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Abstract: A very low calorie ketogenic diet (VLCKD) impacts host metabolism in people marked by
an excess of visceral adiposity, and it affects the microbiota composition in terms of taxa presence
and relative abundances. As a matter of fact, there is little available literature dealing with microbiota
differences in obese patients marked by altered intestinal permeability. With the aim of inspecting
consortium members and their related metabolic pathways, we inspected the microbial community
profile, together with the set of volatile organic compounds (VOCs) from untargeted fecal and urine
metabolomics, in a cohort made of obese patients, stratified based on both normal and altered intesti-
nal permeability, before and after VLCKD administration. Based on the taxa relative abundances,
we predicted microbiota-derived metabolic pathways whose variations were explained in light of
our cohort symptom picture. A totally different number of statistically significant pathways marked
samples with altered permeability, reflecting an important shift in microbiota taxa. A combined
analysis of taxa, metabolic pathways, and metabolomic compounds delineates a set of markers that is
useful in describing obesity dysfunctions and comorbidities.

Keywords: metabolomics; calorie restrictive diet; VOCs; dietary intervention; obesity; 16S microbiota
profile

1. Introduction

The prevalence of obesity is expected to reach 50% worldwide by 2035, and it is
mainly attributed to a combination of genetic predispositions and environmental factors,
rendering it a complex chronic condition. Given its crucial connections with dietary habits,
gut microbiome, and fecal/urinary metabolome, a comprehensive understanding of its
etiology is crucial. This complexity underscores significant health ramifications, including
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heightened susceptibilities to coronary heart disease, hypertension, diabetes mellitus,
gallbladder disease, osteoarthritis, and specific forms of cancer [1].

The common denominator of obesity and some of its related comorbidities is a sub-
inflammatory status, featuring the secretion/release of pro-inflammatory cytokines from
adipose tissue and a consequent infiltration of leukocytes and macrophages into the adipose
tissue [2]. The persistent inflammation leads to an increased gut epithelial permeability
sustained by an unregulated transit of lipopolysaccharide (LPS) and other inflammatory
triggers, directly released into the bloodstream and leading to the assembly of multi-
meric signaling complexes called inflammasomes [3]. Beyond the high presence of pro-
inflammatory markers, one of the major risk factors consists of the intake of nutrients
from westernized diets that alone can lead to a shift in the gut microbiome profile and can
negatively impact the intestinal permeability [4].

Among various suggested dietary interventions, very low calorie ketogenic diets (VL-
CKDs) have proven effective for weight loss in obese individuals, affecting the associated
metabolic processes. However, a VLCKD’s potential impacts on gut microbiota composi-
tion, function, and gut barrier integrity may raise concerns. A VLCKD could exacerbate an
already compromised intestinal balance, such as that in obese individuals. Our previous
investigations suggested a correlation between the integrity of the intestinal barrier, the
ketogenic diet, and its influence on the gut microbiota in obese patients. Our study revealed
that obese patients following an 8-week VLCKD treatment had a significant reduction
in body weight but exhibited impaired intestinal permeability, dysbiosis, and increased
serum levels of LPS (lipopolysaccharides). However, our obese patients did not respond
uniformly to VLCKD treatment, which might trigger an intestinal barrier impairment [5].
As indicated by an increased lactose/mannose ratio, this difference can be attributed to a
shift from glucose to ketone bodies.

In the analyses shown here, beyond the VLCKD effect on energy consumption, we
report how this dietary regimen impacts gut microbiota taxa composition and density
depending on intestinal permeability. In line with an increasing body of evidence
stating a strict association between gut microbiota dysbiosis and obesity comorbidities,
we better detailed a more conspicuous reshaping of microbiota metabolism in VLCKD
obese patients with altered permeability when compared with those marked by a normal
permeability status.

2. Materials and Methods
2.1. Study Experimental Design and Recruited Participants

Our drawn conclusions are based on the experimental design carried out at the
Italian Centre of Nutrition for the Research and Care of Obesity and Metabolic Diseases,
partner of the National Institute of Gastroenterology IRCCS “Saverio de Bellis” in
Castellana Grotte (Ba).

Recruited obese participants had an age ranging from 18 to 65 years and a BMI
exceeding 30 kg/m2. Medical history review, physical examination, and laboratory tests
were performed on the entire cohort that was composed of 25 patients without irritable
bowel syndrome (IBS). Based on the lactulose/mannitol ratio, this cohort was further
subdivided into two sub-clusters, consisting of 14 samples indicating normal permeability
and 11 samples indicating altered permeability. Fecal and urinary samples were collected
in three days before starting the VLCKD treatment, as reported in our previous study [6].

During the collection of participants’ medical history, information regarding smoking
and daily alcohol consumption habits was obtained. Specifically, participants were asked
to adhere to the American and European guidelines, indicating whether they consumed
more than two glasses of alcohol per day (or one for females) [6]. The threshold for men
was set at 30 g/day, while for women, it was 20 g/day.

