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Nowadays, people of all ages are increasingly using Web platforms for social interaction. Consequently, many tasks are being
transferred over social networks, like advertisements, political communications, and so on, yielding vast volumes of data disseminated
over the network. However, this raises several concerns regarding the truthfulness of such data and the accounts generating them.
Malicious users often manipulate data in order to gain profit. For example, malicious users often create fake accounts and fake followers
to increase their popularity and attract more sponsors, followers, and so on, potentially producing several negative implications that
impact the whole society. To deal with these issues it is necessary to increase the capability to properly identify fake accounts and
followers. By exploiting automatically extracted data correlations characterizing meaningful patterns of malicious accounts, in this
paper, we propose a new feature engineering strategy to augment the social network account dataset with additional features, aiming
to enhance the capability of existing machine learning strategies to discriminate fake accounts. Experimental results produced through
several machine learning models on account datasets of both the Twitter and the Instagram platforms highlight the effectiveness of
the proposed approach towards the automatic discrimination of fake accounts. The choice of Twitter is mainly due to its strict privacy
laws, and because its the only social network platform making data of their accounts publicly available.
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1 INTRODUCTION

Social networks enable sharing information among users of all ages, at every moment, and in every part of the world.
Social interaction platforms like Instagram, Twitter, Tumblr, etc., have a significant impact on the daily life of their
users and the entire society.

The typical user profile over a social network might contain several clues concerning emotions, passions, interests,
and characteristics of the profile’s owner. For these reasons, many people tend to have a virtual life over social network
platforms, which is not necessarily coupled with their real one. However, in a society where friendships are often
strengthened through Facebook, emotions spread through Instagram, jobs found through LinkedIn, and so on, it is
necessary to define control mechanisms capable of preventing the misuse of such sharing platforms by automatically
detecting possible malicious users, i.e., spammers, bots, fake profiles, and so on.

A fundamental aspect to be monitored over a social network is the popularity of a profile, witnessed by the number of
its friends or followers. A Twitter or Instagram profile with many followers is considered influential, hence it provides
a better reputation to the profile’s owner and attract better-paid advertisements. Consequently, a common practice
of several social network users is to buy fake followers to appear more influential, also because they can be bought
at an extremely low price (a few dollars for hundreds of fake followers). If this practice was merely used to support
individual vanity, it would be harmless, but if it aimed at making an account more reliable and influential, it might
be dangerous. For instance, spammers could buy fake followers, aiming to increase their popularity or influence the
promotion of products, trends, fashions, and so on [12].

In general, it is possible to find many types of anomalous accounts in social networks, such as Spammers, Bots,
Cyborgs, and Trolls. Spammer accounts tend to recommend fake contents and/or dangerous links. Bot algorithms tend
to manage accounts to simulate human behavior, trying to automatically perform typical human actions. With respect
to them, Cyborgs are both managed by humans, hence they are not necessarily malicious. For instance, a politician
might not handle his/her account personally and might rely on a stuff of people together with some Bots. Finally, Trolls
are algorithms aiming to disrupt conversations and activities of others.

Often, fake accounts also have numerous followers, most of which are fake, and their identification is an extremely
complex task. In the literature, we find several automatic techniques for identifying spams and bots [18, 35, 45]. Some of
them focus on the characterization of human behaviors with the help of sociologists, whereas others exploit supervised
machine learning techniques on datasets containing different types of accounts, manually classified by humans [5, 6, 15].
Additional work relies on the features of user profiles, and on those related to the behavior and timing of accounts,
in order to identify spammers in microblogging, by employing multi-feature strategies [35, 45, 51]. In this context,
blockchain has the potential to provide new opportunities for checking the genuineness of social network accounts
[24].

In this paper, we focus our attention on the detection of fake accounts by trying to infer peculiar characteristics, in
terms of correlations within the data of a social network profile dataset, aiming at enhancing the capabilities of machine
learning methods to discriminate them. In particular, we propose a new feature engineering strategy exploiting profiling
metadata, represented in terms of relaxed functional dependencies (rfds), which can be automatically inferred from
data [8, 9]. The strategy enables the construction of novel features that could be added to baseline datasets, in order to
improve the performances of classification models used for discriminating fake accounts [37]. The proposed strategy
extends our previous work described in [7], which exploited semantic characteristics of data to support an analyst
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Malicious Account Identification in Social Network Platforms 3

in the detection of fake accounts. With respect to it, the strategy proposed in this paper provides several significant
improvements towards a complete automation of the fake account discrimination process.

The usage of rfds in discriminating fake from real accounts is motivated by the fact that automatic procedures used
to create fake accounts often produce similarity patterns over data. In fact, fake account generators often introduce slight
differences during the generation of account properties, such as screen name, user data, and account creation time-stamp.
These differences can be detected through rfds, providing a descriptive profile of fake accounts, as demonstrated in
[7]. However, to exploit such an idea in practice, it is necessary to define a proper methodology to support and/or
enhance the automatic evaluation of social network accounts. To this end, the strategy proposed in this paper deeply
extends the idea provided in [7], since the concept of rfd is used to define a feature engineering strategy to be applied
in a classification scenario. The general idea is to derive new features based on automatically extracted rfds, aiming
to improve the classification score of machine learning models discriminating fake accounts. The proposed feature
engineering strategy exploits rfds holding only on the profiling data of fake accounts, and thanks to a newly defined
rfd validation function relying on the frequency of account tuples (FAV), it is able to characterize the involvement of
training samples in the rfd validation process. Moreover, since the addition of new features could introduce noise and
expose the machine learning model to problems, such as overfitting and underfitting [48], we also propose a novel
FAV-based feature Evaluation Metric (FEM) for ranking the new features and select the most relevant ones.

To demonstrate the effectiveness of the proposed strategy and the associated metrics, we have selected different
machine learning models with the aim of showing how our feature engineering strategy improves their classification
performances without raising the above-mentioned problems.

In summary, the main contributions of our proposal are:

• a deep semantic investigation of rfd meaningfulness for the discrimination of fake accounts;
• a feature engineering strategy relying on automatically extracted rfds to improve classification performances

of machine learning models discriminating fake accounts;
• an approach for ranking and selecting relevant features based on a novel metric, named FAV-based feature

Evaluation Metric (FEM).

The remainder of the paper is organized as follows. In Section 2 we describe relevant works concerning malicious
account identification. In Section 3 we recall the definition of rfd together with their potential applications. Section 4
describes the semantic analysis we performed to characterize the usefulness of rfds in discriminating fake accounts.
Section 5 presents the new proposed feature engineering strategy and the associated FEM metric. Section 6 shows the
experimental evaluation we performed to measure the effectiveness of the proposed strategy, and results obtained with
four classification models. Finally, conclusions and future directions are provided in Section 7.

2 RELATEDWORK

The detection of fake accounts and fake activities represents a complex problem for social network companies like
Facebook, Instagram, Twitter, and so on. In fact, in the literature there are several works aiming at providing automatic
support to properly perform discrimination tasks, even though they mainly focus on specific issues, such as fake account
identification, activity classification, behavior characterization, and so on. Moreover, different solutions can also be
distinguished by the kind of data they consider. For instance, the analysis and classification tasks can involve post/tweet
texts, patterns in profiles’ activities, and/or simple account information. Specificity in the approaches also depends on
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4 Caruccio, et al.

the analyzed social networks and the strategies/models they employ. In what follows, we detail the most representative
solutions from the literature, by categorizing them on the issues they mainly focus on.

