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Abstract. In this paper we give the notion of equivalent damped wave equa-
tions. As an application we study global in time existence for the solution of
special scale invariant damped wave equation with small data. To gain such
results, without radial assumption, we deal with Klainerman vector fields. In
particular we can treat some potential behind the forcing term.

1. Introduction. Let us consider the Cauchy problem
!
"#

"$

vtt −∆v + µ
(1+t)vt +

ν
(1+t)2 v = (1 + t)s|v|p, t ≥ 0, x ∈ Rn,

v(0, x) = εv0(x)

vt(0, x) = εv1(x)

(1)

with (µ, ν, s) ∈ R× R× R, p > 1, n ≥ 2 and v0, v1 : Rn → R. The operator

L = ∂tt −∆+
µ

1 + t
∂t +

ν

(1 + t)2

is called scale invariant damped wave operator since for any λ ∈ R it holds

LTλ = λ2TλL with Tλu(t, x) = u(λ(1 + t)− 1,λx) .

Once we take the transformation

u(t, x) := (1 + t)rv(t, x) r ∈ R , (2)

we get
!
"#

"$

utt −∆u+ µ−2r
(1+t)ut +

ν−r(µ−r−1)
(1+t)2 u = (1 + t)s−r(p−1)|u|p .

u(0, x) = εv0(x)

ut(0, x) = ε(rv0(x) + v1(x))

(3)

This transformation rule motivates the following definition.

Definition 1.1. The equation

vtt −∆v +
µ

(1 + t)
vt +

ν

(1 + t)2
v = (1 + t)s|v|p, t ≥ 0, x ∈ Rn, (4)

is equivalent to the damped equation

wtt −∆w +
µ̃

1 + t
wt +

ν̃

(1 + t)2
w = (1 + t)s̃|w|p, t ≥ 0, x ∈ Rn
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if there exists a continuous function f(µ, ν) ∈ R× R → f(µ, ν) ∈ R such that

µ̃ = µ− 2f(µ, ν) ,

ν̃ = ν − f(µ, ν)(µ− f(µ, ν)− 1) ,

s̃ = s− f(µ, ν)(p− 1) .

We resume the first two equations as

ν̄ = ν − µ− µ̄

2

%
µ+ µ̄

2
− 1

&
.

In particular, the equation 4 is equivalent to another equation without mass if and
only if there is a µ̄ solution of the equation ν − µ−µ̄

2

'
µ+µ̄
2 − 1

(
= 0. Such µ̄ exists

if and only (µ− 1)2 − 4ν ≥ 0; for this reason the quantity

δ := (µ− 1)2 − 4ν

plays a special role in the classification of the existence results for 1.
The idea of treating equivalent equations works well. Indeed, we can discuss

global existence for 1 by using the most simpler equivalent equations.

Lemma 1.2. Suppose that the equations in the Cauchy problems 1 and 3 with
r = f(µ, ν) are equivalent. If 3 admits a global solution v : [0,+∞) × Rn → R for
p > C(µ̃, ν̃, s̃), then the equation 1 admits a global solution u : [0,+∞) × Rn → R
for all p > 1 satisfying

p > C(µ− 2f(µ, ν), ν − f(µ, ν)(µ− f(µ, ν)− 1), s− f(µ, ν)(p− 1)) .

Definition 1.3. We say that 4 is a special scale invariant damped wave equation if

ν =
µ

2

)µ
2
− 1

*
.

This condition corresponds to the case δ = 1. We underline that the mass is positive,
ν ≥ 0, if and only if µ ≥ 2 or µ ≤ 0.

The most important example of special scale invariant wave equation has param-
eters µ = 2 and ν = 0. Fixed the transformation 2, if 4 is special scale invariant,
any equivalent equation is special scale invariant. In particular, via f(µ, ν) = µ/2,
the special scale invariant damped wave equations are equivalent to

utt −∆u = (1 + t)s−
µ
2 (p−1)|u|p .