Exclusion criteria encompassed hypersensitivity to meal replacement, patients
suffering from cerebrovascular and cardiac diseases, respiratory insufficiency, type 1
diabetes mellitus, severe gastrointestinal diseases, chronic kidney disease, pregnancy,
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lactation, and psychiatric issues. Additionally, we took into consideration the presence
of eating disorders, liver failure, substance abuse, frail elderly patients, active/severe
infections, rare diseases, disorders related to mitochondrial fatty acid oxidation, and
serious mental illnesses. Moreover, 15 days before starting the dietary intervention,
participants were asked to stop any probiotics use, together with vitamins, drugs, or
any other additional supplement.

The used protocol (Prot. n. 170/CE De Bellis) received approval from the internal
Medical Ethical Committee and respected the Helsinki Declaration (1964). Participants
signed a written consent form before their enrolment. The present study is presented within
the ClinicalTrials.gov database and corresponds to the identifier NCT05477212.

The analyses carried out in the present paper are based on the sample cohort strati-
fication that relies on the assessment of intestinal integrity. More in detail, as reported in
the previous pilot study [5], the integrity of intestinal barrier was assessed based on the
Lac/Man ratio, using a threshold value of 0.03.

2.2. DNA Extraction from Fecal Samples

Fresh fecal samples were collected from a total of 20 obese subjects before and after
being administered with the VLCKD. With respect to the total number of samples included
in the clinical trial (n = 25), five samples were dropped out because of the poor quality of
extracted fecal DNA. Among these 40 sample points, 1 sample gave too few reads to be
compared and was dropped out. Thus, a total of 19 samples were kept in the whole batch,
as reported in the CONSORT flowchart (Supplementary Figure S1).

Total bacterial DNA was extracted from stool samples by means of the QIAamp
FAST DNA Stool Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s
instructions; a NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA) and Qubit Fluorometer 1.0 (Invitrogen Co., Carlsbad, CA, USA) were used to de-
termine the yield and quality of extracted DNA. The 16S metagenomic sequencing was
in service performed at Genomix4life S.R.L. (Baronissi, Salerno, Italy). More specifically,
the amplification of the V3 and V4 regions of the 16S target gene was obtained by using
the following couple of primers, forward: 5′-CCTACGGGNGGCWGCAG-3′ and reverse:
5′-GACTACHVGGGTATCTAATCC-3′. Metagenomic Sequencing Library Preparation (Illu-
mina, San Diego, CA, USA) was used as a guide reference for PCR reactions. A negative
control was added to the experiment in order to avoid contamination. The resulting li-
braries were then quantified using a Qubit fluorometer (Invitrogen Co., Carlsbad, CA, USA)
and pooled to an equimolar amount of each index-tagged sample at a final concentration
of 4 nM, including the Phix Control Library. The pooled samples were subjected to cluster
generation and sequenced on the MiSeq platform (Illumina, San Diego, CA, USA) in a
2 × 300 paired-end format.

2.3. Sequencing Quality Check and Metataxonomic Bioinformatics Pipeline

Raw reads’ quality was checked by FastQC software. From denoising-to-taxonomic
assignment, in silico bioinformatics analyses were performed in a “anaconda” environment
ad hoc customized on the QIIME2 [7] microbiome platform (version 2020.8) and relative
plugins. More in depth, QIIME plugin q2-deblur (https://github.com/qiime2/q2-deblur,
accessed on 25 March 2024) was specifically used in the denoising step, and alpha (Shannon
entropy and Faith’s PD) and beta diversity metrics, together with the relative statistics
(PERMANOVA), were run using a nested function. The database used for metabarcod-
ing annotation was SILVA 138 (https://www.arb-silva.de/documentation/release-138/,
accessed on 25 March 2024) to infer relative taxonomy.

Statistically significant changes in alpha and beta diversity were assessed by Bray–
Curtis, Jaccard, Weighted Unifrac, and Unweighted Unifrac distance matrices computed
using QIIME II nested plugins. The same software was used to compute PERMANOVA
test. White’s non-parametric statistic corrected for multiple tests (Benjamini–Hochberg)
allowed us to retrieve statistically significant hits in the two groups’ pairwise comparisons

https://github.com/qiime2/q2-deblur
https://www.arb-silva.de/documentation/release-138/
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that where then plotted as extended error bar plots, thanks to the STAMP 8.30 software
python routine environment. More in detail, the plot reports the effect size and associated
confidence interval for each significative feature (corrected p < 0.05) obtained in STAMP
software by applying corrected Welch test (BH) statistics based on the normalized matrix
from QIIME2. The scale value reports the relative abundances transformed in mean
proportions. The software computes the mean proportions that are taken over by the whole
set of samples belonging to each group.