One of the main issues to consider for trustworthy social networks concerns the identification of malicious activities.
Several detection techniques have been surveyed in [27] analyzing their pros and cons, including their applicability.
An important proposal in this category has been described in [2]. It uses a Naive Bayes classifier for detecting wrong
information, like for example, online rumors, and for distinguishing and predicting fake news. Furthermore, the authors
show the application of their algorithm in different contexts, like for instance text classification, spam filtering, hybrid
recommendation, and collaborative filtering. Instead, in [23], the detection of malicious activities using phone numbers
to promote advertising campaigns over the Twitter platform has been studied. The authors collected tweets, user
meta-data, and other Twitter data concerning 3, 370 campaigns, disseminated by 670, 251 accounts; then, they modelled
a Twitter dataset by considering the interconnections between several users involved in the advertising campaigns.
Thus, a feedback-based active learning strategy has been proposed, which also uses a novel metric, called Hierarchical
Meta-Path Score (HMPS), for measuring the proximity of unknown users with respect to the ones involved in spamming
activities. Profile activities, and in particular, patterns of the retweeting activity over the Twitter platform is the focus of
Retweet-Buster (RTbust) [36], which exploits unsupervised feature extraction and clustering techniques to emphasize
benign and malicious patterns of retweeting activities. It also implements an LSTM autoencoder that maps the retweet
time series into feature vectors by clustering them with a hierarchical density-based algorithm. On the other hand,
fake account discrimination represents another widely studied problem in the social network context. To this end,
literature proposals [42] typically differ on the data they analyze, also yielding a categorization based on the structure
of considered data.

In order to detect fake accounts, several algorithms and techniques mostly exploit the vast volumes of unstructured
data generated from social networks [39]. Among these, in [32] content and metadata at the tweet level have been
exploited for recognizing bots, by means of a deep neural network based on contextual long short-term memory
(LSTM). In particular, this approach extrapolates contextual features from user metadata and uses the LSTM deep
nets to process the tweet text, yielding a model capable of obtaining high classification accuracy also with few data.
Instead, the statistical text analysis is exploited in a novel general framework to discover compromised accounts [44].
The framework relies on the consideration that an account’s owner uses his/her profile in a way that is completely
different from the same account when this is hacked, enabling a syntactic analyzer for identifying the features used
by hackers (or spammers) when they compromise a genuine account. Thus, a language modeling algorithm is used
for extrapolating the similarities between language models of genuine users and those of hackers/spammers, in order
to characterize hackers’ features and use them in supervised machine learning approaches. Finally, spectral patterns
derived from textual contents of users have been analyzed in [5], aiming to find information automatically forwarded
on social network platforms. This technique extracts a feature vector from the Discrete Wavelet Transform and a
weighting schema, named Lexicon based Coefficient Attenuation, and it employs a classification model based on the
Random Forest to properly identify legitimate robots, malicious robots, and humans.

Other works mainly organize account and behavior information in structured datasets in order to use well-known
and/or novel models for classifying social network accounts. For instance, in [19] the authors proposed a methodology
to evaluate bot classifiers by varying sizes and characteristics, and by testing them on unseen bot classes. The data they
used to train and test classifiers include some of the largest and most varied collections of bots used in the literature,
reaching a training set containing over 200, 000 data points. Instead, in [40] an SVM classifier based on posts and
statuses, involving Twitter accounts, has been used to better discriminate fake accounts. The automatic collection
Manuscript submitted to ACM
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Malicious Account Identification in Social Network Platforms 5

of social network accounts has been addressed in [4]. In particular, the authors developed an ad-hoc Web crawler to
automatically collect and filter public Twitter accounts and organize the data in testing and training datasets. Moreover,
a Multi-layer Perceptron Neural Network has been modeled and trained over nine features characterizing a fake account.
Another deep learning-based approach is provided in [49]. In particular, the authors propose DeepProfile that performs
account classification through a dynamic CNN to train a learning model, which exploits a novel pooling layer to
optimize the neural network performance in the training process.

Further approaches devoted to the fake account discrimination, also considered feature engineering and/or selection
issues [3, 30, 33]. Nevertheless, most of the proposals including a feature engineering process, rely on domain experts
or include manual work for characterizing meaningful features that permit a classifier to work with high accuracy. For
instance, in [43], the authors have enumerated the main characteristics to discriminate a fake account from a genuine
one. In particular, by manually examining different types of accounts, they have extracted a set of features in order to
highlight the characteristics of malicious accounts. Moreover, they have analyzed the liking behavior of each account to
build an automated mechanism to detect fake likes on Instagram.

Compared to the fake account discrimination approaches described above, in this paper we argue the importance of
considering metadata (e.g., rfds) in order to support and enhance feature engineering processes for complex scenarios,
such as the discrimination of fake accounts. To this end, we propose a new feature engineering strategy that exploits
such a kind of metadata, and directly employs it in the classification of fake accounts.

3 BACKGROUND

In what follows, we first recall some notations and concepts concerning relational databases, and then introduce Relaxed
Functional Dependencies (rfds), since they represent the basic concept underlying our methodology to characterize
fake accounts.

A relational database schema R is a collection of relation schemas (𝑅1,. . ., 𝑅𝑛), where each 𝑅𝑖 is defined over a fixed
set of attributes 𝑎𝑡𝑡𝑟 (𝑅𝑖 ). Each attribute 𝐴𝑘 has associated a finite or infinite domain 𝑑𝑜𝑚(𝐴𝑘 ). A relation instance 𝑟𝑖
of 𝑅𝑖 is a set of tuples such that for each attribute 𝐴𝑘 ∈ 𝑎𝑡𝑡𝑟 (𝑅𝑖 ), 𝑡 [𝐴𝑘 ] ∈ 𝑑𝑜𝑚(𝐴𝑘 ), ∀𝑡 ∈ 𝑟𝑖 , where 𝑡 [𝐴𝑘 ] denotes the
projection of 𝑡 onto 𝐴𝑘 . The collection of relations (𝑟1,. . .,𝑟𝑛) of (𝑅1,. . .,𝑅𝑛), resp., represents a database instance 𝑟 of R.

In the context of relational databases, functional dependencies (fds) have been mainly used to define data integrity
constraints, aiming to improve the quality of database schemas and to reduce manipulation anomalies. rfds extend the
following definition of fd.

Definition 1. (Functional dependency). Let 𝑟 of R be a database instance, and 𝑋,𝑌 ⊆ 𝑎𝑡𝑡𝑟 (R) be two sets of
attributes, a functional dependency (fd) 𝜑 , denoted by 𝑋 → 𝑌 , specifies a constraint on the possible tuples that can form

the instance 𝑟 : 𝑋 → 𝑌 iff for every pair of tuples (𝑡1, 𝑡2) in 𝑟 , if 𝑡1 [𝑋 ] = 𝑡2 [𝑋 ], then 𝑡1 [𝑌 ] = 𝑡2 [𝑌 ]. The two sets 𝑋 and 𝑌

are also called Left-Hand-Side (LHS) and Right-Hand-Side (RHS), resp., of 𝜑 .

rfds relax the definition of fd on two main aspects, that is, by admitting i) the possibility of using approximate
operators to compare projections of tuples on subsets of attributes, and ii) the possibility that the dependency might
also hold only on a subset of the entire database. Approximate operators rely on the concept of similarity constraint

[16].

Definition 2. (Similarity constraint). Given an attribute 𝐴 defined on a domain D, and a threshold 𝛼 , let 𝜙 [𝐴] :
D × D→ R be a function evaluating the similarity between value pairs of 𝐴; a similarity constraint on 𝐴 is satisfied iff a

value pair of 𝐴 can be considered similar according to 𝛼 with respect to the value computed through 𝜙 [𝐴].
Manuscript submitted to ACM
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6 Caruccio, et al.

As an example, we can define 𝜙 based on a similarity operator ≈, corresponding to the edit, the Levenstain, or the
Jaro distance [20], such that, given two values 𝑎1, 𝑎2 ∈ 𝐴, 𝑎1≈𝑎2 is true if 𝑎1 and 𝑎2 are “close” enough with respect to
the predefined threshold 𝛼 .

In order to indicate that a pair of values (𝑎1, 𝑎2) are similar on attribute 𝐴, we will use the notation 𝐴≤𝛼 .

