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A B S T R A C T

Density estimation is a fundamental technique employed in various fields to model and to
understand the underlying distribution of data. The primary objective of density estimation
is to estimate the probability density function of a random variable. This process is particularly
valuable when dealing with univariate or multivariate data and is essential for tasks such
as clustering, anomaly detection, and generative modeling. In this paper we propose the
monovariate approximation of the density using spline quasi interpolation and we apply it in
the context of clustering modeling. The used clustering technique is based on the construction
of suitable multivariate distributions which rely on the estimation of the monovariate empirical
densities (marginals). Such an approximation is achieved by using the proposed spline quasi-
interpolation, while the joint distributions to model the sought clustering partition is constructed
with the use of copulas functions. In particular, since copulas can capture the dependence
between the features of the data independently from the marginal distributions, a finite mixture
copula model is proposed. The presented algorithm is validated on artificial and real datasets.

1. Introduction

Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution
of data. It plays a pivotal role in capturing the inherent patterns and structures within a dataset, making it a crucial component in
statistical modeling, machine learning, and data analysis. The primary objective of density estimation is to estimate the probability
density function (PDF) of a random variable. This process is particularly valuable when dealing with univariate or multivariate data
and is essential for tasks such as clustering, anomaly detection, and generative modeling. Several methods have been developed
to address the challenge of estimating the underlying density function. Classical approaches include histogram-based methods or
kernel density estimation (KDE). These methods vary in complexity, assumptions, and computational efficiency, offering a range
of options to suit different types of data and analytical requirements [1,2]. Other approaches in literature utilize splines [3–5].
Understanding the strengths and limitations of each method is crucial for selecting an appropriate density estimation technique based
on the characteristics of the data at hand. In this work, we aim to investigate a novel method for estimating the probability density
through the utilization of a technique known as B-spline Hermite quasi-interpolant (BSHQI) [6]. We will propose its application for
the development of a new Copula-Based clustering algorithm, where density estimation plays a crucial role. Clustering is considered
an effective method for organizing data into groups based on the similarities in features and characteristics among data points [7].
In recent years, various algorithms have been developed for this purpose [7–14]. For a comprehensive overview of the diverse
approaches in the literature, e.g., [15–18]. One of the most well-known and widely used approaches involves finite mixture modeling,
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which serves as a flexible and robust probabilistic tool for both univariate and multivariate data. However, it is important to note
that Gaussian distributions, commonly used in finite mixtures, may not always accurately represent real-world data aggregation. To
overcome this drawback, the use of alternative distributions, based on copulas, has gained significant interest in recent times for
their potential to enhance the accuracy and applicability of clustering algorithms in a wider range of scenarios.

Copulas offer an alternative and increasingly popular approach to modeling data dependencies and aggregations [19–21]. They
rovide a more versatile framework that does not rely on specific distributional assumptions like Gaussian distributions. Copulas
an capture complex and non-linear relationships between variables, making them particularly useful for situations where data
ggregation behaviors deviate from traditional distributions. The copulas have already been used as a possible solution to the
lustering problem, for example, the authors in [12] address the problem of clusterization by using different families of copulas.
n [22,23], the clusterization process is done by the assumption that the multivariate dependencies are modeled by a new family
f copula called Gaussian Mixture Copula, in [13] the authors analyze models of finite mixtures with different families of copulas,
ssuming that the marginals follow known distributions. The widely used method to fit the finite mixture model to observed data
s the expectation–maximization (EM) algorithm [24,25], to estimate the maximum likelihood. Variations and/or adaptations to
pecial situations of the EM algorithm exist, as the stochastic EM (SEM) algorithm (e.g., [26–28]), the classification EM (CEM)
lgorithm (e.g.[11]), the Monte CarloEM (MCEM) algorithm (e.g., [29,30]) and those developed by [31,32]. An important point
o take into account is that the choice of the copula model-based clustering imposes distributional assumptions on the marginals,
long each dimension, and these marginal distributions are assumed or forced to be identical (e.g. a multivariate normal imposes
nivariate normal distribution on each marginal); such assumptions restrict the modeling flexibility. These restrictive assumptions
ould lead to erroneous modeling. To address this issue, a semiparametric approach is employed, in which marginal distributions
re empirically estimated using kernel density estimation (KDE) [33,34]. In this work, we propose a new strategy that enables the
stimation of marginal densities through the use of the introduced BSHQI, a quasi interpolant operator that has been deeply studied
n the context of ODEs and time series analysis [6,35]. In place of a general interpolation technique, the chosen QI is computationally
ess expensive as it relies on a pre-computation of the expression of the needed coefficients and a Python and Matlab implementation
s freely available [36]. The chosen QI, being of Hermite type, ensures to construct a continuous model which is ‘‘shape-preserving’’, a
undamental requirement in order to approximate a probability density function that should reflect the underlying distribution of the
iven observations. Moreover, we describe a mixture model for density estimation based on Copulas that allows us to automatically
hoose a different Copula for each cluster. The use of the QI enables clustering based on copulas to be rather competitive also in
he multi-dimensional case. As such, usually copulas-based clustering techniques tend to be rather computationally expensive and
herefore this limits the range of their applicability to 2D–3D cases. The paper is organized as follows, in Section 2, the BSHQI density
stimation is described together with its theoretical consistency properties and some statistical tests are conducted to validate the
roved theoretical results. In Section 3 we revise some preliminary concepts related to copulas. In Section 4 the used EM algorithm
or Copula Mixture models is detailed. In Section 5 artificial and real datasets are analyzed and finally some conclusive remarks are
resented in Section 6.

. BSHQI density estimation

Density estimation is a fundamental task in statistical analysis, involving the determination of the underlying probability
istribution for a set of observed data.

Let 𝑋1,… , 𝑋𝑛 be independent and identically distributed (i.i.d) random variables with an unknown Cumulative Distribution
unction (CDF) 𝐹 (𝑥). A non parametric estimator for 𝐹 (𝑥) is provided by the Empirical Cumulative Distribution Function (ECDF)

𝐹𝑛(𝑥) =
∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≤ 𝑥)∕𝑛, where 𝐼(𝑋𝑖 ≤ 𝑥) is the indicator function, equal to 1 if 𝑋𝑖 ≤ 𝑥, and equal to 0 otherwise. However, the
CDF is discontinuous as it jumps with size 1∕𝑛 when 𝑥 = 𝑋𝑖, 𝑖 = 1… , 𝑛 and this is inconvenient since, often, the CDF itself is a
ontinuous function. The information given by the ECDF is the starting point to estimate the PDF. Widely used methods to obtain
n estimator of the PDF are based on Kernel Density Estimation (KDE) [37–39]. KDE employs a kernel function, which serves as a
‘base shape’’, to estimate the density of the data distribution. There are various methods and kernels available for KDE, each with
ts own characteristics. The choice of kernel and method can significantly influence the accuracy of the density estimation. Some
ommon kernels include the Gaussian kernel, the rectangular kernel, the Epanechnikov kernel, and others [2]. The most used kernel
unction is the uniform kernel:

𝐾(𝑥) =

{

1 if 𝑥 ∈ [−1∕2, 1∕2],
0 otherwise.

nd the resulting estimation of the density is called naive kernel 𝑓𝐾 (𝑥), [1]:

𝑓𝐾 (𝑥) =
1
𝑛ℎ

𝑛
∑

𝑖=1
𝐾

(

𝑋𝑖 − 𝑥
ℎ

)

, (1)

where ℎ is the bandwidth parameter and its value affects the width of the KDE curves, and consequently the accuracy of the
estimation.

We propose to estimate the CDF by applying the B-spline Hermite quasi-interpolant [6] to compute 𝑓 (𝑥), approximation of the
′ ̂ ̂
2

probability density 𝑓 (𝑥) = 𝐹 (𝑥), so that the final approximation 𝐹 (𝑥) of the CDF will be given by integrating 𝑓 (𝑥).
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Quasi-interpolation is a technique that allows to construct a local approximant by keeping low the computational cost, see
.g., [40,41] and references therein. Generally, the common way to express a univariate spline quasi-interpolant (QI) of 𝑑-degree

reads as,

𝑄𝑑 𝑓 (⋅) =
𝑁−1
∑

𝑗=−𝑑
𝜆𝑗 (𝑓 )𝐵𝑗,𝑑 (⋅), (2)

where 𝐵𝑗,𝑑 are 𝑑-degree B-splines assumed to be defined on an extended knot vector 𝜏 ∶= {𝜏−𝑑 ,… , 𝜏𝑁+𝑑}, 𝜏𝑗 ≤ 𝜏𝑗+1, and spanning
the space, S𝜋𝑑 ∶= ⟨𝐵−𝑑,𝑑 ,… , 𝐵𝑁−1,𝑑⟩. The local linear functionals 𝜆𝑗 in (2) can be computed by using several methodologies, such as
differential, integral methods, and discrete approaches see,e.g., [41–44]. The main advantage of QI is that it has a direct construction
without solving big linear systems. Moreover, it is local, in the sense that the value of 𝑄𝑑𝑓 (𝑥) depends only on values of 𝑓 in a
neighborhood of 𝑥.

Given an interval [𝑎, 𝑏] such that 𝑋𝑖 ∈ [𝑎, 𝑏] for 𝑖 = 1,… , 𝑛 and a uniform mesh 𝜋 = {𝑎 = 𝑥0, 𝑥1,… , 𝑥𝑁 = 𝑏} defined by a constant
stepsize ℎ = (𝑏−𝑎)∕𝑁 . Note that the choice of ℎ is important and depends on 𝑛 as it plays the bandwidth role for the kernel density.
For the estimation approximation of the PDF we use the B-spline Hermite quasi-interpolant BSHQI defined in [6]. BSHQI computes
the 𝜆𝑗 (𝑓 ) as a linear combination of the function 𝑓 and its derivatives evaluated at the mesh points.