2.4. Metabolic Pathway Prediction

Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt2) pipeline version 2.0 (https://picrust.github.io/picrust/, accessed
on 25 March 2024) was run as an extension of QIIME2 software in the same anaconda
environment. The MetaCyc pathway abundance matrix was directly employed as input
for comparing the groups.

2.5. NCBI Bioproject

Sequencing fastQ raw files were used to create a dedicated NCBI bioproject for VLCKD
samples (PRJNA1090658).

2.6. Fecal and Urinary GC-MS Metabolite Profiles

An experiment of gas chromatography coupled with mass spectrometry was per-
formed on fecal and urinary samples. In detail, one gram of feces (n = 29 and n = 14 for
the probiotic and placebo groups, respectively) was placed in 10 mL glass vials. Ten micro-
liters of 4-methyl-2-pentanol (final concentration of 1 mg L−1) were added as an internal
standard. Samples were equilibrated for 10 min at 60 ◦C. Solid-phase microextraction fiber
(divinylbenzene/Carboxen/polydimethylsiloxane) was exposed to each sample for 40 min.
The VOCs were thermally desorbed by immediately transferring the fiber to the heated
injection port (220 ◦C) of Clarus 680 (Perkin Elmer, Beaconsfield, UK) gas chromatography
equipped with an Rtx-WAX column (30 m × 0.25 mm i.d.; 0.25 µm film thickness) (Restek)
and coupled to a Clarus SQ8MS (Perkin Elmer) [6]. The column temperature was set
initially at 35 ◦C for 8 min, and then it was increased to 60 ◦C at 4 ◦C min−1, to 160 ◦C at
6 ◦C min−1, and finally to 200 ◦C at 20 ◦C min−1 and held for 15 min. Urine was collected
individually in safe, sterile boxes.

A 20 mL glass vial was supplied with 2 g urine plus 10 µL of internal standard solution
(2-pentanol-4-methyl) at 33 ppm. Vials were sealed with polytetrafluoroethylene-coated
silicone rubber septa (20-mm diameter; Supelco, Bellefonte, PA, USA). To obtain the best
extraction efficiency, the solid-phase microextraction (SPME) was performed by exposing a
conditioned 75 µm Carboxen/PDMS fiber (Supelco, Bellefonte, PA, USA) to the headspace
of 2 mL of acidified (pH 2) urine sample with 1 g of NaCl for 60 min at 60 ◦C after a
35 min incubation) [6]. The extracted compounds were desorbed in splitless for 3 min at
280 ◦C. A Clarus 680 (PerkinElmer, Waltham, MA, USA) gas chromatograph equipped
with an Elite-624Sil MS Capillary Column (30 m × 0.25 mm i.d.; 1.4 µm film thickness;
PerkinElmer) was used. The column temperature was set initially at 40 ◦C for 3 min and
then increased to 250 ◦C at 5 ◦C/min and to 280 ◦C at 10 ◦C/min and finally held for 5 min.
Helium was used as the carrier gas at a flow rate of 1 mL/min. The analyses lasted 58 min.

Spitless injection was used for sample introduction into the capillary column. Helium
was used as the carrier gas, with a flow rate of 1 mL min−1. The source and transfer line
temperatures were maintained at 250 ◦C and 230 ◦C, respectively. Electron ionization
masses were recorded at 70 eV in the mass-to-charge ratio interval, which was from 34 to
350 m/z. The gas chromatography–mass spectrometry generated a chromatogram with
peaks representing individual compounds. Each chromatogram was analyzed for peak
identification using the National Institute of Standard and Technology 2008 library. A
peak area threshold of >1,000,000 and 85% or greater probability of match was used for
VOC identification, followed by manual visual inspection of the fragment patterns when

https://picrust.github.io/picrust/
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required. 4-Methyl-2-pentanol (final concentration 1 mg L−1) was used as an internal
standard in all analyses to quantify the identified compounds via interpolation of the
relative areas versus the internal standard area.

2.7. Statistical Analyses

Multivariate statistical analyses inclusive of principal component analysis and partial
least square differential analysis (PLS-DA) were run in R environment, using the “prcomp”
and “PLSR.Anal” functions implemented in R MetaboAnalystR-software (version 2.0.0),
respectively. The VIP score indicated those variables that most contributed to the PLS-
DA clustering. A non-parametric Wilcoxon rank-sum test combined with a fold-change
analysis was rendered as a volcano plot, which was useful in summarizing the statistically
significant metabolic pathways.

Pairwise group taxa comparisons were performed based on the White’s non-parametric
statistical test corrected for multiple tests (Benjamini–Hochberg), and only statistically sig-
nificant hits (corrected p < 0.05) were further inspected. Relative results were then plotted
as extended error bar plots, thanks to the STAMP software python routine environment. In
all the considered analyses, only multiple-test-corrected items were considered (q < 0.05).