Definition 3. (Set of similarity constraints). Given a set of attributes 𝑋 ⊆ 𝑎𝑡𝑡𝑟 (R) with 𝑋 = {𝐴1, . . . , 𝐴𝑘 }, a
set of similarity constraints, denoted as 𝑋Φ, represents the collection of similarity constraints 𝑋Φ = {𝐴1≤𝛼1 , . . . , 𝐴𝑘 ≤𝛼𝑘 }
associated to attributes of 𝑋 .

A dependency holding on “almost all” the tuples or on a “subset” of them is said to relax on the extent, whereas one
that uses an approximate method to compare projections of tuples is said to relax on the attribute comparison method
[8]. In case of “almost all” the tuples, a coverage measure should be specified to quantify the cases in which the rfd does
not hold, whereas in case of “subset” (constrained domains in [11]), conditions are used to specify the subset of tuples
on which the rfds hold.

Definition 4. (Coverage measure). Given a database instance 𝑟 of R, and an fd 𝜑 : 𝑋 → 𝑌 , a coverage measure Ψ

on 𝜑 , Ψ : 𝑑𝑜𝑚(𝑋 ) × 𝑑𝑜𝑚(𝑌 ) → R+, measures the amount of tuple pairs in 𝑟 satisfying (or violating) 𝜑 .

There are several coverage measures available. They usually return a normalized value in the range [0, 1].
As an example, the confidence measure introduced in [25] computes the maximum number of tuples 𝑟1 ⊆ 𝑟 for which

𝜑 holds in 𝑟1 normalized on the total number of tuples in 𝑟 . For traditional fds this coverage measure returns the value
1. Another example of coverage measure is the 𝑔3-error [29] that defines the minimum number of tuples 𝑟1 ⊆ 𝑟 to be
removed from 𝑟 in order to make the rfd valid on the remaining ones,normalized on the total number of tuples in 𝑟 .
For traditional fds this coverage measure returns the value 0.

Definition 5. (Constrained domain). Given a relation schema 𝑅 with attributes {𝐴1, . . . , 𝐴𝑘 } defined on a domain

D = D1 × D2 × · · · × D𝑘 = 𝑑𝑜𝑚(𝑅), let 𝑐𝑖 , 𝑖 = 1, . . . , 𝑘 , be a condition on D𝑖 , the constrained domain D𝑐 is defined as

D𝑐 =
{
𝑡 ∈ 𝑑𝑜𝑚(𝑅) |

𝑘∧
𝑖=1

𝑐𝑖 (𝑡 [𝐴𝑖 ])
}
.

Constrained domains restrict the validity of rfds through a concept of “subsets” of tuples.
As a consequence, it is possible to have rfds relaxing on the attribute comparison only, rfds relaxing on the extent

only, and rfds relaxing on both. The latter are named hybrid rfds.

Definition 6. (Relaxed functional dependency). Given a relation schema 𝑅, an rfd 𝜑 on 𝑅 is denoted as

[
𝑋Φ1

Ψ≤𝜀−−−−→ 𝑌Φ2

]
D𝑐

(1)

where

• D𝑐 is the constrained domain filtering the tuples on which 𝜑 applies;
• 𝑋,𝑌 ⊆ 𝑎𝑡𝑡𝑟 (𝑅), with 𝑋 ∩ 𝑌 = ∅;
• Φ1 and Φ2 are sets of similarity constraints on attributes 𝑋 and 𝑌 , respectively;
• Ψ is a coverage measure defined on D𝑐 ;
• 𝜀 is a threshold.
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ACCOUNT DATASET
... URL description follower

count
friends
count

listed
count ... class

0 1 27 653 8 FAKE
0 0 11 503 0 FAKE
1 1 60 511 0 FAKE
1 1 125 449 1 FAKE
1 1 440 704 15 REAL
1 1 5779 1364 92 REAL

......

Similar Values Dissimilar Values

 listed count   friends count  

Computing the g3-error

For instance tuples      and         

Validation
Process

 listed count   friends count  

Fig. 1. An example of the rfd validation process.

Given a relation instance 𝑟 of 𝑅, with 𝑟 ⊆ D𝑐 , the rfd 𝜑 holds on 𝑟 , denoted by 𝑟 |= 𝜑 , if and only if: ∀ (𝑡1, 𝑡2) ∈ 𝑟 ,
if Φ1 is true for each constraint 𝐴≤𝛼 ∈ Φ1, then almost always Φ2 is true for each constraint 𝐵≤𝛽 ∈ Φ2. Here, almost

always means that Ψ(𝜋𝑋 (𝑟 ), 𝜋𝑌 (𝑟 )) ≤ 𝜀, where (resp. 𝜋𝑋 (𝑟 )) is the projection of 𝑟 on the attributes in 𝑋 (resp. in 𝑌 ).
In other words, if 𝑡1 [𝑋 ] and 𝑡2 [𝑋 ] abide by similarity constraints specified by Φ1, then 𝑡1 [𝑌 ] and 𝑡2 [𝑌 ] abide by

similarity constraints specified by Φ2 by tolerating an error Ψ lower than 𝜀.
According to the definition (1), a traditional fd 𝑋 → 𝑌 can also be written as:

𝑋eq
Ψ1−−→ 𝑌eq (2)

where no constrained domain is represented, since it would be a sequence of tautologies, i.e., it is equal to 𝑑𝑜𝑚(𝑅), eq
is the equality constraint, and Ψ1 means𝜓 (𝑋,𝑌 ) = 0, that is no error are admitted, then 𝑡1 [𝑌 ] and 𝑡2 [𝑌 ] agree with the
equality constraint whenever 𝑡1 [𝑋 ] and 𝑡2 [𝑋 ] agree.

In what follows, w.l.o.g. we use rfds with RHS cardinality of one, which is a condition that can be easily released by
using well-known fd transformations. Moreover, for the sake of simplicity, in the following examples, we apply a more
compact notation for the rfds, showing only the operator and the numeric threshold associated with each attribute and
without notations related to the constrained domain, since in our approach we always consider the 𝑑𝑜𝑚(𝑅) as a domain.

Example 1. Let us consider the snippet of the Account dataset in Figure 1, then we can say that the rfd 𝜑5 :

listed_count(≤12)
Ψ≤0.5−−−−−→ friends_count(≤12) holds on it. This means that if two accounts have a similar listed_count (i.e.,

the difference between the number of public lists in which each account owner appears is less than or equal to 12),
then in the majority of cases they also have a similar friends_count (i.e., the difference between the number of users
followed by each account owner profile is less than or equal to 12). To evaluate the majority of cases we admit an
error in the validation of 𝜑5 less than or equal to 0.5 measured by a 𝑔3-error coverage measure. As described in the
right part of Figure 1, during the validation process, the 𝑔3-error is measured on the considered dataset by computing
the minimum fraction of tuples to be removed from the dataset in order to eliminate any possible violation for 𝜑5.
For instance, a violation for 𝜑5 is formed by the pair (𝑡1, 𝑡4) since they have a distance less than or equal to 12 on the
attribute listed_count (i.e., the LHS of 𝜑5), but not on the attribute friends_count (i.e., the RHS of 𝜑5). More specifically, on
the considered dataset there are several violating tuples, such as (𝑡1, 𝑡2), (𝑡1, 𝑡3), (𝑡1, 𝑡4), (𝑡1, 𝑡5), (𝑡2, 𝑡4), (𝑡3, 𝑡4), but if
we remove just two tuples, i.e., 𝑡1 and 𝑡4, we are able to remove any violation for 𝜑5. Consequently, 2 tuples out of 6,
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Datasets # Columns # Rows Size [KB]
Verified accounts 15 3949 400
Real accounts 15 1757 168
Fake Accounts 15 3313 316

Table 1. Statistics of the datasets considered in the evaluation.

i.e., 0.33, represents the 𝑔3-value associated with the validation of 𝜑5 yielding to consider the dependency valid on the
considered dataset, since the extent threshold for 𝜑5 is set to 0.5.