We define the BSHQI with uniform knot vector 𝜋, coincident auxiliary knots and 𝑑 = 2. Hence, in the following to ease the
notation, 𝐵𝑗,𝑑 = 𝐵𝑗 . A discrete approximation of the sought CDF is expressed as,

𝐹ℎ(𝑥𝑗 ) ∶=
1
𝑛

𝑛
∑

𝑖=1
𝐼(𝑋𝑖 ≤ 𝑥𝑗 ), 𝑗 = 0,… , 𝑁. (3)

Starting from 𝐹ℎ(𝑥) it is possible to approximate 𝑓 (𝑥) at the mesh points by computing the first derivative using finite differences:

𝑓 (𝑥𝑗 ) = 𝐹 ′(𝑥𝑗 ) ≈ 𝐹 ′
ℎ,𝑗 =

𝐹ℎ(𝑥𝑗+1) − 𝐹ℎ(𝑥𝑗−1)
2ℎ

, 𝑗 = 1,… , 𝑁 − 1,

𝑓 (𝑥0) = 𝐹 ′(𝑥0) ≈ 𝐹 ′
ℎ,0 =

𝐹ℎ(𝑥1) − 𝐹ℎ(𝑥0)
ℎ

, 𝑓 (𝑥𝑁 ) = 𝐹 ′(𝑥𝑁 ) ≈ 𝐹 ′
ℎ,𝑁 =

𝐹ℎ(𝑥𝑁 ) − 𝐹ℎ(𝑥𝑁−1)
ℎ

.
(4)

Since the used quasi-interpolant is of Hermite type we also need an approximation of the first derivative at the same mesh points:

𝑓 ′(𝑥𝑗 ) = 𝐹 ′′(𝑥𝑗 ) ≈ 𝐹 ′′
ℎ,𝑗 =

𝐹ℎ(𝑥𝑗+1) − 2𝐹ℎ(𝑥𝑗 ) + 𝐹ℎ(𝑥𝑗−1)

ℎ2
, 𝑗 = 1,… , 𝑁 − 1,

𝑓 ′(𝑥0) = 𝐹 ′′(𝑥0) ≈ 𝐹 ′′
ℎ,0 = 0, 𝑓 ′(𝑥𝑁 ) = 𝐹 ′′(𝑥𝑁 ) ≈ 𝐹 ′′

ℎ,𝑁 = 0.
(5)

Note that the values attained by the density at 𝑥0 and 𝑥𝑁 has been set to zero, as this is the expected value of the sought CDF.
From the definition of the coefficients of BSHQI for 𝑑 = 2, we get

𝜆𝑗 =
1
2

(

𝐹 ′
ℎ,(𝑗+1) + 𝐹 ′

ℎ,(𝑗+2)

)

− 1
4ℎ

(

−𝐹 ′′
ℎ,(𝑗+1) + 𝐹 ′′

ℎ,(𝑗+2)

)

, 𝑗 = −1,… , 𝑁 − 2,
𝜆−2 = 𝐹 ′

ℎ,0, 𝜆𝑁−1 = 𝐹 ′
ℎ,𝑁 .

(6)

The following theorem proves that the constructed 𝑓 is indeed a continuous density function having first derivative continuous
as well.

Theorem 2.1. The function 𝑓 , BSHQI estimation of 𝑓 in a given interval [𝑎, 𝑏],

𝑓 (⋅) =
𝑁−1
∑

𝑗=−𝑑
𝜆𝑗 (𝑓 )𝐵𝑗 (⋅), (7)

with 𝜆𝑗 as defined in (6), is a density function. In particular:

(a) 𝑓 (⋅) ≥ 0,
(b) ∫ +∞

−∞ 𝑓 (𝑥) 𝑑𝑥 = 1,
(c) 𝑓 ∈ 𝐶1[𝑎, 𝑏].

roof. To prove (a) it is sufficient to show that 𝜆𝑗 ≥ 0, for 𝑗 = −𝑑,… , 𝑁 − 1. In particular, since ℎ is constant, setting

𝐹𝑗 ∶= 𝐹ℎ(𝑥𝑗 ),

it can be shown that

𝜆𝑗 =
𝐹(𝑗+2) − 𝐹(𝑗+1)

ℎ
, 𝑗 = −1,… , 𝑁 − 2, (8)

𝜆−2 = 𝜆−1 𝜆𝑁−1 = 𝜆𝑁−2.

y substituting (4) and (5) into Eq. (6). Therefore, it is straightforward to see that they are always positive.
3
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To prove (b), we set 𝑓 (𝑥) = 0 outside the interval [𝑎, 𝑏]. Then, knowing that the integral of a B-spline is given by

∫

𝑏

𝑎
𝐵𝑖,𝑑 (𝑥) 𝑑𝑥 = ∫

𝜏𝑖+𝑑+1

𝜏𝑖
𝐵𝑖,𝑑 (𝑥) 𝑑𝑥 =

𝜏𝑖+𝑑+1 − 𝜏𝑖
𝑑 + 1

,

recalling that 𝑑 = 2, we have

𝜏𝑖+𝑑+1 − 𝜏𝑖 =

⎧

⎪

⎨

⎪

⎩

3ℎ for 𝑖 = 0,… , 𝑁 − 3,
2ℎ for 𝑖 = −2, 𝑁 − 2,
ℎ for 𝑖 = −1, 𝑁 − 1.

Therefore,

∫

+∞

−∞
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑏

𝑎

𝑁−1
∑

𝑗=−𝑑
𝜆𝑗 (𝑓 )𝐵𝑗 (𝑥) 𝑑𝑥 =

𝑁−1
∑

𝑗=−𝑑
𝜆𝑗 (𝑓 )∫

𝜏𝑗+𝑑+1

𝜏𝑗
𝐵𝑗 (𝑥) 𝑑𝑥 =

=
𝐹1 − 𝐹0

ℎ
ℎ
3
+

𝐹1 − 𝐹0
ℎ

2ℎ
3

+
𝐹2 − 𝐹1

ℎ
ℎ +⋯ +

𝐹𝑁−3 − 𝐹𝑁−2
ℎ

ℎ +
𝐹𝑁−1 − 𝐹𝑁

ℎ
2ℎ
3

+
𝐹𝑁−1 − 𝐹𝑁

ℎ
ℎ
3

= −𝐹0 + 𝐹𝑁 = 0 + 1 = 1.

The point (c) descends from the properties of the B-spline functions of degree 2. □

In the following we investigate the consistency of the derived density function following the analysis proposed in [3]. In
articular, the next Lemma will be useful as a preliminary result.

emma 2.2. The coefficients in (8) can be obtained by evaluating 𝑓𝐾 (𝑥) at 𝑐𝑗 ∶= 𝑥𝑗+1 + ℎ∕2, 𝑗 = −1,… , 𝑁 − 2, i.e.:

𝜆𝑗 = 𝑓𝐾 (𝑐𝑗 ) =
1
𝑛ℎ

𝑛
∑

𝑖=1
𝐾

(𝑋𝑖 − 𝑐𝑗
ℎ

)

, 𝑗 = −1,… , 𝑁 − 2,

nd

𝜆−2 = 𝜆−1, 𝜆𝑁−1 = 𝜆𝑁−2.

heorem 2.3. Let 𝑋1,… , 𝑋𝑛 denote i.i.d. observations having a PDF 𝑓 (𝑥) ∈ 𝐶1[𝑎, 𝑏], 𝑓 and 𝑓 ′ bounded, and let 𝐵𝑗 (𝑥) denote the 𝑗th,
-nd degree B-spline basis. Let 𝑥 ∈ [𝑎, 𝑏] and let 𝑓𝑛(𝑥) be as in (7), with uniform mesh defined in [𝑎, 𝑏] choosing a constant ℎ such that as
→ ∞, as 𝑛ℎ → ∞ and as ℎ → 0, then 𝑓𝑛 is a uniformly consistent estimator of 𝑓 .

roof. To prove the pointwise consistency of 𝑓𝑛 it is necessary to show that the 𝑀𝑆𝐸(𝑓𝑛(𝑥)) → 0 as 𝑛 → ∞, as 𝑛ℎ → ∞ and as
ℎ → 0. In the following we use the well-known ‘‘Bias-Variance’’ formulation:

𝑀𝑆𝐸(𝑓𝑛(𝑥)) ≡ 𝐸
[

|

|

|

𝑓𝑛(𝑥) − 𝑓 (𝑥)||
|

2
]

= Var(𝑓𝑛(𝑥)) +
[

𝐸(𝑓𝑛(𝑥)) − 𝑓 (𝑥)
]2 ≡ Var(𝑓𝑛(𝑥)) + Bias2(𝑓𝑛(𝑥)).

e start considering the absolute value of the Bias:

|

|

|

Bias(𝑓𝑛(𝑥))
|

|

|

=
|

|

|

|

|

|

𝐸

(

1
𝑛ℎ

∑

𝑗
𝜆𝑗𝐵𝑗 (𝑥)

)

− 𝑓 (𝑥)
|

|

|

|

|

|

=
|

|

|

|

|

|

𝐸

(

1
𝑛ℎ

∑

𝑗

𝑛
∑

𝑖=1
𝐾

(𝑋𝑖 − 𝑐𝑗
ℎ

)

𝐵𝑗 (𝑥)

)