3. Results

We here primarily investigated the microbiota taxa differences (16S rRNA gene se-
quencing) emerging from VLCKD-administered subjects with normal and altered intestinal
permeability. Our step-by-step investigation protocol, including four papers, moved from
the investigation of clinical parameter changes in the obese patient cohort under VLCKD [5]
to the evaluation of metabolite signatures in two different stratifications based on treat-
ment and intestinal permeability [6,8]. The 16S taxa profiles were evaluated by stratifying
patients based on the same stratifications.

The present sequencing metataxonomic dataset was evaluated by tracing a crosslink
between VOC profiles derived from both fecal and urine samples in paired subjects. The
complete panel of 16S sequencing-derived taxa was inspected in terms of both alpha and
beta diversity, as well as in terms of statistically significant predicted pathways based on
microbiota taxa abundances.

3.1. Multivariate Analyses Based on Single and Mixed Data Matrices

Upon the first data inspection, the supervised clustering approach did not resolve
clouds relative to samples from subjects with altered permeability. The PLS-DA plot based
on taxa at the genus level failed in distinguishing samples belonging to the four assigned
groups (Supplementary Figure S2).

The same multivariate analysis takes advantage of the merging together of variables
from 16S rRNA analyses and untargeted metabolomics both from fecal and urines samples
(Figure 1 and Supplementary Figure S3). Although with a higher background noise, the
samples were distinguished in four groups.

Looking at variables with a higher impact (high VIP score), we see that the genus
Butyrricicoccus was the one that had the highest VIP score and was specifically associated
with the post-treated group with altered permeability. Moreover, among the top VIPs with
a score greater than 2.3, five VOCs followed, and they are acetone; benzene; 1-ethenyl-4-
methoxy-; ethanone, 1-(2-furanyl)-, together with two esters, butanoic acid hexyl ester and
propanoic acid; and pentyl ester.

Microbiota taxa distribution and richness were indicative of a statistically significant
change in the alpha diversity estimate between before- and after-dietary-intervention
samples, as detected by computing the Faith’s PD metric (Supplementary Figure S4).

On the contrary, no statistically significant change in alpha diversity resulted when the
stratification based on intestinal permeability was used. At the same, when we inspected
the beta diversity, neither the treatment nor the intestinal permeability group’s belongings
were useful in clustering samples.
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Figure 1. PLS-DA plot. A normalized matrix composed of fecal and urine metabolites, plus 16S
taxa, was used as input for the PLS regression analysis. (a) Component 1 versus component 2 PLS-
DA score plot based on 16S metataxonomic and metabolomics (fecal and urinary VOCs) variables.
(b,d) Relative to other component combinations and, precisely, component 1 vs. 3 and component 2
vs. 3, respectively. (c) Top fifteen “Variable Importance in Projection” (VIP) scores, including both
VOCs and microbiome taxa with a value greater than 2.0.

Looking for changes in taxa presence/abundance as a consequence of VLCKD treat-
ment, we inspected statistical significance at the genus and species levels, but the applied
pairwise statistical test used (Welch BH-corrected test) takes advantage of the taxa col-
lapsing at the genus level (Figure 2). Regardless of the permeability subgroup, when
VLCKD-treated (T2) and -untreated (T1) samples were compared, five genera significantly
decreased in their relative abundances (Storey-corrected Welch test) after VLCKD adminis-
tration, whereas five increased (Supplementary Figure S5). More specifically, Agathobacter,
Ruminococcus, Fusicatenibacter, Collinsella, and Bifidobacterium were all decreased because of
dietary treatment administration. On the contrary, the after-treatment increased-genera list
included Streptococcus, Bacteroides, Eubacterium eligens group, Adlercreutzia, and UBA1819
(Ruminococcaceae family).
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Figure 2. Extended error bar plots of statistically significant bacterial genera that differed as a
consequence of VLCKD dietary treatment in post-altered versus pre-altered samples (A) and post-
versus pre-normal samples (B). Both the plots report the effect size and associated confidence interval
for each significative feature (corrected p < 0.05) obtained in STAMP software by applying corrected
Welch test (BH) statistics based on the normalized matrix from QIIME2. Difference in genus mean
proportions (95% of confidence intervals) resulted from a Welch pairwise test (corrected by applying
a Benjamini–Hochberg multiple test). Post-treatment groups are colored light blue (post-altered) or
orange (post normal), and green (pre-altered) or violet (pre-norm). All the reported genera were
statistically significant after correction (corrected p < 0.05). Because of the direction of the comparison,
the differences in mean proportion for pre-altered samples appeared as negative values.

We then investigated our sample cohort by using the intestinal permeability as meta-
data for sample stratification (Figure 2).

Only three genera had relative abundances that differed between post- and pre-altered
groups (Agathobacter, Ruminococcus, and Bifidobacterium—Figure 2A), whereas five dis-
tinguished post- vs. pre-normal samples (Agathobacter, Roseburia, Subdoligranulum, and
Bifidobacterium—Figure 2B). Thus, the only non-redundant genus that exclusively marked
samples from subjects with altered permeability was Ruminococcus (Figure 2A).