4 CHARACTERIZING FAKE ACCOUNTS THROUGH RFDS

Fake account identification is a hot topic, since the massive usage of social networks has contributed to quickly spread
harmful information. However, the manual detection of such accounts requires a significant effort by humans to analyze
vast volumes of accounts data. To this end, the technique proposed in this paper supports the automatic identification
of fake accounts in social networks by exploiting the concept of rfd (see Section 3) to emphasize data correlations that
are typical of fake accounts, also providing a sort of descriptive profile to recognize them. This section describes how
data correlations expressed in terms of rfds permit to perform a semantic analysis of fake accounts data.

More specifically, we focus on fake account generators, which usually introduce slight differences during the
generation of account properties, such as screen names, user data, and account creation time-stamps, and we try to
exploit rfds for detecting them, since they capture similarities among data. With this in mind, in what follows we
describe how rfds can be used to discriminate fake accounts. In particular, we focus on the Twitter social network,
since it is the only one permitting to retrieve data concerning accounts by means of public API1.

The general idea underlying the semantic analysis is to isolate meaningful patterns, i.e., rfds characterizing specific
classes of accounts, for using them to discriminate fake accounts. To this end, in what follows we first introduce the
dataset used for this investigation, and then discuss how we analyzed rfds in order to perform a proper semantic
analysis. Finally, we discuss examples of rfds that can highlight such a semantical discrimination.

4.1 Account Datasets

The datasets that we used to perform the semantic analysis are shown in Table 1, together with some statistics about
them. We considered 9019 accounts, each categorized in following classes: Real, Verified, and Fake. In particular, we
started by considering the Real and the Fake accounts of the public datasets provided in [17]. Instead, concerning
Verified accounts, we have considered a set of user-profiles validated by Twitter: Twitter profiles with “blue tick” on
their Twitter page. Finally, we also included new Fake accounts in order to increase the total set of accounts. Details on
the considered datasets are described in the following.

Verified account dataset. A Twitter account can be classified as verified when it has been certified as authentic by the
social network platform, i.e., it is denoted with a blue badge appearing near the user name of public accounts. Since
Twitter is the authority releasing such badges, it performs strict checks on any account that maliciously uses such
badges in their own image, background image, or anywhere else, to simulate the verified account status. We collected a
dataset containing 3949 verified accounts by using a Twitter APIs and a Twitter account that we specifically created to
select accounts with the blue badge.

1www.developer.twitter.com/en/docs/twitter-api
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Malicious Account Identification in Social Network Platforms 9

# Attribute Description
1 name Name chosen by the account owner. It consists of a maximum of 20 characters.
2 screen_name Identifier associated with the account owner. It consists of a maximum of 15 characters.
3 location Location defined by the account owner.
4 url Boolean value representing the absence or not of the URL set by the account owner.
5 description Boolean value representing the absence or not of the description set by the account owner.
6 followers_count Number of current followers associated with the account owner.
7 friends_count The number of users followed by the account owner profile.
8 listed_count Number of public list in which the account owner appears.
9 created_at Data and time representing the creation of the account on Twitter.
10 favourites_count Number of Tweet generating by the account owner during his/her activities on Twitter.
11 geo_enabled Boolean value representing the geotagging of the Tweets related to the account owner.
12 statuses_count Number of tweets/retweets that the account owner made.
13 lang Code associated with the language specified by the account owner.
14 default_profile Boolean value representing changes related to the theme or background of the account owner.
15 default_profile_image Boolean value revealing whether the default image of Twitter has been changed by the account owner.

Table 2. Attributes concerning Twitter user objects.

Real account dataset. ATwitter account can be classified as real when it is managed and used by individuals. Analyzing
this kind of accounts is vital, since they can be exploited to prevent the possibility that accounts automatically managed
by bots are defined as real. In particular, we considered a dataset containing 1757 real accounts starting from the ones
provided by Crisci et al. [17], which joined two heterogeneous datasets: TheFakeProject and #elezioni2013. Moreover,
we added additional accounts of real users by including colleagues and friends registered over the Twitter platform,
which agreed to share their accounts for supporting our analysis.

Fake account dataset. A Twitter account can be classified as fake when it has automatically generated and it is
used to perform malicious activities, such as spamming, targeted advertising, and so forth. We started by considering
the fake accounts used in [17], which were bought by authors from three different online platforms: FastFollowerz2,
InterTwitter3, and TwitterTechnology4. Moreover, we also bought additional fake accounts from the InterTwitter website
and added them to the Fake account dataset. The final dataset contained 3313 fake accounts.

Notice that, the final composition of the datasets has been made after the application of data cleaning and preparation
procedures used to label and organize them, in order to avoid the presence of missing values. These filtering activities
turned out to be relevant for extracting meaningful rfds to discriminate fake accounts. The final statistics concerning
datasets composition of Verified, Real, and Fake accounts are reported in Table 1.

Additionally, although the Twitter APIs enable us to retrieve more than 15 attributes from Twitter accounts, we
focused our analysis only on the 15 most relevant attributes of each considered dataset, since the remaining ones do
not refer to user account profiles. The selected attributes are shown in Table 2.

4.2 Semantic analysis of RFD discovery results

By considering the datasets described above, and by exploiting a discovery algorithm capable of extracting hybrid rfds
[10], we collected many rfds for each class of accounts. This allowed us to semantically analyze data correlations that
can help in discriminating fake accounts.

2www.fastfollowerz.com
3www.intertwitter.com
4www.twittertechnology.com
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SetREAL SetFAKE
Fig. 2. Intersection of rfd sets holding on Real and Fake accounts, respectively.

Let us consider a relation SetREAL containing real account data, and a relation SetFAKE containing fake account data.
Thanks to the availability of rfds extraction algorithms [8], we can automatically extract rfds holding on each dataset.
Therefore, by analyzing differences between the two sets of rfds, we can extract meaningful patterns concerning fake
accounts. To this end, we aim to detect the rfds highlighted in Figure 2, that is, those holding on fake accounts but not
on real ones, as described by the following formula:

ΔSetFAKE,SetREAL = PSetFAKE \ PSetREAL
where PSetFAKE and PSetREAL represent the rfds holding on Fake and Real datasets, respectively.

rfds that are common to the two sets can be ignored, since they do not permit to discriminate between the two
types of accounts.

Analogously, let us consider the relation SetVERIFIED, which contains data of accounts whose genuineness has been
certified by Twitter. In order to characterize real accounts, we might want to analyze human behavior. This can be done
by considering rfds holding on real accounts but not on fake and verified ones. More specifically, we focus on a subset
of rfds identified in SetREAL (the grey part of Figure 3), which corresponds to the set of rfds defined by the following
formula:

ΔSetREAL,SetFAKE,SetVERIFIED = PSetREAL \ (PSetVerified ∪ PSetFAKE )

where PSetFAKE , PSetREAL , and PSetVerified represent the rfds holding on Fake, Real, and Verified accounts, respectively.
ΔSetREAL,SetFAKE,SetVERIFIED contains the rfds that are only in SetREAL, but not in SetFAKE and SetVERIFIED. In other

words, our purpose is to find human behavioural patterns that are not replicable by algorithms or bots. Thus, we can
ignore rfds holding on either SetFAKE or SetVERIFIED. In particular, we overlook the rfds holding on SetVERIFIED, since
this set includes Cyborgs, which mix human and bot behaviours, hence they are not useful to characterize typical
human behaviour.

In what follows, we show an example of rfd characterizing the fake accounts dataset:

followers_count, statuses_count, default_profile → default_profile_image

The above rfd highlights the fact that one of the goals of bots is to spread malicious advertising. Consequently, they
do not care about the Twitter profile; instead, they use it without a profile image, and without applying changes to
the default profile. Moreover, they typically set the generated accounts with a similar number of followers, and also
perform a similar number of activities (e.g., number of tweets/retweets).
Manuscript submitted to ACM
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SetVERIFIED SetFAKE

SetREAL

Fig. 3. Intersection of all rfd sets holding on Real, Verified, and Fake account, respectively.