Clearly for µ = 0 and ν = 0 we have that the wave operator is special scale invariant.
Many papers concern these equations with s = 0. In the next table we only recall
the global existence results for 1, with the usual notation

pF (d) = 1 +
2

d
, with d > 0 ,

p2S(d) nonnegative solution to (d− 1)p2 − (d+ 1)p− 2 = 0, if d > 1

pSo(d) = 1 +
2

d− 2
if d > 3, pSo(d) = +∞ if 1 ≤ d ≤ 2 .

When d = n is the space dimension, these exponents are, respectively, the Fujita,
Strauss and Sobolev critical exponent for the semilinear wave equation. The aim of
this paper is to add other cases to the following analysis. In particular for n = 2, 3
we consider the case s ∕= 0 and µ ∕= 2 without radial assumptions.

Our more complete result is the following:
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Theorem 1.4. Let n = 2, s ∈ R and p ≥ 2 such that 2s + µ < p(µ − 1). Let
u0, u1 ∈ H2(Rn) × H1(Rn) with compact support. Then there exists ε0 > 0 such
that for any ε ∈ (0, ε0) the Cauchy problem 1 admits a unique global small data
solution u ∈ C1([0,∞), H2) with ut ∈ C([0,∞), H1).

Dimension Main conditions Paper

n = 1 µ > 5/3, ν = 0, p > pF (n) [1]

n = 2 µ ≥ 3, ν = 0, p > pF (n) [1]
µ = 2 ν = 0, p > pS(2 + µ) [3]

n ≥ 1 µ ≥ n+ 2, ν = 0, pF (n) < p < pSo(n) [1]

n = 3 µ = 2, ν = 0, p > pS(3 + µ)
radial solution [3]
smooth solution [7]

n ≥ 4 µ = 2, ν = 0, pS(n+ µ) < p < pSo(n)
radial solution, n = 5, 7 [2]

n ≥ 1 µ ≥ 2, δ = 1 p > pS(n+ µ)
radial solution, even n [11]
radial solution, odd n [12]

n ≤ 4 µ ∕= 2, δ ≤ 0 or δ ≥ (n+ 1)2, suitable range of p
energy solution [4]

n ≤ 1 µ ∕= 2, δ ≤ 0 or δ ≥ (n+ 1)2, suitable range of p
exponentially weighted decay data [10]
energy solution [4]
less regular solution [13]

Our result coincides with the one given in [3] for µ = 2 and s = 0, that is global
existence for p > 2, but we can also multiply by the potential (1+ t)s that interacts
with the critical exponent. Let µ ∕= 2; for some µ only decreasing potentials are
admissible, for others µ, increasing potentials can be considered and the range of p
depends on s. The sharp discussion is given in Section 4.1. Here we do not give a
blow up results that can assert when the condition 2s+µ < p(µ− 1) is critical, this
will be object of next studies.
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For n = 3 our result is weaker than [7], since we do not reach the critical exponent
even for µ = 2. More precisely we need

s+ 1 <
µ

2
(p− 1) and 5/3 ≤ p ≤ 3 ,

see the discussion in Section 4.2. Comparing our result with [7], we see that we
get well posedness in energy space while in that paper the existence is given in a
more regular setting. Moreover we believe it is interesting to give a hint for n = 4, 5
where the technique used in [7] is not available since it is based on [6], while we
prefer Klainerman’s approach [8] that avoids the fundamental solutions of the wave
equations. The simplest 4D case, that is p = 2 is treated in Section 4.3.

Comparing with Palmieri’s results [11] and [12], we avoid the radial assumption
but also give a shorter proof. Also the results in [4], [13], [10] avoid radial condition
but in those papers δ ∕= 1, so we try to cover the special scale invariant case.

Scheme of the paper. In Section 2 we give the main tools of the proof of
a global existence result of 1 with (µ, ν, s) = (0, 0, γ). These will be obtained in
Section 3 for n = 2, 3 and the remarkable case n = 4, p = 2. Finally, in Section 4
we apply these results for special scale invariant wave equations.