− 𝑓 (𝑥)
|

|

|

|

|

|

=
|

|

|

|

|

|

1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)𝐸

(

𝐾
(𝑋 − 𝑐𝑗

ℎ

))

− 𝑓 (𝑥)
|

|

|

|

|

|

=
|

|

|

|

|

|

1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)

(

∫ 𝑓 (𝑋)𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝑑𝑋
)

− 𝑓 (𝑥)

(

∫
1
ℎ
∑

𝑗
𝐾

(𝑋 − 𝑐𝑗
ℎ

)

𝐵𝑗 (𝑥)𝑑𝑋

)

|

|

|

|

|

|

since ∫ 1
ℎ
∑

𝑗 𝐾
(𝑋−𝑐𝑗

ℎ

)

𝐵𝑗 (𝑥)𝑑𝑋 = 1 and denoting with 𝐼𝑥,ℎ = [𝑥𝑗+1, 𝑥𝑗+2] = 𝑠𝑢𝑝𝑝{𝐵𝑗 (𝑥)} ∩ 𝑠𝑢𝑝𝑝{𝐾
(𝑋−𝑐𝑗

ℎ

)

} we have,

=
|

|

|

|

|

|

1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)

(

∫ 𝑓 (𝑋)𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝑑𝑋
)

− 𝑓 (𝑥) 1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)∫ 𝐾

(𝑋 − 𝑐𝑗
ℎ

)

𝑑𝑋
|

|

|

|

|

|

=
|

|

|

|

|

|

1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)

(

∫ (𝑓 (𝑋) − 𝑓 (𝑥))𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝑑𝑋
)|

|

|

|

|

|

≤ sup
𝑋∈𝐼𝑥,ℎ

|(𝑓 (𝑋) − 𝑓 (𝑥))| 1
ℎ
∑

𝑗
𝐵𝑗 (𝑥)∫ 𝐾

(𝑋 − 𝑐𝑗
ℎ

)

𝑑𝑋 = sup
𝑋∈𝐼𝑥,ℎ

|𝑓 (𝑋) − 𝑓 (𝑥)|

≤ sup |𝑓 ′(𝜉)|ℎ
4

𝜉∈𝐼𝑥,ℎ
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therefore

Bias2
(

𝑓𝑛(𝑥)
)

≤ ℎ2
(

sup
𝜉∈𝐼𝑥,ℎ

|𝑓 ′(𝜉)|

)2

.

Considering now the variance we deduce that:

Var(𝑓𝑛(𝑥)) = Var
(

∑

𝑗
𝜆𝑗𝐵𝑗 (𝑥)

)

=

= Var
(

1
𝑛ℎ

∑

𝑗

𝑛
∑

𝑖=1
𝐾

(𝑋𝑖 − 𝑐𝑗
ℎ

)

𝐵𝑗 (𝑥)

)

=

= 𝐄
⎡

⎢

⎢

⎣

(

1
𝑛ℎ

∑

𝑗

𝑛
∑

𝑖=1
𝐾

(𝑋𝑖 − 𝑐𝑗
ℎ

)

𝐵𝑗 (𝑥)

)2
⎤

⎥

⎥

⎦

−

(

𝐄
[

1
𝑛ℎ

∑

𝑗

𝑛
∑

𝑖=1
𝐾

(𝑋𝑖 − 𝑐𝑗
ℎ

)

𝐵𝑗 (𝑥)

])2

= 1
𝑛ℎ2

∑

𝑗

∑

𝑧
𝐵𝑗 (𝑥)𝐵𝑧(𝑥)∫ 𝐾

(𝑋 − 𝑐𝑗
ℎ

)

𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑓 (𝑋)𝑑𝑋−

1
𝑛ℎ2

∑

𝑗

∑

𝑧
𝐵𝑗 (𝑥)𝐵𝑧(𝑥)∫ 𝐾

(𝑋 − 𝑐𝑗
ℎ

)

𝑓 (𝑋)𝑑𝑋 ∫ 𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑓 (𝑋)𝑑𝑋

= 1
𝑛ℎ2

∑

𝑗

∑

𝑧
𝐵𝑗 (𝑥)𝐵𝑧(𝑥)

(

∫ 𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑓 (𝑋)𝑑𝑋 − ∫ 𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝑓 (𝑋)𝑑𝑋 ∫ 𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑓 (𝑋)𝑑𝑋
)

since the kernel 𝐾 is evaluated at the mesh points it is easy to prove that this quantity is bounded and

ℎ = ∫ 𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑑𝑋,

ence,

Var(𝑓𝑛(𝑥)) = ≤ 1
𝑛ℎ2

∑

𝑗

∑

𝑧
𝐵𝑗 (𝑥)𝐵𝑧(𝑥)

(

sup
𝑋∈R

|𝑓 (𝑋)|ℎ + sup
𝑋∈R

(𝑓 (𝑋))2
(

∫ 𝐾
(𝑋 − 𝑐𝑗

ℎ

)

𝑑𝑋
)(

∫ 𝐾
(

𝑋 − 𝑐𝑧
ℎ

)

𝑑𝑋
))

≤

≤ 1
𝑛ℎ2

∑

𝑗

∑

𝑧
𝐵𝑗 (𝑥)𝐵𝑧(𝑥)

(

sup
𝑋∈R

|𝑓 (𝑋)|ℎ + sup
𝑋∈R

(𝑓 (𝑋))2ℎ2
)

= 1
𝑛ℎ

(

sup
𝑋∈R

|𝑓 (𝑋)| + sup
𝑋∈R

(𝑓 (𝑋))2ℎ
)

(

∑

𝑗
𝐵𝑗 (𝑥)

)(

∑

𝑧
𝐵𝑧(𝑥)

)

= 1
𝑛ℎ

sup
𝑋∈R

|𝑓 (𝑋)| + 1
𝑛
sup
𝑋∈R

(𝑓 (𝑋))2.

□

Then we have

MSE(𝑓𝑛(𝑥)) = Bias2(𝑓𝑛(𝑥)) + Var(𝑓𝑛(𝑥)) ≤ ℎ2
(

sup
𝜉∈𝐼𝑥,ℎ

|𝑓 ′(𝜉)|

)2

+ 1
𝑛ℎ

sup
𝑋∈R

|𝑓 (𝑋)| + 1
𝑛
sup
𝑋∈R

(𝑓 (𝑋))2. (9)

his quantity will tend to zero as 𝑛 → ∞, as 𝑛ℎ → ∞, and as ℎ → 0.
Since sup𝜉∈𝐼𝑥,ℎ |𝑓

′(𝜉)| ≤ 𝑆1 ∶= sup𝜉∈[𝑎,𝑏] |𝑓 ′(𝜉)|, denoting by 𝑆0 ∶= sup𝑋∈[𝑎,𝑏] |𝑓 (𝑋)|, then, the upper bound for the MSE can be
ritten as:

𝑀𝑆𝐸(𝑓𝑛(𝑥)) ≤ Bias2(𝑓𝑛(𝑥)) + Var(𝑓𝑛(𝑥)) ≤ ℎ2(𝑆1)2 +
1
𝑛ℎ

𝑆0 +
1
𝑛
𝑆2
0 .

The above upper bound does not depend on 𝑥 as so the uniform consistency is proved. □
In the BSHQI density estimation, the bandwidth ℎ can be freely chosen as long as the assumption of Theorem 2.3 are satisfied.

hus, the optimal bandwidth ℎ can be chosen by minimizing the MSE neglecting the smallest term 1
𝑛𝑆

2
0 :

ℎopt(𝑥) ∶=
(

1
2𝑛

𝑆0

(𝑆1)2

)
1
3
∼ 𝑛−1∕3. (10)

This choice for the smoothing bandwidth leads to an MSE at the rate

MSEopt(𝑓𝑛(𝑥)) = 𝑂(𝑛−
2
3 ). (11)

In the previous analysis, our focus was solely on a single point, 𝑥. However, in a broader context, our goal is to manage the overall
MSE for every point. In such cases, a straightforward extension is the mean integrated square error (MISE) of 𝑓𝑛(𝑥). We have the
following corollary:
5
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Table 1
Statistics ran on the results for Normal Density Estimation—Rice’s Rule for bins.

AMISE RMSE KS-Test Cramér–von Mises

statistic p-value statistic p-value

BSHQI 3.43e−06 1.13e−04 7.75e−03 2.77e−01 2.05e−01 2.58e−01

KDEpy 1.08e−05 3.53e−04 1.21e−02 1.58e−02 9.08e−01 4.05e−03

Table 2
Statistics ran on the results for Exponential Density Estimation—Rice’s Rule for the bins.

AMISE RMSE KS-Test Cramér–von Mises

statistic p-value statistic p-value

EMP_BSHQI 2.27e−06 2.96e−05 7.78e−03 2.73e−01 1.18e−01 5.02e−01

EMP_KDEpy 1.68e−04 2.19e−03 6.96e−02 0 5.79e+01 2.01e−08

Corollary 2.4. Let 𝑓 be a probability density function on R, and let 𝐴 ⊆ R be an open region with 𝐴 = {𝑥 ∣ 𝑓 (𝑥) ≠ 0}, where 𝑓 ∈ 𝐶1(R),
nd both 𝑓 and 𝑓 ′ are bounded. If 𝐴 is contained in a closed and bounded region, then, with 𝑓𝑛 as defined above, if ℎ → 0 and 𝑛ℎ → ∞
s 𝑛 → ∞, then

MISE(𝑓𝑛) = ∫ MSE(𝑓𝑛(𝑥)) 𝑑𝑥 = ∫ 𝐄
(

𝑓𝑛(𝑥) − 𝑓 (𝑥)
)2 𝑑𝑥 → 0,

s 𝑛 → ∞, i.e., 𝑓𝑛 is a consistent estimator of 𝑓 in mean integrated squared error (MISE).