3.2. Biochemical Pathway Prediction Based on 16S Taxa Abundances

The complete set of taxa (at all taxonomic levels) was used to predict the possible
metabolic biochemical pathway profile.

A fold-change analysis of post-altered vs. pre-altered groups highlighted a total of
twenty-four pathway among which only two (Bifidobacterium shunt and heterolactic
fermentation) resulted in being downregulated after VLCKD treatment (Figure 3). As
expected, the list of upregulated variables included seven biochemical pathways related to
lipid metabolism: lipid IVA biosynthesis, Kdo transfer to lipid IVA III, palmitate biosyn-
thesis II, oleate biosynthesis IV, super-pathway of fatty acid biosynthesis initiation (E. coli),
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate), and stearate biosynthesis II. In the
light of a more complex biochemical alteration of microbiota metabolism, another pathway
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related to biotin and mannan degradation by bacteria, the biopolymer of mannose, emerged
(Figure 3 and Table 1).
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Table 1. Statistically significant Picrust2 up- and downregulated pathway table. Each down- or
upregulated pathway (in altered-permeability VLCKD-treated subjects due to the direction of the
pairwise comparison) is related to statistical descriptors, including fold change (FC), log2(FC),
significance (raw.pval), and -LOG10(p).

Pathway FC log2(FC) Corrected
p-Value −LOG10(p)

Chondroitin sulfate degradation I
(bacterial) 33.248 5.0552 0.046401 1.3335

Pyridoxal 5-phosphate biosynthesis I 7.6054 2.927 0.0037022 2.4315

D-glucarate degradation I 7.3074 2.8694 0.01522 1.8176

Anhydromuropeptides recycling 7.0071 2.8088 0.011107 1.9544

Super-pathway of pyridoxal 5-phosphate
biosynthesis and salvage 6.8423 2.7745 0.0055121 2.2587

8-amino-7-oxononanoate biosynthesis I 5.8769 2.555 0.007898 2.1025

Biotin biosynthesis I 5.7884 2.5332 0.007898 2.1025

Palmitate biosynthesis II (bacteria and
plants) 4.9619 2.3109 0.011107 1.9544

Oleate biosynthesis IV (anaerobic) 4.6762 2.2253 0.011107 1.9544

Super-pathway of fatty acid biosynthesis
initiation (E. coli) 4.596 2.2004 0.011107 1.9544
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Table 1. Cont.

Pathway FC log2(FC) Corrected
p-Value −LOG10(p)

Palmitoleate biosynthesis I (from
(5Z)-dodec-5-enoate) 4.5835 2.1965 0.011107 1.9544

Stearate biosynthesis II (bacteria and
plants) 4.5657 2.1908 0.011107 1.9544

mycolate biosynthesis 4.4898 2.1666 0.011107 1.9544

ADP-L-glycero-beta-D-manno-heptose
biosynthesis 4.2874 2.1001 0.027396 1.5623

lipid IVA biosynthesis 3.8011 1.9264 0.035952 1.4443

Super-pathway of L-methionine
biosynthesis (by sulfhydrylation) 3.4462 1.785 0.02065 1.6851

Kdo transfer to lipid IVA III (Chlamydia) 3.3877 1.7603 0.035952 1.4443

Super-pathway of
GDP-mannose-derived O-antigen
building blocks biosynthesis

2.7817 1.476 0.035952 1.4443

Sulfate reduction I (assimilatory) 2.6706 1.4172 0.02065 1.6851

Super-pathway of sulfate assimilation
and cysteine biosynthesis 2.5613 1.3569 0.02065 1.6851

Mannan degradation 2.4624 1.3001 0.046401 1.3335

Heme biosynthesis II (anaerobic) 2.1869 1.1289 0.0055121 2.2587

Heterolactic fermentation 0.48974 −1.0299 0.007898 2.1025

Bifidobacterium shunt 0.44482 −1.1687 0.0060678 2.217

It is noteworthy that, when post- and pre-VLCKD-administered patients with normal
permeability were statistically compared, only two downregulated pathways emerged, i.e.,
the super-pathway of GDP mannose-derived O antigen building blocks biosynthesis and
mannan degradation (Supplementary Figure S6).

3.3. 16S Metabolic Predicted Pathways vs. Untargeted Metabolomics VOCs

With the aim of discovering the significant associations between VOCs and predicted
pathways, we used the output of two separately run fold-change analyses. The network
plot reported all the statistically significant linear cross-correlations computed based on
Picrust2 pathways and fecal/urinary VOCs derived from comparing post-altered and
pre-altered sample groups (Figure 4).