2. Main tools. First, we recall some useful results on the non-homogeneous wave
equations: !

"#

"$

utt(t, x)−△u(t, x) = F (t, x), t ≥ 0, x ∈ Rn,

u(0, x) = εu0(x), x ∈ Rn,

ut(0, x) = εu1(x), x ∈ Rn,

(5)

with ε > 0. We assume

supp(u0), supp(u1) ⊂ BR(0)

for suitable R > 0.

2.1. Klainerman fields. Let i, j ∈ {1, . . . , n} with i ∕= j, by Klainerman fields we
mean the vector fields

Γ = (D,L0, Lj ,Ωij) ,

D = (∂t, ∂j) ,

L0 = (1 + t)∂t + x ·∇ ,

Lj = (1 + t)∂j + xj∂t ,

Ωij = xi∂j − xj∂i .

Given a multi-index γ, the following relations hold with suitable constants aβ , bβ :

[□,Γγ ] =
+

|β|≤|γ|−1

aβ Γ
β□, (6)

[D,Γγ ] =
+

|β|≤|γ|−1

bβ Γ
βD. (7)

We consider u(t, x) : R+ × Rn → R. Fixed t ∈ R+, these fields define the space
HN

Γ (Rn) by means of the the norm

‖u(t, ·)‖Γ,N,2 =
+

|k|≤N

‖Γku(t, ·)‖2 , N ∈ N.
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When u(t, x) = f(x) is independent of t, we have

‖f‖Γ,N,2 ≃ ‖f‖H1(RN ) + ‖x ·∇f‖L2(RN ) .

Due to 7, any permutation of Γ fields gives equivalent norms, uniform with respect
to t ≥ 0.

From [8] and [14], one has the following Sobolev-type inequalities in these gen-
eralized Sobolev spaces:

‖w(t, ·)‖∞ ≲ (1 + t)−
n−1
2 ‖w‖Γ,s,2 if s > n/2, (8)

‖w(t, ·)‖∞ ≲ (1 + t)1−
n−1
2

'
‖w‖Γ,s,2 + ‖Dw‖Γ,s,2

(
if s+ 1 > n/2, (9)

‖w(t, ·)‖q ≲ (1 + t)−(n−1)( 1
2−

1
q )‖w‖Γ,s,2 if 2 ≤ q < ∞ ;

1

q
≥ 1

2
− s

n
≥ 0, (10)

for any t > 0 and any w(t, ·) such that the right-hand sides are well-defined.

2.2. Energy estimate. In this section we consider the functional

EL[u](t) =
1

2

,

Rn

|ut(t, x)|2 d x+
1

2

,

Rn

|∇u(t, x)|2 d x .

Deriving this quantity and having in mind the finite propagation speed, for the
solution of 5, we have

‖Du(t)‖2 ≲ ε‖∇u0‖2 + ε‖u1‖2 +
, t

0

‖F (τ, ·)‖2 d τ .

Since 6 holds, we get

‖Du‖Γ,k,2 ≲ ε‖∇u0‖Γ,k,2 + ε‖u1‖Γ,k,2 +
, t

0

‖F (τ, x)‖Γ,k,2 dτ ,

for any k ∈ N.

2.3. Decomposition in polar coordinates. Ler m, ℓ ∈ [1,+∞]. For any x ∕= 0,
we put x = rω with r = |x| and ω ∈ Sn−1, we define

‖g‖m,ℓ = ‖r
n−1
m ‖g(r·)‖Lℓ

ω(Sn−1)‖Lm
r ([0+∞))

for any function g : R → R with finite right-hand side. For m = ∞, in the previous

expression one reads r
n−1
m = 1. Let g = g(t, ·), we put

‖g‖Γ,N,m,ℓ =
+

|k|≤N

‖Γkg‖m,ℓ , N ∈ N.

Any permutation of Γ fields gives equivalent norms, uniform with respect to t ≥ 0.
We put ‖f‖Γ,N,2,2 = ‖f‖Γ,N,2

Following [9] we can prove the next estimate for the fundamental solution of the
wave equation.