The above evidence concludes the investigation of the consistency results of the B-spline estimator with the proposed approach.
owever, in this context, how to choose ℎ is an unsolved problem in statistics known as bandwidth selection. Most bandwidth selection
pproaches either suggest an estimate of AMISE and then aim to minimize the estimated AMISE. For more details, we refer to [45].

bservation 2.5. Given the weighted CDF

𝐹ℎ,𝑤(𝑥𝑗 ) =
1

∑𝑛
𝑖=1 𝑤𝑖

𝑛
∑

𝑖=1
𝑤𝑖𝐼(𝑋𝑖 ≤ 𝑥𝑗 ), 𝑗 = 0,… , 𝑁, (12)

with 𝑤𝑖 a weight associated to the corresponding observation 𝑋𝑖, then the results of Theorems 2.1 and 2.3 continue to hold.

Observation 2.6. Note that the continuous CDF 𝐹 is then computed by integrating the density 𝑓 in Eq. (7).

2.1. Statistical tests for marginals fitting with BSHQI spline

In this subsection, we compare the BSHQI density estimation with the classical empirical approach constructed by using the
Gaussian Kernel Density function. The careful selection of the number of bins is of crucial importance in approximating density, as
it directly influences the accuracy and the visual representation of the data distribution pattern. For both procedures considered in
this work, it is possible to select different criteria for choosing the number of bins, in particular, we consider the so called Rice’s
Rule [46], where the number of bins is equal to 2 × ⌈𝑛1∕3⌉.

There is no single optimal criterion for selecting the most suitable bins. For the experiments conducted in this work, unless
otherwise indicated, we will use the Rice rule. To assess the goodness of the produced model, we conduct two statistical tests: the
Kolmogorov–Smirnov (KS) Test [47] and the Cramér–von Mises (CvM) Test [48]. Additionally, we show the error in terms of Average
Mean Integrated Squared Error (AMISE) and Root Mean Square Error (RMSE) for the computed probability density functions.

We perform the tests on three different distributions: a normal distribution 𝑋 ∼  (𝜇, 𝜎2) with 𝜇 = 5 and 𝜎2 = 0.3, an exponential
distribution 𝑋 ∼ Exp(𝜆) with 𝜆 = 1 and a third distribution consisting of a mixture of Gaussians with different means and variances.

All the numerical experiments are performed using Python 3.10 on a computing system equipped with Windows 11 operating
ystem, 16 GB of RAM, and powered by an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz with a base clock speed of 2.59 GHz.
he Python package KDEpy1 has been chosen for the comparison since, in our opinion, it is the most efficient among the available
ython routines for this task; the Kernel density estimation is constructed following the theory in [49].

For all the considered distributions, we generated a group of 𝑛 = 215 samplings for 20 iterations. This iterative process allows
us to calculate the AMISE, the RMSE, the values of both statistics and relative p-values, and we derive their average values as

1 https://kdepy.readthedocs.io/en/latest/introduction.html
6
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Fig. 1. Comparison of samples generated from 𝑋 ∼  (5, 0.3) with the KDEpy and BSHQI method for probability density (a) and for the cumulative distribution
(b).

Fig. 2. Comparison of samples generated with the KDE and BSHQI method for probability density (a) and for the cumulative distribution (b).

Table 3
Statistics ran on the results for Mixture Gaussian Density Estimation—Rice’s Rule for the bins.

AMISE RMSE KS-Test Cramér–von Mises

statistic p-value statistic p-value

EMP_BSHQI 1.84e−06 2.16e−05 4.91e−03 8.22e−01 8.09e−02 6.87e−01

EMP_KDEpy 9.35e−06 1.10e−04 1.06e−02 5.04e−02 5.18e−01 3.58e−02

comprehensive measures of performance. Furthermore, we evaluated efficiency in terms of computational time by calculating the
mean and standard deviation after the set number of iterations. Regarding the statistical tests, the null hypothesis states that the true
underlying distribution and the empirical one are identical; the alternative hypothesis suggests that they are not. The used statistics
is the maximum absolute difference between the exact values and the ones computed by the empirical distribution functions at the
same samples. If the KS or CvM statistics are large, then the 𝑝-value will be small, and this may be taken as evidence against the
null hypothesis in favor of the alternative.

By observing the Tables 1, 2, 3 it can be seen that the density approximation with BSHQI is preferable to the classical empirical
evaluation of the distribution taken into account.

Indeed, comparing the p-values of both tests in each of the Tables 1, 2, 3, allows us to accept the hypothesis when using the
BSHQI, contrary to what can be concluded when referring to KDEpy.

Moreover, for all three experiments, the AMISE and RMSE obtained with the proposed approach are lower compared to the
AMISE and RMSE obtained using KDEpy. This can be observed in Figs. 1, 2, and 3, where the estimates of the PDF and the CDF for
7
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Fig. 3. Comparison of samples generated with the KDE and BSHQI method for probability density (a) and for the cumulative distribution (b).

Table 4
Comparison of Execution Times for KDE and BSQH Algorithms.
Algorithm Mean time (ms) Standard

deviation (ms)

KDEpy 0.0241 ±0.0011
BSHQI 0.0124 ±0.0009

both methods are compared to the real distribution. Note that different results could be obtained by choosing a different rule for the
number of bins. In particular, for the normal distribution in Fig. 1 we can observe a good agreement for both the methodologies;
for the exponential and the mixture ones in Figs. 2 and 3 the result produced by BSHQI seems to better align with the original
distribution while KDE seems to be less accurate as it always produces an under-estimate of the original distribution. The visual
output is also supported by the results shown in Tables 1,2,3: if on the one hand, the reached accuracy seems similar in terms
of AMISE and RMSE, on the other hand, the statistics conducted to test the validity of the null hypothesis clears out any doubt
in assessing a better goodness of fit, under the statistical point of view, of the BSHQI method. In addition, examining the results
in Table 4, it can be seen as an advantage in terms of computational time when utilizing the BSHQI, compared to the alternative
approach. While the difference is not substantial, it is sufficient to highlight the efficiency of our approach as the time is almost
halved when using BSHQI.

3. Copulas mixture model

In this section, we leverage the density estimation strategy introduced in Section 2 in the context of copulas. Our objective is
to introduce the concept of copula and emphasize its profound connection to marginal distributions, with a specific focus on its
application in formulating a novel clustering algorithm based on copula mixture. Copulas functions are a useful tool employed to
easily express multivariate distributions by specifying the marginals. In this Section the principal concepts are revised following the
setting in [21].

Definition 3.1. A D-dimensional copula is a CDF with uniform marginals:

𝐶 ∶ [0, 1]𝐷 → [0, 1] such that 𝐶(𝑢) = 𝐶(𝑢1,… , 𝑢𝐷).

Theorem 3.2 (Sklar’s Theorem). Consider a D-dimensional CDF, 𝐺, with marginals 𝐹1,… , 𝐹𝐷. Then there exists a copula, 𝐶, such that

𝐺(𝑥1,… , 𝑥𝐷) = 𝐶(𝐹1(𝑥1),… , 𝐹𝐷(𝑥𝐷)) (13)

for all 𝑥𝑖 ∈ [−∞,∞] and 𝑖 = 1,… , 𝐷. If 𝐹𝑖 is continuous for all 𝑖 = 1,… , 𝐷 then 𝐶 is unique. In the opposite direction, given a copula 𝐶
and univariate CDFs, 𝐹1,… , 𝐹𝐷, then 𝐺 as in (13) is a multivariate CDF with marginals 𝐹1,… , 𝐹𝐷.

Given a CDF 𝐺 with PDF 𝑔, and a copula 𝐶 defined as in Definition 3.1, the density copula function 𝑐 can be computed as,

𝑐(𝑢1,… , 𝑢𝐷) =
𝑔(𝐹−1

1 (𝑢1),… , 𝐹−1
𝐷 (𝑢𝐷))

𝑓1(𝐹−1
1 (𝑢1))⋯ 𝑓𝐷(𝐹−1

𝐷 (𝑢𝐷))
, (14)

where 𝑓 ,… , 𝑓 are the PDFs of the marginals.
8
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A novel algorithm, which takes advantage of the proposed construction for empirical cumulative distribution based on BSHQI,
or estimating the marginals of a chosen copula is presented. As main application, we show the performance of such an algorithm
n the clustering context. Therefore, the following formulation will be framed within the clustering setting.

Our goal is to implement a model-based algorithm capable of correctly identifying how the instances of the dataset can be grouped
nto different clusters. In this sense, using copulas provides a way to fit data that have different probability distributions, thus having
n advantage in better discriminating the possible clusters of a dataset. We can assume an a priori model made with 𝐾 clusters and

the data in each single cluster are distributed as a multidimensional Copula belonging to the Elliptical family, in particular Gaussian
Copula, and Archimedean family, in which we consider the Clayton, Gumbel and Frank copulas [19]. We therefore stress the fact
that our mixture distribution is composed of a linear combination of Copulas. This linear combination is called ‘‘Copula Mixture
Model’’. In the following, we describe in detail the derived formulation.

Definition 3.3 (Semiparametric Approach). A Copula Mixture is a function consisting of several Copula density functions 𝑐𝑘, with
𝑘 ∈ {1,… , 𝐾} and 𝐾 denoting the number of clusters of the considered dataset. Each Copula 𝑐𝑘 in the mixture is characterized by a
vector 𝝎 that defines the parameters of the specific copula chosen for the mixture, and by the methods chosen for the approximation
of the marginals. Moreover, for each Copula density function 𝑐𝑘 is defined a mixing probability 𝜋𝑘, referred to as mixing coefficient,
such that:

𝐾
∑

𝑘=1
𝜋𝑘 = 1.