The rfds resulted also useful for semantically characterizing real accounts. In particular, the rfds holding on the
Real dataset reveal that automatic procedures cannot emulate human behaviours. In what follows, we show an example
of rfd characterizing real accounts:

name, description, default_profile → lang

The rfd above is helpful to discriminate humans, since the language is a typical characteristic of a person, implying
his/her way of writing. This is particularly interesting since it holds only on the real accounts dataset. Consequently, we
can presume that automatic procedures for creating fake accounts can randomly reuse similar information for names
and descriptions towards accounts with different languages.

4.3 Attribute involvement on discovered RFDs

To further investigate the semantic usefulness of the rfds we analyzed the impact of each attribute on the LHS
(respectively RHS) by counting the number of times an attribute appears on the LHSs (respectively RHSs) of all
discovered rfds. Results in terms of percentages are shown in Figure 4. In particular, by considering rfds of fake
accounts but not of real ones, it is possible to notice that the attributes statuses_count and friends_count represent the
ones that have the greatest impact when they appear on LHSs (Figure 4(a)). Instead, as shown in Figure 4(b), the most
determined attribute (RHSs) is listed_count, even if also favourites_count appears many time as RHS. In general, by
comparing Figures 4(a) and 4(b), we can notice that the impact on the LHSs is similar for several attributes; instead, a
wider difference appears for attributes on the RHSs. Similar consideration can be provided referring to rfds holding on
fake accounts but not on verified ones, for both LHSs and RHSs, respectively (Figure 4(c) and Figure 4(d)). Finally, taking
into consideration rfds holding on real accounts but not on the union of fake and verified ones, it is possible to notice
that the attributes followers_count and statuses_count present the greatest impact with respect to other attributes, in
the case of LHSs (Figure 4(e)). Instead, as shown in Figure 4(f), the greatest impact for RHSs is obtained by the attribute

Manuscript submitted to ACM
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(a) Percentage of LHSs for holding rfds on Fake
vs Real accounts

(b) Percentage of RHSs for holding rfds on Fake vs Real accounts

(c) Percentage of LHSs for holding rfds on Fake
vs Verified accounts

(d) Percentage of RHSs for holding rfds on Fake vs Verified accounts

(e) Percentage of LHSs for holding rfds on Real vs
Fake and Verified accounts

(f) Percentage of RHSs for holding rfds on Real vs Fake and Verified accounts

Fig. 4. Percentage of incidence of LHSs (left) and RHSs (right) for rfds holding on the different datasets.
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listed_count. In this case, also friends_count is determined many times, whereas all other attributes have little impact on
percentage.

Summarizing, we can notice that, we cannot highlight particular evidence of the meaningfulness of attributes with
respect to the number of times they are involved in the different sets of resulting rfds. For instance, the different sets of
resulting rfds share the same attribute as the most present on the RHSs.

5 A FEATURE ENGINEERING STRATEGY FOR DISCRIMINATING FAKE ACCOUNTS

The whole semantic analysis allowed us to highlight the contribution of rfds to discriminate fake accounts. However,
semantic analysis can entail a huge quantity of rfds to analyze significantly increasing the effort of an analyst in their
evaluation. Thus, we need to devise more an effective strategy for exploiting rfds to automatically discriminate fake
accounts.

We have already seen that the frequency by which an attribute is involved in the LHSs (or RHSs) of rfds does
not provide useful information to discriminate fake accounts. Thus, we investigated other characteristics of rfds
capable of supporting the discrimination of fake accounts. To this end, we propose a new strategy for applying rfds
in a classification scenario, by demonstrating how they can be used to improve classification scores when a machine
learning model is used. Thus, by following the results obtained in this semantic analysis, the general idea is to create
new features capturing the whole semantics of discovered rfds, which can be used as additional features of the training
dataset to enhance the capability of classification algorithms to discriminate fake accounts.

In general, although the addition of new features can potentially increase the training time of classification algorithms,
it could lead to the creation of more concise and accurate classifiers. Moreover, meaningful features could contribute to
the understanding of the learned concept [31], but it should be avoided the introduction of noise and overfitting, due to
the increase of data dimensionality.

Aiming to add new meaningful features based on rfds, we defined a new function, named tuple Frequency Account
in Validation (FAV), which permits to account for the number of times a tuple is involved in the validation of an rfd
when it is coupled with other tuples. A more formal definition of the FAV function is provided below.

Definition 7 (Tuple Freqency Account in Validation (FAV)). Given a relational database schema R, defined on
a set of attributes 𝑎𝑡𝑡𝑟 (R) = {𝐴1, . . . 𝐴𝑚}, an instance 𝑟 of R with 𝑛 tuples, an rfd 𝜑 : 𝑋Φ1

Ψ≤𝜀−−−−→ 𝑌Φ2 holding on 𝑟 , and a

tuple 𝑡𝑖 , the tuple frequency in validating 𝜑 can be defined as:

𝑓𝜑 (𝑡𝑖 ) =
∑𝑛

𝑗=1 |=𝜑 (𝑡𝑖 , 𝑡 𝑗 )
𝑛 − 1

(3)

where |=𝜑 (𝑡𝑖 , 𝑡 𝑗 ) is a boolean function defined by the following formula:

|=𝜑 (𝑡𝑖 , 𝑡 𝑗 ) =

1, if (𝑡𝑖 , 𝑡 𝑗 ) satisfies 𝜑, with 𝑖 ≠ 𝑗

0, otherwise
(4)

In other words, 𝑓𝜑 (𝑡𝑖 ) counts the number of tuples that satisfy 𝜑 when compared with 𝑡𝑖 .
The FAV function distributes the validation of an rfd throughout the tuples of the dataset. In this way, it is possible to

characterize how much each sample (a tuple) is involved in the validation of an rfd 𝜑 , while maintaining the semantics
of 𝜑 preserved. The proposed feature engineering methodology exploits the FAV function to add new features related to
the discovered rfds to the account dataset. Consequently, an rfd characterizing fake accounts should yield higher FAV
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ACCOUNT DATASET
name screen 

name location URL description follower
count

friends
count

listed 
count created at favourites 

count
geo 

enabled
statuses 

count lang default 
profile

profile  
image class

Doreen Eaton eatonvpd Bojonegoro 0 1 27 653 8 Sat Jun 23 15:48:52 +0000 2012 0 0 66 en 1 0 FAKE
ECEM CAN Ecemm_Can Türkiye 0 0 11 503 0 Fri Jul 15 00:00:56 +0000 2011 0 1 19 tr 0 0 FAKE
ecomedya ecomedya Ankara 1 1 60 511 0 Tue Aug 16 13:10:34 +0000 2011 1 0 135 tr 0 0 FAKE
fama cali famacali cali colombia 1 1 125 449 1 Fri Sep 11 20:18:39 +0000 2009 0 0 149 es 0 0 FAKE

ACAgency AC_Agency Italy 1 1 440 704 15 Fri Jan 20 16:22:58 +0000 2012 118 0 522 it 0 0 REAL
Cepaz _CEPAZ Caracas 1 1 5779 1364 92 Thu Oct 18 16:38:43 +0000 2012 1031 1 16742 es 0 0 REAL

Hybrid RFDs 

NEW FEATURES

0.66 0.66 0.66 0.66 0.33 0.33

0 0
0.2 0.2
0.2 0.6
0.4 0
0.4 0.4
0.4 0.4

1 1 1 1 0 0
1 1 1 1 0.2 0.2
1 1 1 1 0.2 0.6
1 1 1 1 0.4 0
1 1 1 1 0.4 0.4
1 1 1 1 0.4 0.4

 follower count   friends count  

 follower count   statuses count   

 statuses count   follower count   

 statuses count   friends count   

 listed count   friends count   

 favourites count   friends count   

KNNLogistic
RegressionSVCRandom ForestDecision Tree

FILTERING

Fig. 5. The feature engineering process for discriminating fake accounts.

values for fake account tuples; vice versa, it is expected that such accounts should present low FAV values for rfds that
do not characterize fake accounts.