Lemma 2.1. Let n = 2 and 1 < q ≤ 2 or n ≥ 3 and 2n
n+2 ≤ q ≤ 2. Then

----
sin(t|ξ|)

|ξ| ĝ(ξ)

----
L2

≲ tn(
1
2−

1
q )+1‖g‖q,2 ,

for any g ∈ L2 and t ≥ 0.
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2.4. Estimate for the zero order term. We can apply the previous lemma to

û(t, ξ) = ε cos(t|ξ|)û0 + ε
sin(t|ξ|)

|ξ| û1 +

, t

0

sin(t|ξ|)
|ξ| F̂ (s, ξ) d s .

Having in mind 6, we have the estimate for the zero order term.

Proposition 1. Let

n = 2, q = 1 + ε , δ(q) =
2ε

1 + ε
,

or

n ≥ 3, q =
2n

n+ 2
, δ(q) = 0 .

Then

‖u(t, ·)‖Γ,k,2 ≲ ε‖u0‖Γ,k,2 + εtδ(q)‖u1‖Γ,k,q,2 +
, t

0

(t− τ)δ(q) ‖F (τ, ·)‖Γ,k,q,2 dτ ,

for any k ∈ N.

3. Global existence theorem for the not-damped case. Now we come back
to the semilinear Cauchy problem

!
"#

"$

utt(t, x)−△u(t, x) = (1 + t)γ |u|p, t ≥ 0, x ∈ Rn ,

u(0, x) = εu0(x), x ∈ Rn ,

ut(0, x) = εu1(x), x ∈ Rn .

(11)

For any T > 0, we introduce the space Xδ,k(T ) with the norm

‖u‖Xδ,k(T ) = sup
t∈[0,T ]

'
(1 + t)−δ‖u‖Γ,k,2 + ‖Du‖Γ,k,2

(
,

where δ = δ(q) and q ≥ 1 are given by Proposition 1.
For any ω ∈ Xδ,k(T ) let u = S[ω] be the solution to

!
"#

"$

utt −△u = (1 + t)γ |ω|p,
u(0, x) = εu0(x),

ut(0, x) = εu1(x)

with compactly supported data. Thanks to Proposition 1, we may estimate

‖u(t, ·)‖Γ,k,2 ≲ ε‖u0‖Γ,k,2 + εtδ‖u1‖Γ,k,q,2 +
, t

0

(t− τ)δ
--(1 + τ)γ |ω(τ, ·)|p

--
Γ,k,q,2

dτ.

Since

[∂τ , (1 + τ)γ ] = γ
1

(1 + τ)
(1 + τ)γ ,

[L0, (1 + τ)γ ] = γ(1 + τ)γ ,

[Lj , (1 + τ)γ ] = γ
xj

(1 + τ)
(1 + τ)γ

and thanks to the finite speed of propagation, we have |x| ≲ (1 + t) on suppu. We
arrive at

‖u(t, ·)‖Γ,k,2 ≲ ε‖u0‖Γ,k,2 + tδε‖u1‖Γ,k,q,2 +
, t

0

(t− τ)δ (1+ τ)γ
--|ω(τ, ·)|p

--
Γ,k,q,2

dτ.
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Due to the compact support, being q ≤ 2, we can control ‖u1‖Γ,k,q,2 ≲ ‖u1‖Γ,k,2.
We can conclude

‖Du‖Γ,k,2 ≲ ε‖∇u0‖Γ,k,2 + ε‖u1‖Γ,k,2 +
, t

0

(1 + τ)γ‖|ω|p‖Γ,k,2 dτ .

We look for some condition on p > 1 such that

‖|ω|p(s)‖Γ,k,q,2 ≲ (1 + s)α‖ω‖pXδ,k(T ) (12)

and

‖|ω|p(s)‖Γ,k,2 ≲ (1 + s)β‖ω‖pXδ,k(T ) (13)

with

δ + γ + α < −1 and γ + β < −1 . (14)

so that S[ω] has a unique fixed point in Xδ,k(T ), that is u = S[u], such that

‖Du(t)‖Γ,k,2 ≲ 1 and ‖u(t)‖Γ,k,2 ≲ (1 + t)δ

for any t ≤ T . This gives local existence and small data global existence as well.