Let us assume a dataset 𝐗 = (𝑋1, 𝑋2,… , 𝑋𝐷) where each 𝑋𝑖 consists of 𝑛 i.i.d. observations, and where the 𝑖th observation is
𝐱𝑖 = (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝐷)𝑇 for 𝑖 = 1… , 𝑛.

We express the probabilistic model of mixture copulas for all observations in the following form:

𝑝(𝐗|𝜽) =
𝑛
∏

𝑖=1
𝑝(𝐱𝑖) =

𝑛
∏

𝑖=1

𝐾
∑

𝑘=1
𝜋𝑘𝑔𝑘(𝐱𝑖|𝝎𝑘) (15)

where 𝑝 is the probability, 𝜽 ∶= {𝜋𝑘,𝝎𝑘} indicates the parameters of the model: 𝜋𝑘 is the mixing probability and 𝝎𝒌 represents the
vector of parameters with respect to the chosen copula, while 𝑔𝑘(𝐱𝑖|𝝎𝒌) represents the multivariate distribution constructed through
the copula density 𝑐𝑘, explicitly:

𝑔𝑘(𝐱𝑖|𝝎𝑘) = 𝑐𝑘(𝐹1(𝑥𝑖,1),… , 𝐹𝐷(𝑥𝑖,𝐷)|𝝎𝑘)
(

𝑓1(𝑥𝑖,1) ×⋯ × 𝑓𝐷(𝑥𝑖,𝐷)
)

= 𝑐𝑘(𝐹1(𝑥𝑖,1),… , 𝐹𝐷(𝑥𝑖,𝐷)|𝝎𝑘)
𝐷
∏

𝑗=1
𝑓𝑗 (𝑥𝑖,𝑗 ).

Since there are different families of copulas, the parameter 𝝎𝑘 is the one related to the specific copula that is chosen to model the
cluster 𝑘. The goal of the mixture model is to find the optimal parameters in 𝜽, in Eq. (15), that maximize the log-likelihood (𝐗|𝜽):

arg max
𝜽

(𝐗|𝜽) = arg max
𝜽

log 𝑝(𝐗|𝜽) = arg max
𝜋𝑘 ,𝝎𝑘

𝑛
∑

𝑖=1
log

𝐾
∑

𝑘=1
𝜋𝑘𝑔𝑘(𝐱𝑖|𝝎𝑘). (16)

Usually, in order to solve the optimization problem in (16), the Expectation–Maximization (EM) [24] algorithm is employed
together with mixture models. To derive the probability that an observation 𝐱𝑖, is drawn from 𝑔𝑘, we introduce the latent variable
𝐳𝑖 = (𝑧𝑖1,… , 𝑧𝑖𝐾 )𝑇 such that 𝑧𝑖𝑘 ∈ {0, 1} with 𝑘 ∈ {1,… , 𝐾}. In this context, the introduction of latent variables is a common
practice [50] that enhances both the theoretical framework and the rationale behind employing the expectation–maximization
algorithm. We define the joint distribution 𝑝(𝐱𝑖, 𝐳𝑖) in terms of a marginal distribution 𝑝(𝐳𝑖) and a conditional distribution 𝑝(𝐱𝑖|𝐳𝑖),

𝑝(𝐱𝑖, 𝐳𝑖) ∶= 𝑝(𝐱𝑖|𝐳𝑖)𝑝(𝐳𝑖). (17)

he marginal distribution for 𝐳𝑖 is characterized by the mixing coefficients, with the specification that 𝑝(𝑧𝑖𝑘 = 1) = 𝜋𝑘.
We know beforehand that each 𝑧𝑖𝑘 occurs independently and that it can only take the value one when 𝑘 is equal to the cluster

from which the observation comes, then the overall probability is:

𝑝(𝐳𝑖) = 𝑝(𝑧𝑖1 = 1)𝑧𝑖1𝑝(𝑧𝑖2 = 1)𝑧𝑖2 ⋯ 𝑝(𝑧𝑖𝐾 = 1)𝑧𝑖𝐾 =
𝐾
∏

𝑘=1
𝜋𝑧𝑖𝑘
𝑘 ,

while the conditional distribution 𝑝(𝐱𝑖|𝐳𝑖) can be written as,

𝑝(𝐱𝑖|𝐳𝑖) =
𝐾
∏

𝑘=1
𝑔𝑘(𝐱𝑖|𝝎𝑘)𝑧𝑖𝑘 . (18)

Let us introduce 𝐙 as the matrix whose 𝑖th row is the vector of the latent variables 𝐳𝑖, then we have the overall joint distribution,

𝑝(𝐗,𝐙|𝜽) =
𝑛
∏

𝐾
∏

𝜋
𝑧𝑖𝑘
𝑘 𝑔𝑘(𝐱𝑖|𝝎𝑘)

𝑧𝑖𝑘
9
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and hence the log-likelihood is,

log(𝑝(𝐗,𝐙|𝜽)) =
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝑧𝑖𝑘

(

log𝜋𝑘 + log 𝑔𝑘(𝐱𝑖|𝝎𝑘)
)

. (19)

The formulated expression for the joint distribution 𝑝(𝐗,𝐙|𝜽) leads to significant simplifications in the EM algorithm. However
his cannot be computed, since 𝐳𝑖 is unknown, then we evaluate the conditional probability of 𝐳𝑖 given 𝐱𝑖, and its value can be
etermined using Bayes’ theorem,

𝑝(𝑧𝑖𝑘 = 1|𝐱𝑖) =
𝑝(𝐱𝑖|𝑧𝑖𝑘 = 1) 𝑝(𝑧𝑖𝑘 = 1)

𝑝(𝐱𝑖)
=

𝑝(𝐱𝑖|𝑧𝑖𝑘 = 1) 𝑝(𝑧𝑖𝑘 = 1)
∑𝐾

𝑘′=1 𝜋𝑘′𝑝(𝐱𝑖|𝑧𝑖𝑘′ = 1)𝑝(𝑧𝑖𝑘′ = 1)
,

where the quantity 𝑝(𝐱𝑖) has been computed via marginalization. Knowing that 𝑝(𝑧𝑖𝑘 = 1) = 𝜋𝑘 and 𝑝(𝐱𝑖|𝑧𝑖𝑘 = 1) = 𝑔𝑘(𝐱𝑖|𝝎𝑘), then,
he above equation becomes:

𝑝(𝑧𝑖𝑘 = 1|𝐱𝑖) =
𝜋𝑘𝑔𝑘(𝐱𝑖|𝝎𝑘)

∑𝐾
𝑘′=1 𝜋𝑘′𝑔𝑘′ (𝐱𝑖|𝝎𝑘′ )

. (20)

The quantity in (20) is called responsibility of 𝑘th cluster to observation 𝑖 and from now on will be denoted with the symbol 𝛾𝑖𝑘. Then
for every cluster, we have an array of responsabilities. This quantity is crucial in the Expectation step of the EM algorithm for the
maximization of the complete log-likelihood.

4. Expectation–maximization for copula mixture model

We formalize the expectations maximization algorithm for the copula mixture model in the general form, this can be implemented
in different ways:

• a completely parametric way in which the parameters of the copula and the parameters of the marginal probability densities
are estimated. In this case, there are two approaches: Inference For Marginal (IFM) [19], and Expectation/Conditional
Maximization ECM [28]. This last one, although it may work well for small-sized data, requires high computational costs
when there is a lack of a-priori knowledge about the marginals. In such cases, one needs to search for the distribution that
fits the data well within a set of distributions;

• a semiparametric way in which, the estimation of marginals is approached empirically. The semiparametric nature of this
approach strikes a balance between flexibility and computational efficiency.

In this work, we adopt the semiparametric approach, leveraging the approximation properties of densities with the previously
introduced BSHQI. Below, we describe the details of the proposed algorithm.

In the Expectation step, we employ the existing parameter values 𝜽 ∶= 𝜽(𝑡) to determine the posterior distribution of the latent
variables at the 𝑡-step of the algorithm, denoted as 𝑝(𝐙|𝐗,𝜽(𝑡)). Subsequently, we utilize this posterior distribution to calculate the
expectation of the complete-data log-likelihood, evaluated for a general parameter vector 𝜽. This expectation, is called auxiliary
unction represented as 𝑄(𝜽,𝜽(𝑡)), is given by

𝑄(𝜽,𝜽(𝑡)) = E(𝐙∣𝐗,𝜽(𝑡)) (log 𝑝(𝐗,𝐙|𝜽)) .

To simplify the notation, we shall consider E(𝐙∣𝐗,𝜽(𝑡)) (log 𝑝(𝐗,𝐙|𝜽)) = E (log 𝑝(𝐗,𝐙|𝜽)) and so we have:

𝑄(𝜽,𝜽(𝑡)) = E[log 𝑝(𝐗,𝐙|𝜽(𝑡))] =
∑

𝐙
𝑝(𝐙|𝐗,𝜽(𝑡)) log 𝑝(𝐗,𝐙|𝜽) =

𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝛾 (𝑡)𝑖𝑘

(

log𝜋𝑘 + log 𝑔𝑘(𝑥𝑖|𝝎𝑘)
)

=
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝛾 (𝑡)𝑖𝑘

(

log𝜋𝑘 + log
(

𝑐𝑘(𝐹1(𝑥𝑖,1),… , 𝐹𝐷(𝑥𝑖,𝐷)|𝝎𝑘)
)

+
𝐷
∑

𝑗=1
log 𝑓𝑗 (𝑥𝑖𝑗 )

)

(21)

in which 𝛾 (𝑡)𝑖𝑘 is the Responsibility introduced in Eq. (20).