The Pearson’s correlation analysis resulted in few statistically significant correlations
(r > 0.7) emerging among all cross-linear comparisons. Specifically, the compound hexanal
from urines was positively correlated with the Bifidobacterium shunt pathway. It is note-
worthy that other statistically significant correlations involved the anethole and a list of
biochemical pathways, namely mannan degradation, lipid IVA biosynthesis, Kdo transfer
to lipid IVA III, ADP-L-glycero-beta-D-manno-heptose biosynthesis, super-pathway of
pyridoxal 5-phosphate biosynthesis and salvage and pyridoxal 5-phosphate biosynthesis
I, super-pathway of L-methionine biosynthesis via sulfhydrylation, sulfate reduction I
assimilatory, and super-pathway of sulfate assimilation and cysteine biosynthesis.
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Figure 4. Pearson correlation between statistically significant predicted pathways and fe-
cal/urinary VOCs, as derived from the comparison between pre- and post-VLCKD-administered
subjects with altered intestinal permeability. Network plot of significant linear correlations re-
ported as linear connection (p-value < 0.05 and r > 0.7). Blue lines indicate positive correlations
among variables (nodes). Red font indicates fecal and urinary VOCs, whereas black font is relative
to metabolic pathways.

4. Discussion

VLCKD treatment leads to several changes in host metabolism regulation, as evidently
supported by the volatile organic compounds (VOCs) profile from feces and urines [8], as
well as by the Lac/Man ratio [5]. To investigate the commensal gut microbiota taxa, we
inspected the 16S rRNA gene sequencing in the presence of normal and altered intestinal
permeability. In addition, we connected the related predicted metabolisms with statistically
significant VOCs.

Regarding microbiota richness, the dietary intervention leads to an increase in the
alpha diversity value, regardless of the intestinal permeability type. It is worth noting
that this difference was dissolved when the stratification considered the permeability
subgrouping, reflecting a lower power of PLS-DA variables.

On the other hand, the concomitant use of VOCs and microbiota variables from 16S
sequencing allowed us to obtain a good separation of sample clusters based on dietary
treatment and intestinal permeability, whereas the exploitation of taxonomic annotations
alone has a lower power in explaining sample clusters.

With reference to our microbiota data, although obesity has been classically associated
with a higher Firmicutes/Bacteroidetes ratio, recent analyses did not report a change in
this respect and even suggest a heterogeneous taxa association [9,10]. The Bacteroides-
to-Firmicutes ratio has been demonstrated as an erroneous conception to provide any
association with health status [9,11–13].

The administration of energy-restricted diets rearranges obese and overweight gut
microbiota, resulting in an increased microbial diversity and gene richness [14]. We sought
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to investigate the combination of VLCKD and intestinal permeability by comparing obese
patients before and after VLCKD dietary intervention.

By inspecting PLS-DA VIP scores, among the most contributing gut microbial taxa
useful in discriminating the four analyzed groups, we identified the butyrate-producing
bacterium genus Butyricimonas, that ranked first. This genus has been positively associated
with weight loss and BMI reduction [15], and we found its increase in both post-treatment
groups. Moreover, the exploration of taxa data revealed a decrease in the relative abun-
dance of Ruminococcus, and this decrease, in fact, is a hallmark of post-treated altered
permeability patients. This genus has been positively correlated with the intake of pro-
tein, monounsaturated fat, vitamin A, and vitamin D, and its reduced relative abundance,
together with that of Bifidobacterium, is indicative of a heightened risk of CVDs’ shared
comorbidities with obesity [16].

The presence of other taxa emerging from our statistical analysis is in line with and
supported by the recent literature ascertaining how the gut microbiota of frail older people
changes in relation to the age of subjects and consequently to the intestinal permeability [17].
This is the case of Roseburia, which plays a major role in maintaining the intestinal barrier
function and immune defense [18,19], and together with the Ruminococcus genus, it exerts
a degrading activity against resistant starch and cellulose in plant-based foods, resulting
in SCFA production [20]. We measured SCFA by GC-MS target analyses in our previous
paper [6], and the only significant difference was found in the butanoic acid level, which
decreased after treatment. These two paired results agree on highlighting a detrimental
effect of altered permeability in combination with the VLCKD diet, moving the symptom
picture far away from gut homeostasis.

The distribution and abundance of microbiota taxa in the intestinal districts are sensi-
tive to various factors, including gastric acid secretion, gastrointestinal peristalsis, and IgA
secretion [21], and thus an increase in bacterial fermentative activity may be in turn linked
to these factors.

At the same, the diet regimen marked by a disproportion in fat, protein, and fiber
produces metabolic waste products, leading to the overgrowth of putrefactive bacteria.
This metabolic condition is evidently sustained by higher levels of the urinary marker
indican that was found in our obese patient cohort [5]. The increase in specific bacteria like
Bacteroides, generally resulting from rich-in-fat and poor-in-fiber diets, has been strongly
linked to putrefactive dysbiosis [22]. We found a significant increase in Bacteroides after
treatment in obese patients with normal intestinal permeability but not in those with altered
intestinal permeability.