It remains to obtain 12, 13 provided 14. First by Hölder inequality we get

--|ω(τ, ·)|p
--
Γ,1,q,2

≲ ‖|ω|p−1‖q̄,∞ ‖ω(τ, ·)‖Γ,1,2,
1

q
=

1

2
+

1

q̄
.

Moreover, assuming p ≥ 2/q that is p− 1− 2/q̄ ≥ 0, we can estimate

‖|ω(τ, ·)|p−1‖q̄,∞ ≲ ‖ω(τ, ·)‖p−1−2/q̄
∞ ‖ω(τ, ·)‖2/q̄2,∞ .

Applying Sobolev embeddings on the unit sphere Sn−1 leads to

‖ω(τ, ·)‖2,∞ ≲ ‖ω(τ, ·)‖Hk+1(Rn) ≤ ‖ω(τ, ·)‖Hk(Rn) + ‖Dω(τ, ·)‖Γ,k,2 ,

provided k+1 > n−1
2 that is n = 2, 3, 4 if k = 1 and n = 5, 6 if k = 2. In such cases

we have

‖ω(τ, ·)‖2,∞ ≲ (1 + t)δXδ,k(T ) .

Thanks to 9, we find

‖w(τ, ·)‖∞ ≲ (1 + τ)1−
n−1
2

'
‖w(τ, ·)‖Γ,k,2 + ‖Dw(τ, ·)‖Γ,k,2

(
.

assuming k+1 > n/2, that is k = 1 if n = 2, 3 and k = 2 if n = 4, 5. Summarizing,

‖|ω|p(s)‖Γ,1,q,2 ≲ (1 + s)α‖ω‖pXδ,k(T )

for k = 1 if n = 2, 3 and k = 2 if n = 4, 5, provided

α = (p− 1)

%
1− n− 1

2

&
−
%
1− n− 1

2

&%
2

q
− 1

&
+ δp

=

%
1− n− 1

2

&%
p− 2

q

&
+ δp .

In particular, for k = 1 we have 12 provided n = 2, 3.

Now we turn to 13. Proceeding as before we take r, q1 ≥ 2 such that
--|w(τ, ·)|p

--
Γ,1,2

≲ ‖|w(τ, ·)|p−1‖r ‖w(τ, ·)‖Γ,1,q1
provided

1

2
=

1

r
+

1

q1
.
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By Sobolev embedding, we get

‖w(τ, ·)‖Γ,1,q1 ≲ ‖w(τ, ·)‖Γ,1,2 + ‖Dw(τ, ·)‖Γ,1,2
assuming that

1 ≥ n

%
1

2
− 1

q1

&
,

that is trivially satisfied for n = 2, otherwise

2 ≤ q1 ≤ 2n

n− 2
.

On the other hand, by Sobolev embedding 10, we get

‖|w(τ, ·)|p−1‖r ≤ ‖w(τ, ·)‖p−1
r(p−1)

≲ (1 + τ)−(n−1)( 1
2−

1
r(p−1) )(p−1)‖w(τ, ·)‖p−1

Γ,1,2 ,

once we check

1

r(p− 1)
≥ 1

2
− 1

n
≥ 0 and 2 ≤ r(p− 1) < +∞ .

As a conclusion 13 holds with

β = −(n− 1)

%
1

2
− 1

r(p− 1)

&
(p− 1) + δp

for any r ∈ [2/(p− 1),∞) if n = 2, otherwise r ≥ n and 2 ≤ r(p− 1) ≤ 2n
n−2 .

We conclude rewriting the conditions 14:
!
""#

""$

γ +

%
1− n− 1

2

&%
p− 2

q

&
+ δ(p+ 1) < −1 ,

γ − (n− 1)

%
p− 1

2
− 1

r

&
+ δp < −1 .