Maximization step:. In the maximization step we update the parameters in 𝜽(𝑡+1) by computing:

𝜽(𝑡+1) = arg max
𝜽

𝑄(𝜽,𝜽(𝑡)).

This is the most complex step of the algorithm and in the following, we address separately the computation of the optimal parameters
𝜋(𝑡+1)
𝑘 and 𝝎(𝑡+1)

𝑘 .
For 𝜋(𝑡+1)

𝑘 , a closed form can be derived. Note that the maximization of the function 𝑄(𝜽 ∣ 𝜽(𝑡)) should take into account the
restriction that ∑𝐾

𝑘=1 𝜋𝑘 = 1. Hence, we can add a Lagrange multiplier to (21),

𝑄(𝜽,𝜽(𝑡)) =
𝑛
∑

𝐾
∑

𝛾 (𝑡)𝑖𝑘
(

log𝜋𝑘 + log 𝑔𝑘(𝑥𝑖|𝝎𝑘)
)

− 𝜆

( 𝐾
∑

𝜋𝑘 − 1

)

.
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Taking the derivative of 𝑄 with respect to 𝜋𝑘 and setting it equal to zero, leads to

𝜕𝑄(𝜽,𝜽(𝑡))
𝜕𝜋𝑘

=
𝑛
∑

𝑖=1

𝛾 (𝑡)𝑖𝑘
𝜋𝑘

− 𝜆 = 0. (22)

Then, by rearranging the terms and applying a summation over 𝑘 to both sides of the equation, we obtain:
𝑛
∑

𝑖=1
𝛾 (𝑡)𝑖𝑘 = 𝜋𝑘𝜆 →

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝛾 (𝑡)𝑖𝑘 =

𝐾
∑

𝑘=1
𝜋𝑘𝜆.

We know that the summation of all mixing coefficients equals one. In addition, we know that summing up the responsabilities 𝛾
over 𝑘 will also give us 1. Thus we get 𝜆 = 𝑛. Using this result, we can solve (22) for 𝜋𝑘:

𝜋(𝑡+1)
𝑘 ∶=

∑𝑛
𝑖=1 𝛾

(𝑡)
𝑖𝑘

𝑛
.

Regarding the optimization with respect to 𝝎𝑘, systematic decomposition into distinct maximization steps is carried out in order
to get the optimization of the complete data log-likelihood with respect to the parameters of the model.

One notable feature of our algorithm lies in its inherent flexibility in the selection of copulas from the outset. When a single
copula is chosen initially, the subsequent maximization step, following the updating of marginals, exclusively targets the parameters
of the selected copula until the log-likelihood function converges. Conversely, when the initial choice encompasses various copulas,
a comprehensive fitting process is initiated after updating the marginals. The copula that best aligns with the updated data is
then chosen based on the maximum likelihood, enhancing the adaptability and performance of our algorithm in diverse scenarios,
formally:

• Maximization first step: For each cluster, use the data 𝐗𝑗 , 𝑗 ∈ {1, 2,… , 𝐷} to update the CDFs 𝐹𝑗 according to Eq. (12) in
which the weights are the responsabilities and compute the PDFs 𝑓𝑗 , 𝑗 ∈ {1, 2,… , 𝐷} with the BSHQI strategy described in
Section 2.

• Maximization second step (one copula): By looking at (21), for each cluster, we need to maximize only the following,
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝛾 (𝑡)𝑖𝑘

(

log
(

𝑐𝑘(𝐹1(𝑥𝑖,1),… , 𝐹𝐷(𝑥𝑖,𝐷)|𝝎𝑘)
)

)

, (23)

with respect to 𝝎𝑘 for the optimal copula parameters.
• Maximization second step (two or more copulas): If the choice of different copulas is enabled, then, the optimization of

(23) is carried out also for each copula.
Note that, in this case for the maximization of the log-likelihood we use the Limited-memory Broyden, Fletcher, Goldfarb,
Shanno (L-BFGS-B) method,2 that is an optimization algorithm in the family of quasi-Newton methods that approximates the
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory [51,52].

To start the algorithm we use the following initialization procedure:

Initialization.

0. Choose a set 𝑆 of copulas function among Gaussian, Clayton, Gumbel, Frank.
1. Create a random clustering partition of the given data. We call 𝑋𝑗,𝑟 the subset of the 𝑗th column given by the produced

partition.
2. For every cluster, compute the marginals 𝐹𝑗 (𝑋𝑗,𝑟) for 𝑗 = 1,… , 𝐷, either with the KDE methodology or with the BSHQI (the

choice is at the user’s discretion).
3. For every cluster, find the best copula in 𝑆 according to the maximum likelihood achieved and keep its parameters 𝝎𝑘 fitted

by the produced data 𝑢1 = 𝐹1(𝑋1,𝑟), 𝑢2 = 𝐹2(𝑋2,𝑟),… , 𝑢𝐷 = 𝐹𝐷(𝑋𝐷,𝑟), and compute the associated 𝜋𝑘 for 𝑘 = 1,… , 𝐾.
4. Repeat steps 1–3 for 5 times and select the copulas partition with the maximum likelihood so that 𝜽(0) ∶= {𝜋(0)

𝑘 ,𝝎(0)
𝑘 } =

{𝜋best
𝑘 ,𝝎best

𝑘 } for 𝑘 = 1,… , 𝐾.

Expectation. In this step we evaluate the responsabilities.

Maximization. The algorithm as just described monotonically approaches a local minimum of the cost function. After computing
the new estimates, we set 𝜃(𝑡) = (𝜋(𝑡)

𝑘 , 𝜔(𝑡)
𝑘 ) for 𝑘 = 1… , 𝐾, and go to the next Expectation step. We set the tolerance 𝑡𝑜𝑙 ≤ 10−4 then,

the best parameters are obtained when the convergence of the log-likelihood is reached, i.e.

|(𝐗|𝜽(𝑡+1)) − (𝐗|𝜽(𝑡))|
1 + |(𝐗|𝜽(𝑡+1))|

< 𝑡𝑜𝑙 for 𝑡 = 1,… , (𝑖𝑡𝑒𝑟 − 1). (24)

2 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
11
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Fig. 4. Synthetic dataset: (a) Ground truth 1, (b) Ground truth 2, (c) Ground truth 3, (d) Ground truth 4, (e) Ground truth 5, (f) Ground truth 6, (g)
Pairwise ground truth 4.

5. Experiments

In this section, we describe the experiments conducted to validate the accuracy of our algorithm. Specifically, we start by
examining synthetic datasets constructed with diverse families of copulas. Subsequently, we delve into the assessment of real-world
datasets. The clustering strategy using copulas and density estimation with the proposed BSHQI technique, called CopMixM_BSHQI,
will be compared by using marginals estimation with kernel density estimation using the Python package KDEpy, referred to as
CopMixM_KDEpy here, which is found to be the fastest among various Python packages for empirical density estimators as it
utilizes the convolution Fast Fourier Transform for calculations. Additionally, we will compare the results obtained with clustering
algorithms available from scikit-learn: Gaussian Mixture Model (GMM), where we set the initialization to ‘random’, the
tolerance equal to 10−4 (as in our algorithm) and default parameters setting otherwise, K-Means where we set the initialization
to random and algorithm Density-Based Spatial Clustering of Applications with Noise (DBSCAN). While DBSCAN exhibits high
performance when clusters are well-separated, it encounters a challenge in determining the optimal parameters for its operation. To
address this issue, we utilize the DBSCAN implementation provided by scikit-learn and further perform a grid search to identify
the optimal value for the parameters eps and min_samples searching, respectively in the range of [0.1, 1] for eps and in the range
[2, 20] for min_sample. To measure the achieved performance we use some classical metrics, available from scikit-learn, such
as:
12
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Table 5
Clustering metrics for Synthetic Dataset 1. In bold the best values.

K-Means GMM DBSCAN CopMixM_BSHQI CopMixM_KDEpy

Silhouette Score 0.660 0.512 0.64 0.659 0.628
Calinski–Harabasz Index 5977 1570 3430 5890 3940
Davies–Bouldin Score 0.482 0.529 1.36 0.486 0521

Adjusted Rand Score 0.974 0.437 0.968 1 0.963
Homogeneity Score 0.963 0.455 0.973 1 0.952
Rand Score 0.989 0.707 0.987 1 0.985
Completeness Score 0.964 0.797 0.986 1 0.957

Table 6
Results of CopMixM_BSHQI for the Synthetic Dataset 1 obtained with different copulas and the Gaussian copula.
Clusters # Points Different Copulas # Points One Copula

1 500 Gaussian 505 Gaussian
2 500 Gaussian 498 Gaussian
3 300 Gaussian 299 Gaussian
4 200 Clayton 198 Gaussian

Log-likelihood −7535 −8125

• Silhouette Score: a value between −1 and 1, with 1 being the best;
• Calinski–Harabasz Index: highest values indicate better performance.
• Davies–Bouldin Score: the minimum is 0, lower values indicate better output.

In those tests where ground truth labels are accessible, the evaluation is also done using the Adjusted Rand Score, Homogeneity
Score, Rand Score, and Completeness Score which are permutation invariant and the highest value 1 indicates optimal clustering.