The microbial metabolic-pathway predictions based on sequencing data evidenced a
set of statistically significant differences between samples before and after the treatment
and allowed us to distinguish between groups based on the intestinal permeability.

The applied approach, although predictive, highlights the downregulation of two
fermentation pathways associated with SCFA production, i.e., the “unique shunt of hexose
catabolism in Bifidobacterium”, which produces primarily acetate and lactate, and the
“heterolactic fermentation”. In a linear correlation between non-normally distributed
data (fecal/urinary VOCs vs. predicted pathways), the Bifidobacterium shunt positively
correlated with the decreased levels of hexanal content in urines from patients with altered
intestinal permeability. As a derivative from lipid peroxidation and from the decomposition
of linoleic acid, this aldehyde is a marker of oxidative stress. Its decrease could be associated
with the antioxidant and anti-inflammatory effect exerted by the ketogenic diet [23].

In line with the reverse association between obesity and bifidobacteria observed by
Waldram and colleagues [24], we found that the Bifidobacterium genus decreased after
treatment independently from intestinal permeability.

Among all the other significant upregulated metabolic predictions, two pathways
related to biotin metabolism were increased in the gut microbiota of obese patients who
underwent VLCKD (8-amino-7-oxononanoate biosynthesis I and biotin biosynthesis I).
Recently, the big MetaCardis cohort studies composed of 1500 adult subjects revealed
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a decrease in biotin biosynthesis and uptake genes and a concomitant reduction in the
microbial metabolism of biotin in participants with severe obesity, together with suboptimal
circulating biotin levels [25]. Since our obese patients were marked by an increase in biotin
metabolisms after dietary treatment, we can consider this shift to be a potential restoration
signal towards the homeostasis status.

The peculiar upregulation found for the predicted anhydromuropeptide recycling
pathway is indicative of the immune system’s engagement during the chronic inflammation
status, a condition that could lead to insulin resistance in obese patients. As well supported
by the inspection of microbiota in NOD2-deficient mice, an intact NOD2 peptidoglycan-
sensing system is actively involved in metabolic inflammation and insulin resistance and
counteracts excessive dysbiosis-linked inflammation and insulin resistance [26].

In VLCKD-treated patients with altered permeability, another group of microbial
predicted pathways belonging to fatty acid biosynthesis highlighted the upregulation
of metabolisms involved in utilizing palmitoyl-[acp], the precursor of palmitate. More
in detail, in this group, the increase in palmitate biosynthesis II, stearate biosynthesis II,
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate), and mycolate biosynthesis led us to
argue how the Bacteroidetes phylum also produces sphingolipids through bacterial serine-
palmitoyl transferase [27]. The activation of this pathway confers resistance to oxidative
stress [28], and bacteria-derived sphingolipids modulate host immune responses in the
human gut [29].

Recently, a machine learning approach identified the fecal microbial metabolic super-
pathway of L-methionine biosynthesis (by sulfhydrylation) as being among the best predic-
tors of obesity status [30]. We found how the VLCKD diet led to increased sulfur amino
acid microbial metabolism in the presence of altered intestinal permeability. Bacteria trans-
form sulfate into hydrogen sulfide, which is, in turn, used for cysteine and methionine
biosynthesis, i.e., via the super-pathway of sulfate assimilation and cysteine biosynthesis
and the sulfate-reduction (assimilatory) pathway [31]. In this context, the chronic intesti-
nal inflammation is the result of hydrogen sulfide impacting the intestinal epithelium at
higher concentrations, a multifaceted scenario in which sulfate-reducing bacteria (SRB)
contribute to the activation of the immune response [32,33]. Also, the overexpression of
lipopolysaccharide biosynthesis-related pathways evidently supports the inflammatory
response in altered intestinal permeability. The lipid IVA biosynthesis pathway and the
Kdo transfer to lipid IVA III are responsible for the synthesis and functioning of Lipid
A, the hydrophobic anchor of bacterial lipopolysaccharide that acts as the elicitor of the
eukaryotic innate immune response, acting on pro-inflammatory cytokines [34].

Moreover, the upregulated super-pathway of “GDP-mannose-derived O-antigen build-
ing blocks biosynthesis” and “ADP-L-glycero-beta-D-manno-heptose biosynthesis” are
crucial in the formation of 6-deoxyhexoses and heptose sugars, which are used as compo-
nents of the O-antigen of the microbial LPS. A recent study exploring the gut microbiota of
an obese Chinese children cohort found an increase in “GDP-mannose biosynthesis” and
“UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis” pathways
in metabolic healthy obese subjects compared with a metabolically unhealthy obese co-
hort [35]. Since the GDP-mannose pathway is statistically significant but divergent in the
fold-change analyses of both our subgroups (increased in altered samples and decreased in
normal permeability samples), the effectiveness of VLCKD treatment is directly linked to
the intestinal permeability status.