(15)

3.1. 2D Wave equation with potential. Let n = 2. Due to Proposition 1, let
us choose k = 1 and δ = δ(q), q = 1 + ε with ε > 0 so that δ(q) → 0 as ε → 0. We
know that in Xδ,k(T ) we have a fixed point for 1 with parameter (µ, ν, s) = (0, 0, γ)
provided p ≥ 2/q and

.
γ + p

2 < −1 + 1
1+ε − δ(p+ 1)

γ − p
2 < − 3

2 − 1
r − δp

(16)

with r ∈ [2/(p− 1),∞). In particular if

2γ < min{−p, p− 3} ,

then we can find r → ∞ and δ → 0 such that 16 is satisfied. Since p ≥ 2 then it
suffices to take

2γ < −p .

We can conclude with the following result

Theorem 3.1. Let n = 2, p ≥ 2 and γ < −p/2. Let u0, u1 ∈ H2
Γ(Rn) × H1

Γ(Rn)
with compact support. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) the
Cauchy problem 11 admits a unique global small data solution

u ∈ C([0,∞), H2
Γ) ∩ C1([0,∞), H1

Γ).
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3.2. 3D Wave equation with potential. Let n = 3. Let us choose k = 1 and
δ = 0 from Proposition 1 so that in X0,1(T ) we have a fixed point once 15 holds.
This leads to

p > 2 + γ +
2

r
and γ < −1 , (17)

but we also need

1 +
2

r
≤ p ≤ 1 +

6

r
, r ≥ 3 , p ≥ 2

q
with q =

6

5
.

The best choice is given by r = 3 that leads to the following result:

Theorem 3.2. Let n = 3, γ < −1 and 5/3 ≤ p ≤ 3. Let u0, u1 ∈ H2
Γ(Rn)×H1

Γ(Rn)
with compact support. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) the
Cauchy problem 11 admits a unique global small data solution

u ∈ C([0,∞), H2
Γ) ∩ C1([0,∞), H1

Γ).

3.3. 4D Wave equation with potential. We shall prove 12, 13 provided 14 with
p = 2, k = 2. From Proposition 1, we have q = 4/3 and δ = 0. Due to the simple
relation Γ2w2 = w(w + 2Γw + Γ2w) + (Γw)2, we have to estimate

‖|ω|2‖Γ,2,4,2 ≲
+

Γ,|α|≤2

‖wΓαw‖4/3,2 +
+

Γ

‖Γw‖22/3,2 := I + II ,

and

‖|ω|2‖Γ,2,2 ≲
+

Γ,|α|≤2

‖wΓαw‖2 +
+

Γ

‖Γw‖24 := III + IV .

By using Hölder only in radial coordinates, with rn−1 as a weight, we find

I ≲ ‖w‖4,2‖w‖Γ,2,2 ≲ ‖w‖4‖w‖Γ,2,2 .
By using standard Sobolev embedding we can conclude I ≲ ‖w‖2Γ,2,2 that is α = 0
is a good candidate for 12. Similarly by using 9, we arrive at

III ≲ ‖w‖∞‖w‖Γ,2,2 ≲ (1 + t)−1/2X2
2 (T ).

Also for IV we take advantage of Klainerman’s inequality since

IV ≲ (1 + t)−3/2‖Γw‖2Γ,1,2 ≲ (1 + t)−3/2X2
2 (T )

being 9 valid for n = 4, q = 4, s = 1. In any case we have β = −1/2. It remains to
find II ≲ X2

2 (T ). This holds since

II ≲
+

Γ

‖Γw‖4,2‖w‖Γ,1,2 ≲ ‖w‖Γ,1,2
+

Γ

‖Γw‖4 ≲ X2
2 (T )

again by standard Sobolev embedding. We can conclude the following.

Theorem 3.3. Let n = 4, γ < −1 and p = 2. Let u0, u1 ∈ H3
Γ(Rn)×H2

Γ(Rn) with
compact support. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) the Cauchy
problem 11 admits a unique global small data solution

u ∈ C([0,∞), H3
Γ) ∩ C1([0,∞), H2

Γ).

