yield
258(1 g scale, 1.62 g; 10 g scale, 16.2 g; 50 g scale, 81.0 g) after a
259simple extraction with CPME and subsequent removal of the
260volatiles under reduced pressure (purity, 98% by 1H NMR
261analysis). By performing the Cu-catalyzed C−N coupling
262reaction (second step) of 1.62, 16.2, or 81.0 g of 8a with 9a (1
263equiv) in 10, 100, or 500 g of ChCl/Gly, Thenfadil could
264finally be isolated in 0.919, 9.2, or 45.9 g, respectively, after 12
265h stirring at 80 °C in a round-bottomed flask equipped with a
266 s3reflux condenser, followed by treatment of the crude with

Scheme 2. Synthesis of Secondary Amine 8a via a Reductive
Amination Reaction between Aldehyde 6a and Diamine 7,
through Imine Intermediate 10, in DES at RT
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s3 267 water and centrifugation (Scheme 3). The recovery of diamine
268 8a was based on the extraction with EtOAc of the aqueous

269 phase and crystallization as an hydrochloride salt white solid
270 from an HCl−isopropanol solution (purity, 97% by GC), while

271eliminating impurities (see details in the Experimental Section
272and in the Supporting Information).
273To better quantify the green credentials of the synthetic
274process developed, we have made use of the First Pass
275CHEM21 Metrics Toolkit developed by Clark et al.50 for the
276synthesis of Thenfadil in DESs, calculating atom economy
277(AE), reaction mass efficiency (RME), optimum efficiency
278(OE), effective mass yield (EM), mass intensity (MI), and
279process mass intensity (PMI) metrics, with a breakdown of the
280latter for “chemicals” (reactants, reagents, and catalyst) (PMI
281rxn), chemical and reaction solvents (PMI solv), and workup
282and reaction solvents (PMI WU) and compared these values
283(whenever possible) with the corresponding ones related to
284the last available synthetic procedure for Thenfadil published
285 t2in 1954 by Campaigne and Bourgeois (Scheme 1b, Table 2; for
286details, see Supporting Information).11 In addition, some
287metrics typical of the Second Pass CHEM21 Metrics Toolkit
288such as space time yield (STY), renewables intensity (RI), and
289renewables percentage (RP) have been calculated as well.
290The overall low impact of the two-step DES-based synthetic
291procedure herein described is made clear especially when
292comparing the PMI rxn (7.3 g g−1) and PMI solv (21.8 g g−1)
293values of this process with those of the classical approach
294reported by Campaigne and Bourgeois (PMI rxn, 22.2 g g−1;

Table 1. Ullmann-Type C−N Bond Formation between 2-Bromopyridine (9a) and Diamine 8a in DES to Give Adducts 3a, 11,
and 12: Optimization of Reaction Conditionsa

Entry DES T (°C) Conversion (%) 3a/11/12 ratiob 3a yield (%)c

1 ChCl/Gly 100 88 10:46:32 −
2 ChCl/Gly 60 75 30:40:<5 30
3 ChCl/urea 100 50 0:50:0 −
4 ChCl/Glyd 100 >98 0:70:30e −
5 ChCl/uread 100 >98 0:>98:0 −
6 ChCl/Glyf 100 NRg − −
7 ChCl/Glyh 100 NRg − −
8 ChCl/Glyi 60 35 30:<5:<5 30
9 ChCl/Glyi 80 45 40:<5:<5 40

aDES: choline chloride (ChCl)/glycerol (Gly) (1:2 mol mol−1); ChCl/urea (1:2 mol mol−1). Reaction conditions: diamine 8a (0.5 mmol), 2-
bromopyridine (9a) (0.5 mmol), CuI (10 mol %), and t-BuOK (3 equiv) were suspended in 1.0 g DES for 12 h. bCalculated by 1H NMR analysis
of the crude reaction mixture using an internal standard technique (NMR internal standard: CH2Br2).

cYields reported are for products isolated
(see Experimental Section). dWith no added diamine 8a. eCompounds 11 and 12 were isolated in 68% and 30% yields, respectively, by column
chromatography. fWith no added 2-bromopyridine (9a). gNR = no reaction. hWith no added CuI. iChCl/Gly has previously been anhydrified
under reduced pressure.

Scheme 3. Scale-Up Synthesis of Thenfadil (3a), via
Secondary Amine 8a, Run on Scales of 1, 10, and 50 g of 6a
in 10, 100, and 500 g of DES, Respectively

Table 2. Quantitative Metrics of Classical (Scheme 1b) and DES-Based (Scheme 1c) Approaches for Synthesis of Thenfadil
(3a)

Route
Yield
3a

AE
(%)

RME
(%)

OE
(%)

EM
(%)

PMI
(g g−1)