Figure 5 shows how the proposed methodology can be applied for defining the set of features characterizing social
network accounts. The process starts by considering the account dataset, and the set of hybrid rfds holding on it. Then,
for each hybrid rfd 𝜑 holding on the dataset, a new feature is added to the dataset, whose value for a tuple 𝑡 is given by
the FAV value 𝑓𝜑 (𝑡) to represent how much 𝑡 is involved in the validation of 𝜑 . Thus, the augmented dataset will be
used to train several classification models for discriminating fake accounts.

Example 2. Let us consider the snippet of the Account dataset in Figure 5, together with the set of rfds holding on
it, i.e., 𝜑1, . . . , 𝜑6. The proposed feature engineering strategy computes novel features 𝑓𝜑1 , . . . , 𝑓𝜑6 on all samples (e.g.,
tuples) of the considered dataset, by using the FAV function defined above. For instance, by focusing on 𝑓𝜑6 and tuple 𝑡3,

the value 0.6 is obtained, since by considering 𝜑6 : favourites_count(≤12)
Ψ≤0.5−−−−−→ friends_count(≤12) , the tuple 𝑡3 does not

produce a violation in 𝜑6 only when it is paired with 𝑡2, 𝑡5, and 𝑡6, i.e., the pairs (𝑡2, 𝑡3), (𝑡3, 𝑡5), (𝑡3, 𝑡6) validate the rfd
𝜑6. Thus, 𝑓𝜑6 (𝑡3) = 1+1+1

6−1 = 0.6, leading this value to be included in the feature 𝑓𝜑6 on tuple 𝑡3.
Notice that, the number of features that will be added to the dataset depends on the number of rfds holding on it. In

order to reduce the number of added features, metrics should be adopted to rank the extracted rfds and to select the
most relevant ones to derive new features. Moreover, as said above, it is important to balance rfds holding on fake
accounts only with respect to the ones holding on real accounts only, or it is possible to simply consider a mixed set of
accounts from which rfds can be extracted. Finally, different sets of configurations of the rfd discovery algorithms can
be considered, since both attribute comparison and extent input thresholds are involved in the discovery process [10].
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5.1 Ranking and Filtering FAV-based Features

The proposed feature engineering technique enables the definition of novel features by exploiting rfd discovery results.
Nevertheless, it is not possible to apriori estimate and/or limit the number of rfds holding on a given dataset. This
could lead to an extremely huge number of discovered rfds. In order to limit the generation of an excessive number of
features, we also defined new metrics that allow ranking the discovered rfds, and to filter them according to an input
threshold. It evaluates the newly generated features by considering the feature values obtained by the application of
the FAV function and the expected behavior of a FAV-based feature that would be able to perfectly assign each tuple to
its proper category.

Since the training set will necessarily include tuples of both fake and real accounts, the defined metrics consider
both 𝑖) the class of each tuple, named tuple type, and 𝑖𝑖) the category of accounts from which a rfd has been discovered,
named rfd type. Then, according to them, it is possible to evaluate the expected FAV values. More specifically, we
expected that a rfd holding on fake accounts only should provide FAV values that are high for fake accounts and low
for real ones. Vice versa, a rfd holding on real accounts only should provide FAV values that are low for fake accounts
and high for real ones. For this reason, we can state that the most significant FAV-based features are those that show
the extremes of this behavior, by assigning a value of 1 when the tuple type and the rfd type match, and a value of 0
when the types do not match (see Table 3). However, having this kind of behavior is unrealistic, since it would define a
perfect classification criterion for assigning an account to its proper category.

By following the previous considerations, we defined novel metrics, named FAV-based feature Evaluation Metrics
(FEM), which allow the evaluation of the meaningfulness of FAV-based features in order to define a ranking and filtering
strategy devoted to the minimization of the number of the newly added features in the classification models. A more
formal definition of FEM metrics is provided below.

Definition 8 (FAV-based feature Evaluation Metrics (FEM)). Given a relational database schema R, defined on a

set of attributes 𝑎𝑡𝑡𝑟 (R) = {𝐴1, . . . 𝐴𝑚}, an instance 𝑟 of R with 𝑛 tuples, an rfd 𝜑 : 𝑋Φ1
Ψ≤𝜀−−−−→ 𝑌Φ2 holding on 𝑟 , and the

FAV-based feature generated from it 𝑓𝜑 , the evaluation of the meaningfulness of 𝑓𝜑 in discriminating account types can be

defined as:

𝜒𝜑 =

∑
𝑡𝑖 ∈𝑟 |𝑒𝑖 − 𝑓𝜑 (𝑡𝑖 ) |

𝑛
(5)

where 𝑒𝑖 represents the expected value obtained according to the rfd type and the tuple type as defined in Table 3.

In other words, the proposed FEM metrics provide a value in the range [0, 1] representing the meaningfulness that
can be associated to a FAV-based feature. More specifically, for each tuple 𝑡𝑖 of the training set, it measures how much
the value 𝑓𝜑 (𝑡𝑖 ) differs from the corresponding expected value.

Notice that, the 𝜒𝜑 metrics can be used for both ranking the FAV-based features and for filtering them when it
is combined with an input threshold 𝜀 to form a selection constraint. In the latter case, only the FAV-based features
satisfying the constraint 𝜒𝜑 ≤ 𝜀 will be then used during the classification process.

Example 3. Let us consider the snippet of the Account dataset in Figure 5, together with the set of FAV-based features
𝑓𝜑1 , . . . , 𝑓𝜑6 generated according to the proposed feature engineering strategy. If it is necessary to select a subset of
such features to be used in the classification process, a filtering threshold 𝜀 should be defined in input to form a
filtering constraint together with the 𝜒𝜑 metrics. For instance, by applying the metrics on the FAV-based feature 𝑓𝜑6

the value 0.33 is obtained. More specifically, the rfd 𝜑6 underlying 𝑓𝜑6 has been generated from real accounts (i.e.,
Manuscript submitted to ACM
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rfd type
Fake Real

Tu
pl
e

ty
pe Fake 1 0

Real 0 1
Table 3. Determination of Expected values 𝑒𝑖

it has associated real as rfd type), tuples 𝑡1, . . . , 𝑡4 are samples of fake accounts (i.e., they have associated fake as
tuple type), whereas 𝑡5 and 𝑡6 are samples of real accounts (i.e., they have associated fake as tuple type), leading to
𝜒𝜑6 =

( |0−0 |)+( |0−0.2 |)+( |0−0.6 |)+( |0−0 |)+( |1−0.4 |)+( |1−0.4 |)
6 = 0+0.2+0.6+0+0.6+0.6

6 ≃ 0.33. Consequently, as shown in Figure
5, if we consider 𝜀 = 0.4, then 𝑓𝜑6 is selected as a meaningful FAV-based feature, and it will then be involved into the
classification process.

6 EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of the proposed feature engineering strategy in properly distinguishing fake
vs. real accounts we run several experimental sessions, in which different classification models have been used. In
particular, in Section 6.1, we first discuss the performances achieved with the employed predictive models, by comparing
the original dataset (i.e., Baseline), the dataset extended with the new features derived through the proposed feature
engineering strategy, and the dataset containing FAV-based features only, considering different comparison thresholds
for rfds. For each employed classification model, in Section 6.2 we evaluate the trade-offs among accuracy, training-time,
and number of features selected among those offered by the proposed feature engineering strategy, by considering
different comparison and selection thresholds. Then, in Section 6.3 we perform a comparative evaluation on the different
predictive models, by comparing the proposed feature engineering strategy with two from the literature.

6.1 Classification Models

The experimental session started from the definition of the dataset to be considered in our evaluation. In particular,
we have merged fake, verified, and real account datasets described in Section 4, and, for each of them, we have added
an additional feature representing the type of each account. Starting from this mixed dataset, we have first encoded
the categorical data into numerical ones by exploiting a Label Encoder approach [50], and then we have extended the
number of features according to the proposed feature engineering strategy. The latter has been implemented considering
the FAV value of the rfds discovered through the DiM𝜀 algorithm [10], which has been set with an extent threshold
equal to 0.5 and different attribute comparison thresholds, i.e.,𝑇ℎ𝑟𝑠 : 0, 1, 2, 3, 4, 8, and 12. These configurations allowed
us to consider rfds that might also be valid for a subset of accounts.