5.1. Synthetic dataset

We examine six synthetic datasets 1, 2, 3, 4, 5, 6 characterized as follows:

• the samples in 1 are drawn from two Clayton copulas, one Frank and one Gumbel, see Fig. 4(a);
• the samples in 2 constitute 4 clusters and drawn from two Clayton copulas and two Gumbel copulas, see Fig. 4(b);
• the samples in 3 constitute 3 clusters drawn from the Frank copula, see Fig. 4(c);
• the samples in 4 constitute 4 clusters drawn from different copulas that are not well separated, see Fig. 4(d);
• the samples in 5 constitute 2 clusters with high density points and noisy points, see Fig. 4(e);
• the samples in 6 constitute 2 clusters of 3D scattered points, see Fig. 4(f)–(g).

All the presented results are obtained with random initialization and with the selection of different copulas. Regarding dataset
1, in Fig. 5, the outcomes from GMM, DBSCAN, CopMixM_BSHQI and clustering with copulas fitting the marginals using the KDEpy
approach are shown. Visually, the best results are obtained with DBSCAN and CopMixM_BSHQI, see Fig. 5(b)–(c), as they closely
align with the ground truth in Fig. 4(a). The metrics detailed in Table 5 show a more quantitative comparison for the five used
clustering algorithms. Notably, CopMixM_BSHQI outperforms GMM and DBSCAN and gives better results compared to the other
methods with respect to various metrics. The highest Silhouette Score, Calinski–Harabasz Index, and Homogeneity Score indicate
a superior cluster quality and better separation. For the Davies–Bouldin Score, where a lower value is desirable in presence of
well-defined and compact clusters, CopMixM_BSHQI again excels. The Adjusted Rand Score, Rand Score, and Completeness Score
further support the dominance of CopMixM_BSHQI, as it achieves perfect score= 1.0 in these metrics, signifying strong agreement
with the ground truth. In contrast, K-Means, GMM and CopMixM_KDEpy exhibit lower scores, reflecting a lower level of agreement
with the true cluster assignments. Regarding DBSCAN, we anticipated favorable results since the synthetic example consists of
well-separated clusters with high point density, despite the satisfactory performance of this algorithm, our approach outperforms it
in terms of different metrics. Moreover, in Table 6, we present the results of CopMixM_BSHQI on the synthetic dataset 1 under
various copula configurations. Two primary scenarios were considered: one utilizing diverse copulas for specific clusters, and the
other employing a single Gaussian copula, which is commonly used in practice and is often considered the default choice in mixture
models. The evaluation was based on the maximum likelihood for the choice of the cluster’s copula and the Log-likelihood for
the overall mixture model performance. The results suggest to adopt diverse copulas tailored to specific clusters rather than using
a single one. Indeed, the higher log-likelihood highlights the superior model adaptability, to the considered synthetic dataset 1,
compared to the simplistic use of a single Gaussian copula.

Moreover, with respect to datasets 2 and 3, the findings depicted in Figs. 6 and 7, along with the corresponding metrics
presented in Tables 7 for 2 and in Tables 9 for 3, confirm the superiority of the CopMixM_BSHQI methodology over the other
four methodologies. This validate that CopMixM_BSHQI works better not only in effectively distinguishing distinct clusters but also
in appropriately assigning the suitable copula for each of them. This is further illustrated in Tables 8 and 10, which show again
13
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Fig. 5. Synthetic dataset 1: (a) GMM, (b) DBSCAN, (c) CopMixM_BSHQI, (d) CopMixM_KDEpy.

Table 7
Clustering metrics for Synthetic Dataset 2. In bold the best values.

K-Means GMM DBSCAN CopMixM_BSHQI CopMixM_KDEpy

Silhouette Score 0.726 0.269 0.711 0.726 0.370
Calinski–Harabasz Index 11 495 2640 6620 11500 2990
Davies–Bouldin Score 0.365 1.48 1.55 0.365 0.964

Adjusted Rand Score 0.998 0.382 0.979 1 0.605
Homogeneity Score 0.994 0.488 0.982 0.999 0.738
Rand Score 0.999 0.758 0.991 1 0.845
Completeness Score 0.994 0.512 0.938 0.998 0.720

Table 8
Results of CopMixM_BSHQI for the Synthetic Dataset 2 obtained with different copulas and the
Gaussian copula.
Clusters # Points Different Copulas # Points One_Copula

1 1013 Clayton 1152 Gaussian
2 1014 Clayton 980 Gaussian
3 985 Gumbel 858 Gaussian
4 988 Gumbel 1010 Gaussian

Log-likelihood −13324 −14873

the better performance in the use of diverse copulas with respect to a single copula. In these instances as well, the log-likelihood
supports this conclusion.

The two datasets 4 and 5 pose more critical challenges. Particularly, dataset 4 comprises four unbalanced clusters, while
dataset 5 consists of additional noisy points into a high-density point distribution. These two datasets are introduced to assess
the robustness to the presence of noise and the ability to handle unbalanced datasets. These experiments were introduced to
further demonstrate the efficacy of our approach using copulas compared to DBSCAN, which could fail in presence of uneven
distribution of data. Unlike traditional methods such as K-Means and DBSCAN, our approach enhances interpretability by uncovering
the probability structure of the data. This capability holds significant implications for real-world applications where understanding
the data’s probability distribution is crucial. Additionally, it is worth noting that DBSCAN faces challenges in parameter tuning,
14
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Fig. 6. Synthetic dataset 2: (a) GMM, (b) DBSCAN, (c) CopMixM_BSHQI, (d) CopMixM_KDEpy.

Fig. 7. Synthetic dataset 3: (a) GMM, (b) DBSCAN, (c) CopMixM_BSHQI, (d) CopMixM_KDEpy.
15
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Table 9
Clustering metrics for Synthetic Dataset 3. In bold the best values.

K-Means DBSCAN GMM CopMixM_BSHQI CopMixM_KDEpy

Silhouette Score 0.638 0.253 0.544 0.638 0.384
Calinski–Harabasz Index 7874 1420 3600 7710 702
Davies–Bouldin Score 0.474 3.8 1.86 0.476 1.47

Adjusted Rand Score 0.960 0.476 0.984 0.999 0.615
Homogeneity Score 0.932 0.518 0.991 0.997 0.598
Rand Score 0.982 0.724 0.993 1 0.804
Completeness Score 0.931 0.841 0.945 0.997 0.771

Table 10
Results of CopMixM_BSHQI for the Synthetic Dataset 3 obtained with different copulas and the
Gaussian copula.
Clusters # Points Different Copulas # Points One Copula

1 702 Frank 698 Gaussian
2 1001 Frank 935 Gaussian
3 998 Frank 1067 Gaussian

Log-likelihood −12644 −13835

Fig. 8. Synthetic dataset 4: (a) GMM, (b) K-Means, (c) DBSCAN, (d) CopMixM_BSHQI.

adding another layer of complexity to its application. We provide images and results for both experiments in Figs. 8 and 9, and in
Tables 11 and 12. Particularly for dataset 5, we only measure the miss-classification rate instead of all other metrics, which could
be misleading, especially in situations where the dataset is not well separated. In the latest experiment, we show the effectiveness
of the algorithm using the synthetic dataset 6, which is in 3D and comprises of two clusters. The results are presented in Fig. 10
where only GMM, DBSCAN and CopMixM_BSHQI are shown. Moreover in Table 13 the achieved metrics are reported. It can be seen
that the worst performance is given by GMM and DBSCAN, while the best sometimes is achieved by CopMixM_KDEpy, altought the
discrepancy with CopMixM_BSHQI is minimal. For this test, since there are only two classes, we have also included accuracy in terms
of miss-classification rate. As can be observed in this scenario the CopMixM_BSHQI performance surpasses that of the conventional
K-Means, GMM and KDEpy based approach.
16
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Table 11
Clustering metrics for Synthetic Dataset 4. In bold the best results.

K-Means GMM DBSCAN CopMixM_BSHQI

Silhouette Score 0.532 0.501 0.561 0.574
Calinski–Harabasz Score 7680 6670 2280 4880
Davies–Bouldin Score 0.592 0.664 1.64 0.57

Adjusted Rand Score 0.503 0.455 0.715 0.974
Homogeneity Score 0.856 0.801 0.631 0.929
Rand Score 0.746 0.721 0.86 0.987
Completeness Score 0.589 0.537 0.866 0.931

Fig. 9. Synthetic dataset 5: (a) DBSCAN, (b) CopMixM_BSHQI.

Table 12
Clustering metrics for Synthetic Dataset 5. In bold the best values.

K-Means GMM DBSCAN CopMixM_BSHQI

Miss-classification Rate: 0.32 0.41 (±0.02) 0.87 0.06 (±𝟎.𝟎𝟏)

Table 13
Clustering metrics for Synthetic Dataset 6. In bold the best values.

K-Means GMM DBSCAN CopMixM_BSHQI CopMixM_KDEpy

Silhouette Score 0.576 0.504 −0.0127 0.561 0.536
Calinski–Harabasz Score 2030 1420 164 1850 1630
Davies–Bouldin Score 0.601 0.592 1.6 0.618 0.661

Adjusted Rand Score 0.595 0.544 0.465 0.695 0.685
Homogeneity Score 0.488 0.528 0.601 0.589 0.659
Rand Score 0.797 0.772 0.632 0.848 0.843
Completeness Score 0.489 0.555 0.317 0.594 0.595

Miss-classification Rate: 0.12 0.11 (±0.02) 0.43 0.08 (±𝟎.𝟎𝟏) 0.09 (±0.01)

In summary, these results highlight the algorithm’s effectiveness in capturing complex structures within synthetic datasets,
positioning it as a robust choice for clustering activities in similar contexts. The findings suggest that the choice of copula significantly
influences goodness of fit, with specific copula types being favored by certain clusters. Therefore, the model has an overall robust
performance, particularly in contexts where the option to choose from multiple copulas is available, compared to relying on a single
copula.