4. Equivalent nonlinear special scale invariant damped wave equations.
Here we come back to 1 with ν = µ

2

'
µ
2 − 1

(
and we discuss the conditions on

(µ, ν, s, p) such data global existence holds. We simply look for the equivalent
equation with parameters (0, 0, s− µ

2 (p− 1)) and find condition such that Theorem
3.1 and Theorem 3.2 holds for 11.
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4.1. 2D case. Here we deduce Theorem 1.4 form Theorem 3.1 that requires

s− µ

2
< −p

2
and p ≥ 2 . (18)

This means
2s+ µ < (µ− 1)p if p ≥ 2 . (19)

Let us compare this condition with the known results.
In [3] we take (µ, ν, s) = (2, 0, 0), condition 18 is empty, while 19 gives the critical
case p > 2. Indeed in [3] for p ≤ 2 we gained blow-up.

In the present paper we extend the result in [3] only for a potential (1 + t)s

behind the forcing term |u|p. However we can understand the important role of this
potential for special scale invariant wave equations by writing more explicitely 18.
A first result is given by global existence for 3 when

µ = 1, ν = −1/4, p ≥ 2 , for any s < −1/2 .

We see that s interacts with the µ that is with the damping term and increasing
potentials (s ≥ 0) are non admissible.

Now we turn to the main studied case, of large damping coefficients, the global
existence result holds for

µ > 1, ν =
µ

2

)µ
2
− 1

*
, p > max

/
2,

2s+ µ

µ− 1

0
∀ s ∈ R ,

µ > 1, ν =
µ

2

)µ
2
− 1

*
, p = 2, for any s < 2− µ

2
.

In these relations we see that the potential interacts with the source term, that is
the range of p. It remains to discuss the case of small µ:

µ < 1, ν =
µ

2

)µ
2
− 1

*
, ∀ p ≥ 2 , for any s < −µ

2
.

In particular for µ = ν = 0 we see that our result does not cover the 2D wave
equation without potential since it needs s < 0. In such case the critical exponent

is pStr(2) =
3+

√
17

2 and it has to be reached by others technique, see [5].

4.2. 3D case. The discussion for 3D is simpler than the 2D case, but the result
is weaker, indeed p ≥ 5/3 is far from the prevent critical value that is of Strauss
type and it can be seen as a Fujita exponent. The classical wave equation can-
not be obtained since γ = 0 is not admissible in Theorem 3.2. Taking parameters
(2, 0, 0) in 1, like in [3], the equation is equivalent to (0, 0,−(p−1)) so that we need
p > 2; in addition we are requiring p ≤ 3. This result is not sharp since in [3] the
critical exponent is given by pS(5) < 2, but here the radial assumption is avoided
by means of Klainerman fields. In [7] the radial assumption is avoided by using
3D fundamental solution of wave equations, here we try a simpler approach that
works also in higher dimension. In any case for variable potentials and special scale
invariant case we get some new results. More precisely, considering 1 with parame-
ters

'
µ, µ

2

'
µ
2 − 1

(
, s
(
in the equivalent version with parameters

'
0, 0, s− µ

2 (p− 1)
(
,

rewriting 17with r = 3, we get global existence of this Cauchy problem once c

µ ≤ 0 , 5/3 < p ≤ 3 , for all s < −1 ,

max{0, s+ 1} < µ ≤ 3(s+ 1) , max

/
1,

2(s+ 1)

µ
+ 1

0
< p ≤ 3 ,

µ > max{0, 3(s+ 1)} , 2 < p ≤ 3 .

We underline that increasing potentials can be considered for µ > 1.
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4.3. 4D case. From Theorem 3.3, we know that if n = 4 the case (0, 0, γ) has global
solution for p = 2 without radial assumption provided γ < −1. After equivalence
between equations, we can say that the special scale invariant wave equation in 4D
with p = 2 and parameters (µ, µ

2

'
µ
2 − 1

(
, s) has a global solution provided s < µ

2−1.
Clearly something more general can be obtained for n = 4, we prefer to give this
case to show the possibility of avoid the radial assumption also for high dimension
by means of Klainerman fields.
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