According to the resulting rfds, for each comparison threshold we constructed two datasets. The first one has
been computed by adding the new FAV-based features as explained above, whereas the second one by only using the
new FAV-based features (i.e., by removing the original features). The construction of the datasets has been completely
automated by implementing Python scripts capable of reading the rfd discovery results and of computing the FAV-values
according to the proposed approach. Moreover, a parameter defining the filtering threshold can activate a Python script
capable of ranking and selecting features and constructing intended datasets according to the FEM evaluation metrics.
Each new dataset has been randomly split into training and test datasets with a proportion of 80% and 20%, respectively,
and the effectiveness of supervised classification models has been evaluated in terms of precision (P), recall (R), and
Manuscript submitted to ACM
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accuracy (A). Thus, we analyzed how the classification scores vary between the original dataset (named Baseline), the
one augmented with the new features, and the one containing only the FAV-based features.

The experimental evaluation has involved Decision Tree [47], Random Forest [38], Support Vector Classification
(SVC) [28], and Logistic Regression [41] as supervised classification models, by considering their versions available in the
Scikit-learn5 python library. Moreover, for each model, we performed hyperparameter tuning using the GridSearchCV
with 5-fold [26], aiming to identify the best combination of hyperparameters for the predictive models based on the
accuracy scores. In particular, the experimental evaluation is targeted to the minimization of false negatives, i.e., the
number of fake accounts classified as real. To this end, we consider the recall scores that permit us to understand the
trustworthiness of each classifier in discriminating fake accounts. Nevertheless, also the precision scores can help
to highlight the effectiveness of classifiers in properly identifying fake accounts. In fact, a low precision score could
highlight that the classifier assigns the class fake to almost all the accounts, making it unreliable. Finally, accuracy
scores provide a general overview of the discrimination performances of each classifier.

Experimental results of each classifier over the different configurations are shown in Figure 6. In particular, it is
possible to notice that rows show the used classifiers, whereas columns show evaluation metrics. Additionally, each
plot in Figure 6 highlights how the performances change when using original features augmented with FAV values
(denoted by 16 + 𝑅𝐹𝐷 in Figure 6), or FAV-based features only (denoted by 𝑅𝐹𝐷 in Figure 6), by considering different
comparison thresholds (denoted by 𝑅𝐹𝐷𝑖 in each plot). Moreover, we also compared performances achieved on these
datasets w.r.t. those achieved on the original dataset (denoted by, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in Figure 6).

In what follows, we discuss how the application of the proposed feature engineering strategy affects the performances
of the trained classification models.

Decision tree. The decision tree (DT) model is a supervised learning model that, given a labeled dataset, recursively
defines a tree structure where at each level local decisions are associated with a feature. After constructing the tree,
each path from the root to a leaf node represents a classification pattern [47]. In fact, by applying the DT model in
the context of fake account discrimination (see Figure 6) it is possible to notice that DT outperforms the baseline for
each used evaluation metrics when using original features combined with FAV values, as well as FAV values only,
with all comparison thresholds. Specifically, the proposed feature engineering strategy enhances the capabilities of the
DT model in the discrimination task because most of the added features have been selected in the tree construction,
since they permit to infer more discriminative patterns with respect to those achievable with the baseline features.
Furthermore, it is possible to notice that the DT model achieves the same results with all evaluation metrics when
trained with the 16 + 𝑅𝐹𝐷 or the 𝑅𝐹𝐷 feature set w.r.t. all comparison thresholds. In detail, by performing further
analysis, we observed that the model only selects FAV-based features to build the DT structure, considering the original
features not beneficial for the training phase.

Random forest. The random forest (RF) model is an approach based on the ensemble concept [13], i.e., exploiting a
set of DTs to derive a global model that performs better than the single DTs composing the ensemble. By applying
the RF model in the context of fake account discrimination (see Figure 6), it is possible to notice that it outperforms
the baseline for each evaluation metrics, except on the recall, when using original features combined with FAV values,
or the FAV values only, with all comparison thresholds. Moreover, it is possible to notice that the RF model achieves
the same results for all evaluation metrics when trained on the 16 + 𝑅𝐹𝐷 or 𝑅𝐹𝐷 feature set with all comparison

5scikit-learn.org/
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Fig. 6. Evaluation metrics before and after applying the future engineering strategy.

thresholds, except on the recall metric that does not present variations. This is what we expected, having observed that
the proposed feature engineering strategy enhances the capabilities of the DT model in discriminating fake accounts,
hence also RF indirectly benefits from it.

Support Vector Classification. The support vector classification (SVC) is a model in which the training instances are
classified separately in different points of a space and organized into separated groups. The SVC tries to achieve the
optimal separation hyperplane by computing the most significant margins of separation between different classes [28].
Manuscript submitted to ACM
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Fig. 7. Trade-offs among accuracy, training time, and number of selected features by varying comparison and selection thresholds.

By applying the SVC model in the context of fake account discrimination we observed that it achieves the best results
for each evaluation metrics, with all comparison thresholds, when trained on the 𝑅𝐹𝐷 feature set, except for the recall
metric that presents a slight decrease (see Figure 6). In particular, by performing a thorough analysis of fitting problems,
we found that when trained with original or 16 + 𝑅𝐹𝐷 feature set, such a model undergoes overfitting (with kernel
set to Radial Basis Function - RBF) and underfitting (with kernel set to Sigmoid) phenomena. This is probably due to
the fact that the original features do not permit to compute a hyperplane capable of discriminating accounts. Instead,
using FAV values only implicitly guarantees the exploitation of semantic properties that permit a better discrimination
capability when the SVC model is employed.

Logistic regression. Logistic regression (LR) is a supervised learning approach capable of inferring a vector of weights
whose elements are associated with each feature. In particular, a weight specifies the relevance of a feature with respect
to the classification task [41]. In our context, we assume that if the weight associated with a specific feature is positive,
then the feature tends to affect the identification of fake accounts. Vice versa, if the weight is negative, then the feature
contributes to identifying real accounts. Otherwise, if the weight is close to zero, then the feature does not influence
the classification (i.e., it is not relevant in terms of discrimination). In fact, by applying the LR model in the context of
fake account discrimination (see Figure 6), it is possible to notice that LR outperforms the baseline for each evaluation
metrics when exploiting original features combined with FAV values, or FAV values only, with all comparison thresholds.
In general, we have observed that our feature engineering strategy helps the LR model in the discrimination task, since
most of the added features have either positive or negative weights, hence affecting the classification process.

K-nearest neighbors. The k-Nearest Neighbor (KNN) algorithm is an instance-based technique that operates under the
assumption that new instances are similar to those already provided with a class label. In this algorithm, all instances
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Fig. 8. Comparison between feature engineering strategies w.r.t. accuracy, precision, and recall metrics.

are treated as points in an n-dimensional space and are classified based on their similarity to other instances. In fact,
by applying the KNN model in the context of fake account discrimination (see Figure 6), it is possible to notice that
KNN outperforms the baseline for each evaluation metrics when exploiting the FAV values only, with all comparison
thresholds. On the other hand, when trained on the 16 +𝑅𝐹𝐷 feature set, no improvement w.r.t. the baseline is reported,
for each evaluation metrics, except for the recall. In general, since the KNN model classifies a new account by comparing
it through a distance metric with each training account, good results for each evaluation metrics highlight that the
proposed feature engineering strategy produces FAV values having a strong correlation among accounts of the same
class.