PMI rxna

(g g−1)
PMI solvb

(g g−1)
PMI WUc

(g g−1)
STY

(kg m−3 h−1) RId
RP
(%) E-factor

Scheme 1be 8 61 4.5 7.4 0.6 −f 22.2 156.0 −f −f −f −f 155g

Scheme 1c 39.2 51.4 14.1 27.4 6.7 35.0 7.3 21.8 27.7 1.7 27.7 79 31.8

aProcess mass intensity: reaction. bProcess mass intensity: chemicals and reaction solvents. cProcess mass intensity: workup and reaction solvents.
dRenewable sources: DESs, CPME, water. eCalculated metric data do not take into account the synthesis of starting materials 1 and 4 (Scheme
1b). fMetric data could not be calculated. gThis value does not take into account the amount of solvent used for workup.
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295 PMI solv, 156.0 g g−1), with the former values being less than
296 about 70% and 90%, respectively, and with an E-factor
297 increasing from 31.8 (Scheme 1c) to 155 (Scheme 1b) (Table
298 2).
299 It is also worth highlighting that the sustainable synthetic
300 pathway set up for the preparation of Thenfadil (3a) allowed
301 us to cut current production costs from 325 €/50 mg9 up to

t3 302 0.365 €/51.6 mg (Table 3).
303 The reproducibility and the robustness of the above
304 methodology was then assessed by the sustainable synthesis
305 of Thenfadil’s analogs such as tripelennamine (3b), meth-
306 aphenylene (3c), and thonzylamine (3d) (Scheme 3).
307 According to our protocol, by reacting aldehydes 6b−d (9
308 mmol each) with diamine 7 (1 equiv) in ChCl/Gly (1:2 mol
309 mol−1, 10 g), at RT under air, followed by the addition of
310 NaBH4 (1.1 equiv) after 1 h, the desired secondary amines
311 8b−d were isolated each in 98% yield, with the overall reaction
312 time being 3 h. Each isolated amine was finally suspended in
313 ChCl/Gly (1:2 mol mol−1, 10 g), previously dried under
314 reduced pressure, in the presence of CuI (10 mol %), t-BuOK
315 (3 equiv), and the corresponding (hetero)aryl bromide (9a,
316 9b, or 9c) (1 equiv). After 12 h reaction time, the desired
317 targets 3b−d were isolated in 40%−45% yield (overall yields
318 for the two steps: 39%−44%), after addition of water and
319 centrifugation, with no need of column chromatography (see

s4 320 Experimental Section) (Scheme 4).

321■ CONCLUSION

322In summary, we have reported a sustainable synthesis of the
323antihistamine drug Thenfadil by combining a reductive
324amination process with a Cu-catalyzed Ullmann-type C−N
325cross-coupling reaction, both being fully optimized in environ-
326mentally friendly eutectic mixtures like ChCl/Gly and ChCl/
327urea from readily available and inexpensive starting materials.
328These reactions proceeded smoothly in DESs under aerobic
329conditions, with the desired target being isolated in an overall
330yield of 39%, by simply treating the crude with water followed
331by centrifugation, with no need of column chromatography (E-
332factor, 31.8; PMI, 35.0). The two main byproducts, deriving
333from competitive Cu-catalyzed arylation of oxygen sources
334(namely, water and alcohols as active components of eutectic
335mixtures) have been isolated and characterized. Their
336formation was effectively suppressed by working with
337anhydrous DESs, with the unreacted, intermediate secondary
338amine recovered by crystallization as a hydrochloric salt and
339then recycled. Of note, this route could easily be (a) scaled up
340to 50 g of substrate, working in an open round-bottomed flask
341filled with 500 g of DES, thereby delivering up to 45.9 g of
342Thenfadil with no decrease in the final yield (40%), and (b)
343successfully extended to the synthesis of other ethylenediamine
344derivatives like tripelennamine, methaphenilene, and thonzyl-
345amine in overall 39%−44% yield. Considering the exponential
346growth in the number of publications on DES chemistry over
347the years, scaling up DES-based processes is especially crucial

Table 3. Production Costs of Reagents for Synthesis of 51.6 mg of Thenfadil (3a) Using 1 g ChCl/Glya

DES 6a 7 NaBH4 CPME DES 9a CuI t-BuOK 3a

1 gb 56 mg 44 mg 18.9 mg 3 mL 1g 79 mg 9.5 mg 168 mg 51.6 mg
0.030 € 0.051 € 0.015 € 0.004 € 0.15 € 0.030 € 0.049 € 0.002 € 0.034 € 0.365 €

aDES: ChCl/Gly (1:2 mol mol−1). ChCl: 29 €/500 g (TCI). Gly: 12.20 €/1 L (d 1.26 g/mL) (Alfaesar). 6a: 91.67 €/100 g (Fluorochem). 7: 139
€/500 mL (TCI, d 0.8 g/mL). NaBH4: 118 €/500 g (TCI). CPME: 30.5 €/500 g 0.86 g/mL (Fluorochem). 9a: 310 €/500 g (TCI). CuI: 122
€/500 g (TCI). t-BuOK: 102€ /500g (TCI). b0.57 g of Gly, 0.43 g of ChCl.

Scheme 4. Synthesis of Tripelennamine (3b), Methaphenilene (3c), and Thonzylamine (3d) via Reductive Amination of
Aldehydes 6b−d with Diamine 7 Followed by a Cu-Catalyzed C−N Coupling Reaction of Resulting Adducts 8b−d with
(Hetero)aryl Bromides 9a−c
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348 for industries investing in green technologies. This is in order
349 to develop a truly sustainable industrial production of
350 pharmaceutically relevant drugs based on biobased solvents,
351 thereby avoiding the use of toxic and harmful VOCs.
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