Our data revealed how the microbial pathway responsible for the chondroitin sulfate
degradation significantly increased after VLCKD in altered permeability subjects. These
data have to be evaluated concomitantly to the increase in Bacteroides genus that arose
from our 16S analysis. Indeed, the literature evidence reported a link between chondroitin
sulfate and the increase in the relative abundance of the gut bacterial genus Bacteroides [36].

Studies on HFD-administered mice demonstrate how oligosaccharides have a
lipase-inhibitory activity impacting the triglycerides absorption in the intestine and
have an adipocyte-inhibitory activity to reduce lipid accumulation [37]. Looking for
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an association between microbial taxa and visceral fat accumulation, Nie and col-
leagues applied a metagenomics approach that is useful in discriminating the most
enriched microbial pathways in obesity. The 10 pathways responsible for energy gener-
ation included the D-glucarate degradation I pathway [38]. Accordingly, we detected
a significant increase in the microbial D-glucarate degradation I pathway after VL-
CKD treatment with altered permeability. Two other important upregulated pathways
(pyridoxal 5-phosphate biosynthesis and the super-pathway of pyridoxal 5-phosphate
biosynthesis and salvage) in altered permeability samples indicated the role of pyri-
doxal 5-phosphate biosynthesis. Pyridoxine increases fat oxidation and significantly
improves insulin sensitivity in overweight and obese subjects [39] by attenuating Ca2+

influx, which stimulates fatty acid synthase expression and activity.
The panel of statistically significant metabolites includes compounds that are not

derivative from microbial metabolism. The increased level of anethole, an aromatic com-
pound derived from fennel and anise essential oils, is linked with antioxidant and anti-
inflammatory effects and positively correlates with important energetic, lipid, and fat
oxidation pathways. Importantly, this molecule impacts energy expenditure by inducing
thermogenesis in adipocytes and muscle cells in obese patients [40].

Finally, we detected an increase in the pathway of heme biosynthesis, and a recent
paper argued about a possible role of heme biosynthesis in rat and human adipogenesis [41].
Based on the study on heme biosynthesis-related gene expression, the postulated hypoth-
esis is that heme allows us to achieve an optimal adipocyte differentiation by sustaining
mitochondrial function.

As a limitation of this study, although our results are supported by the literature evi-
dence, it is worth mentioning that 16S sequencing output has limited resolution at species
and genus levels and may suffer from statistical errors. It was downstream, inferring path-
way prediction is not comparable with shotgun sequencing-derived data (metagenomics).
A new experimental design based on metagenomic and metatranscriptomics sequencing is
being planned.

5. Conclusions

Our experimental design aimed at investigating existing differences in microbiota taxa
and volatile organic compounds in order to compare a cohort composed of obese patients,
marked by altered and normal intestinal permeability, before and after a VLCKD treatment.

A metabolic prediction of biochemical pathways, derived from microbiota taxa relative
abundances, was of aid in identifying a shift in the intestinal homeostasis status and in
tracing the connection with latent inflammation phenotype.

Although suffering from a statistical bias, predicted bacterial metabolisms have been
reported and discussed in the recent literature papers dealing with obese patients adminis-
tered restrictive dietary regimens.

Taken together, these data confirm and extend the knowledge of specific processes
involved in obesity comorbidities, which ultimately depend on immune system activation
and on an altered intestinal permeability status.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16132079/s1, Figure S1: CONSORT flowchart; Figure S2: PLS-DA
score plot. PLS-DA metataxonomic variables at the genus level were used as input for the PLS-DA.
Samples belonging to specific permeability groups was used as stratification criteria; Figure S3: PLS-DA
cross-validation metrics. Cross-validation analysis for each component allowed for estimating Q2 and
R2 indices relatively to PLS model accuracy, when working independently of the specific subset used as
training set. The goodness of the component accuracy is marked by the red asterisk; Figure S4: Alpha
diversity boxplot. VLCKD treated versus not administered sample boxplot. The sample distribution
derived from the application of a Faith’s PD has been plotted as boxplot. The table inside the figure
reports the output of a Kruskal Wallis paired text and includes the p-value and the corrected p (q-value)
obtained after multiple test correction.; Figure S5: Extended error bar plot of statistically significant
bacterial genera that differed as a consequence of VLCKD dietary treatment. Difference in genus mean
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proportions (95% of confidence intervals) resulted from a Welch pairwise test (corrected by applying
a Benjamini Hochberg multiple test) and were reported as error bars for each sample group before
(light blue) and after (orange) VLCKD dietary treatment. Because of the direction of the comparison the
difference in mean proportion for pre-altered samples appeared as negative values. All the reported
genera were statistically significant after correction (q-value < 0.05); Figure S6: Log2 fold change
vs. significance plot in subjects with normal intestinal permeability. Statistically significant Picrust2
pathway obtained by comparing post normal vs. pre normal sample groups have been plotted as a
volcano plot indicating increasing and decreasing abundance in predicted pathways, relatively to the
VLCKD post normal sample group.
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