6.2 Feature Selection Evaluation

In this section, we investigate the impact of filtering relevant FAV-based features in order to decrease the training time
of classification models, while maintaining high performances in terms of fake account discrimination. In particular,
Figure 7 reports accuracy (Accuracy), number of selected features (#Features), and training time (Time (s), expressed in
seconds) by varying the comparison and the feature selection thresholds for each classification model. Moreover, feature
selection thresholds reported on the x-axis are shared among all row plots and their maximum value (1) represents the
selection of all FAV-based features. Instead, the other values represent a specific threshold to filter no relevant features
w.r.t. comparison threshold. As can be seen in Figure 7, first-row plots show that the accuracy is maintained relatively
high even if a significant number of features is removed. In particular, we achieve best results when considering the
𝑅𝐹𝐷1 as a comparison threshold, which preserves the accuracy trend of all models and considers a restricted number of
FAV-based features in the training set (see second-row plots in Figure 7). In detail, the 𝑅𝐹𝐷1 enables obtaining the best
performances also with the SVC model, reaching the best accuracy score with a selection threshold of 0.3. To this end,
the SVC model emphasizes the impact of the proposed feature filtering strategy, because using a selection threshold
greater than 0.3 slightly decreases the accuracy score. Thus, the discarded features are irrelevant to the SVC model.
Additionally, third-row plots illustrate that the 𝑅𝐹𝐷1 presents the shortest time recorded for the training phase of each
classification model. In conclusion, we can observe that the combination of 𝑅𝐹𝐷1 and 0.3 as comparison and selection
thresholds, respectively, provide the best trade-off in terms of accuracy, training time, and number of features involved
in the training phase.
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Datasets # Columns # Rows Size [KB]
Real accounts 9 994 32
Fake Accounts 9 200 12

Table 4. Statistics of the Instafake dataset considered in the additional evaluations.

6.3 Comparative evaluation of feature engineering strategies

This section compares the proposed feature engineering strategy (using 𝑅𝐹𝐷1 and 0.3 as comparison and selection
thresholds, respectively) with two strategies existing in the literature [1, 22, 34, 46], namely featurewiz

6 and pycaret
7.

These techniques generally exploit statistics and correlation measures to produce new features from a dataset to
enhance the performances of classification models. In detail, featurewiz is a python library used for creating and
selecting features from a dataset. We set the values of parameter "feature_engg" to "interactions" and "groupby" as
values, where the latter apply mathematical operations such as multiplication and division to pairs of features, yielding
new features. Then, featurewiz uses two different techniques for filtering the best features: i) SULOV identifies pairs of
features with a highly Pearson’s correlation coefficient and eliminates one of them, and ii) Recursive XGBoost derives a
set of "minimum optimal features" by further reducing those produced by SULOV. On the other hand, pycaret is an
open-source, low-code machine learning library and end-to-end model management tool built in Python. In detail, we
exploit pycaret by using the feature binning method over the following set of features: {followers_count, friends_count,
listed_count, favourites_count, and statuses_count}. Such a method uses the Sturges rule to determine the number
of bins and the K-Means clustering to convert continuous numeric features into categorical ones. In particular, it is
effective because such continuous features have few extreme values. Moreover, we use the Creating Clusters method of
pycaret to create further features. Specifically, it is based on an iterative approach to determine the number of clusters
and uses a combination of Calinski-Harabasz and Silhouette criteria. As said above, featurewiz relies on a threshold for
the Pearson’s correlation coefficient. For our experiments, we performed several analyses by varying such threshold
from 0.7 to 0.9, and found 0.9 to be the best value. As can be seen in Figure 8, pycaret offers the worst results in terms
of accuracy, precision, and recall, except for the SVC model that slightly overcomes featurewiz on the accuracy and
precision metrics. On the other hand, featurewiz offers better results than pycaret over the remaining classification
models, for each evaluation metric.

We can conclude that our approach outperforms both of these feature engineering strategies by reaching the best
results in terms of accuracy, precision, and recall metrics.

6.4 Generalizing the application of the proposed approach towards another dataset

This section provides additional experiments to evaluate whether our proposal can be generalized towards another fake
account dataset, i.e., the InstaFake8 dataset. The latter comprises fake and real accounts collected through the Instagram
platform. In particular, Table 4 reports statistics of the InstaFake dataset, whereas Table 5 details the features of the
dataset. As we can see, this dataset appears more complex to be used in supervised learning tasks with respect to the
one that motivated our proposal. In fact, it contains fewer attributes and a considerably lower number of rows.

It is worth noting another issue of the InstaFake dataset since it exhibits class imbalance due to the unequal
representation of real and fake accounts. In such situations, machine learning models struggle to detect the minority class
6https://github.com/AutoViML/featurewiz
7https://github.com/pycaret/pycaret
8https://github.com/fcakyon/instafake-dataset
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# Attribute Description
1 user_media_count The total number of posts, an account has.
2 user_follower_count The total number of followers, an account has.
3 user_following_count The total number of followings, an account has.
4 user_has_profil_pic Boolean value representing if an account has a profile picture, or not.
5 user_is_private Boolean value representing if an account has a private profile, or not.
6 user_biography_length Number of characters present in the account biography.
7 username_length Number of characters present in the account username.
8 username_digit_count Number of digits present in the account username.

Table 5. Attributes concerning the InstaFake dataset.

(fake) due to the dominance of the majority class (real). To mitigate this issue, we employ the Synthetic Minority Over-
sampling Technique (SMOTE) [14], which generates synthetic fake accounts by combining existing ones. Specifically,
SMOTE selects a fake account, identifies its 𝑘 nearest neighbors in the feature space, and generates new fake accounts
by interpolating between the fake account and its neighbors. For our experiments, we performed several analyses
by considering different values of 𝑘 , and found 5 to be the best value. By employing this approach, we were able to
generate 794 new fake accounts, thereby achieving a perfectly balanced dataset.

The proposed feature engineering strategy has been performed by using 𝑅𝐹𝐷0 and 0.4 as comparison and selection
thresholds, respectively. In detail, such a configuration enables obtaining the best performances for all models in terms
of accuracy, precision, and recall. As it can be seen in Figure 9, by including additional features into the original dataset,
models increase their performances for all considered metrics w.r.t the baseline, except for the KNN model that reports a
slight decrease in terms of accuracy and recall. On the other hand, when employing FAV-based features only, all models
obtain the best values for all metrics, confirming that the usage of 𝑅𝐹𝐷𝑠 is crucial to construct significant features to
train machine learning models.
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Fig. 9. Evaluation metrics before and after applying the feature engineering strategies over the InstaFake dataset.

7 CONCLUSION

Fake accounts represent a big problem for social networking platforms. Referring to the Twitter platform, the number
of monthly active users is 330 million, and 46% of them is daily active. Many of them own a Twitter profile for sharing
emotions, comments on the political landscape, and so on. Statistically, over one billion tweets are daily posted. Since
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“malicious” accounts can compromise the trustability of several network activities, the number of techniques for
detecting and deleting fake accounts has grown proportionally to the number of new algorithms developed for harmful
purposes. Nevertheless, further efforts are required in order to enable machine learning models to work with new
“meaningful” features, rather than the raw data only, aiming to enhance their capability to discriminate fake accounts.
To this end, we have proven that the proposed feature engineering strategy reaches this goal, thanks to algorithms
extracting rfds from data stored in social networks, which are used to derive new features aiming at that improve
the performances of machine learning models in discriminating fake accounts. In particular, rfds permit to properly
characterize data correlations concerning fake accounts against the ones caught over real and/or verified accounts. This
led us to measure the contribution of a sample account with respect to the rfd validation, yielding the possibility of
constructing proper features that can support classification tasks, and improve model performances. Evaluation results
achieved over different machine learning models demonstrated that not only the proposed strategy permits to improve
classification performances, but it never negatively affects the application of models.

In the future, other than planning similar studies on different social network platforms, we would like to exploit
other types of data dependencies, like graph dependencies, since they can potentially detect additional useful behavioral
models to help discriminating fake accounts [21]. Moreover, the proposed feature engineering strategy has the potential
to be applied in any context beyond fake account discrimination, as long as we have big training datasets from which
we can automatically extract rfds. Thus, in the future, we would like to generalize the whole approach to facilitate its
exploitation in other domains.
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