5.2. Real datasets

We conduct experiments to validate the effectiveness of the CopMixM_BSHQI algorithm on real-world datasets. Our analysis
considers three datasets: the Australian Institute of Sport (AIS), Breast Cancer Wisconsin, and a case study involving the clustering
17
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Fig. 10. Synthetic dataset 6: (a) GMM, (b) CopMixM_BSHQI, (c) DBSCAN.

of textual data using the 20newsgroups dataset.3 For the AIS4 and Breast Cancer Wisconsin datasets,5 we compare our approach
against a specific method referenced in [10], where our initialization settings are considered the same as in [10] wherever possible.
In the case of the 20newsgroups dataset, we compare our results with the conventional GMM because as observed in synthetic
datasets 4 and 5, DBSCAN is not an optimal choice in the presence of poorly separated clusters.

5.2.1. AIS
The AIS dataset, comprising 13 measurements collected from 102 male athletes and 100 female athletes. The primary objective

of clustering this dataset is to assess the effectiveness of our methodologies in producing results aligned with the given ground-truth.
We consider the same settings as in [10], focusing on a subset of five variables: lean body mass (LBM), weight (Wt), body mass
index (BMI), white blood cell count (WBC), and percentage of body fat (PBF).

This particular example exhibits a non-Gaussian distribution, as the contours are non-elliptical and display asymmetric de-
pendency patterns. Therefore, the application of copulas seems to be the optimal one for capturing this more complex form of
dependency. Our algorithm was run with both K-Means and random initialization. Furthermore, we explored the use of different
copula choices. We utilized the miss-classification rate metric to assess the performance of the clustering algorithm. The results
obtained with our approach, employing both types of initialization, are presented in Table 14 alongside with those reported in [10].

The method called VCMM (K-Means) used in [10] for this dataset, initialized with K-Means reaches the best miss-classification
value if in our model we set the number of bins equal to ⌈𝑛1∕3⌉, however the CopMixM_BSHQI with random initialization, shows
a competitive result and in particular when the Rice Rule is adopted, it achieves the best results. This discrepancy in performance
between the two initialization methods indicates that random initialization produces more favorable results for CopMixM_BSHQI in
the context of the AIS dataset.

3 https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
4 https://rdrr.io/cran/GLMsData/man/AIS.html
5 https://archive.ics.uci.edu/dataset/14/breast+cancer
18
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Table 14
Results for AIS dataset. The different initializations are reported in round brackets under the name of the algorithm. In bold the
best values.

K-Means VCMM
(init: K-Means)

CopMixM_BSHQI
(init: K-Means)

CopMixM_BSHQI
(init: Random)

Miss-classification rate (Bins=⌈𝑛1∕3⌉) 0.21 0.040 0.090 0.045
Miss-classification rate (Bins=Rice) 0.21 0.040 0.040 0.035

Table 15
Results for Breast Cancer Dataset. The different initializations are reported in round brackets under the name of the algorithm. In bold the best values.

K-Means VCMM
(init: K-Means)

VCMM
(C-vine)

Multivariate
normal

Multivariate
skew normal

Multivariate
t

Multivariate
skew t

CopMixM_BSHQI
(init: K-Means)

CopMixM_BSHQI
(init: Random)

Miss-classification
rate (Bins=⌈𝑛1∕3⌉)

0.14 0.10 0.18 0.12 0.15 0.11 0.15 0.09 0.10

Miss-classification
rate (Bins=Rice)

0.14 0.10 0.18 0.12 0.15 0.11 0.15 0.08 0.08

These results generally highlight the sensitivity of the mixture model algorithm to the choice of initialization method. While the
lgorithm CopMixM_BSHQI generally works well, it is critical to consider the impact of initialization on its effectiveness. The higher
iss-classification rate observed with K-Means initialization should be taken into account when implementing CopMixM_BSHQI in

cenarios similar to the AIS dataset and its further investigation will be the object of future work especially as it seems to improve by
etting a specific number of bins. Indeed, by choosing the Rice rule, the CopMixM_BSHQI results are very competitive with respect
o both initializations.

.2.2. Breast Cancer Wisconsin (Diagnostic)
The Breast Cancer Wisconsin (Diagnostic) dataset from the UCI Machine Learning Repository [53] consists of digitized images

f fine needle aspirates from breast masses from 569 patients. For each of the considered ten features, the mean value, extreme
alue (mean of the three largest values), and standard error are computed, resulting in 30 total features. The dataset comprises
enign (352 patients) and malignant (212 patients) diagnoses, enabling the measurement of miss-classification rates for binary
lassification algorithms. In this study, the same features as in [10] were considered, specifically: perimeter standard error (PSE),
xtreme smoothness (ES), extreme concavity (EC), and extreme concave points (ECP).

The copMxM_BSHQI algorithm was applied with both random initialization and K-Means and by setting two different numbers
or the bins. Our results are reported in Table 15, and a comparison is made with the outcomes presented in the study in [10].
he results indicate that CopMixM_BSHQI with K-Means and with the two choices of bins outperforms the other approaches,
chieving a low miss-classification rate of 0.09 and 0.084, respectively. In this case, with the random initialization, we can observe
miss-classification rate of 0.082 only by choosing the Rice bins. This indicates a high degree of accuracy in grouping data

oints, demonstrating the capability of our methodologies to discern underlying patterns within the dataset. In contrast, the other
ethods from [10], such as VCMM, VCMM (C-vine), Multivariate normal, Multivariate skew normal, Multivariate t, and Multivariate

kew t, exhibit comparatively higher miss-classification rates ranging from 0.10 to 0.18. The results show the effectiveness of the
opMixM_BSHQI approach when combined with either K-Means or random initialization.

.2.3. Text clustering
For the last experiment, we focus on the well-known 20newsgroups dataset, accessible through Scikit-Learn’s API and designed

or linguistic analysis. This dataset contains online discussions, or newsgroups, categorized into different thematic groups. For our
lustering analysis, we specifically selected texts related to technology, religion, and sports.

To convert the textual data into a format suitable for quantitative analysis, we employ the TfidfVectorizer (implemented in
cikit-learn library in Python6). This essential tool facilitates the transformation of text into numerical vectors by calculating
erm Frequency-Inverse Document Frequency (TF-IDF) values for each term. TF-IDF reflects the importance of each term within

ndividual documents relative to the entire dataset, allowing us to capture semantic information.
It is crucial to note that the TfidfVectorizer is also pivotal for the clustering process. We transform textual data into

umerical representations, creating a dataset with 18,846 rows and 24,471 features. Considering the large size of the dataset,
preliminary step in our clustering analysis involves the application of a dimensionality reduction technique. Specifically, we

mploy Truncated Singular Value Decomposition (T-SVD)7 with a predefined number of components set to 2. This preliminary
tep is fundamental to mitigate the challenges posed by high-dimensional data, allowing for a more efficient and manageable
epresentation of the underlying structure. We present scatter plots for GMM, CopMixM_BSHQI and CopMixM_KDEpy in Fig. 11.
dditionally, Table 16 provides a comparative overview of clustering performance between K-Means, GMM, CopMixM_BSHQI and
opMixM_KDEpy algorithms applied to the 20newsgroup dataset. Again the proposed procedure achieves the best results with
espect to Silhouette score and Davies–Bouldin Score, while is the runner up for the Calinski–Harabasz score, but we observe a
mall discrepancy with the best result provided by K-Means.

6 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
7 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
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Fig. 11. Text clustering results.

Table 16
Clustering metrics for 20newsgroup Dataset. In bold the best values.

K-Means GMM CopMixM_BSHQI CopMixM_KDEpy

Silhouette Score 0.423 0.154 0.425 0.373
Calinski–Harabasz Score 2326 386 2200 1900
Davies–Bouldin Score 0.896 1.89 0.849 0.856

The highest Silhouette Score emphasizes a better ability to create well-defined clusters similarly, the highest Davis-Bouldin score
assesses a better compactness and separation between clusters. The Calinski–Harabasz Score reflects the effectiveness in achieving
a favorable ratio of between-cluster to within-cluster variance. In summary, across multiple clustering metrics, CopMixM_BSHQI
outperforms GMM, with random initialization, as highlighted by the values in bold and provides a correct interpretation of the
underlying statistical distribution.

6. Conclusions

In this paper we presented a novel algorithm for empirical density estimation and we used it for cluster modeling based on the
use of Copulas. In particular, the multivariate copulas distribution rely on the estimation of the marginal distributions based on the
Hermite quasi-interpolant in [6]. The proposed construction is superior in terms of statistical significance with respect to classical
approaches based on empirical kernel density estimation and provides consistent cumulative distribution functions as outlined in the
detailed analysis of Section 2. The novel clustering algorithm allows for the automatic selection of the best copula among a certain
set of copulas families and provides a robust strategy with respect to a random seed as initialization. Moreover, the obtained results
show a rather good agreement with the ground-truth (when provided), and mostly we are able to correctly identify the underlying
statistical distribution from where the given points where drawn. The obtained clusters exhibit good shape parameters, in terms of
Silhouette Score, Calinski–Harabasz Score and Davis-Bouldin Score, and achieve good accuracy in terms of permutation invariant
metrics. Future work will be devoted to investigate the choice of the optimal bandwidth and further to deeply analyze how to deal
with overlapping clusters, like in the text mining example.
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Data will be made available on request.
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