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a b s t r a c t

The research on the claimed effects of Test-Driven Development (TDD) on software quality and
developers’ productivity has shown inconclusive results. Some researchers have ascribed such results
to the negative affective reactions that TDD would provoke when developers apply it. In this paper, we
studied whether and in which phases TDD influences the affective states of developers, who are new
to this development approach. To that end, we conducted a baseline experiment and two replications,
and analyzed the data from these experiments both individually and jointly. Also, we performed
methodological triangulation by means of an explanatory survey, whose respondents were experienced
with TDD. The results of the baseline experiment suggested that developers like TDD significantly less,
compared to a non-TDD approach. Also, developers who apply TDD like implementing production code
significantly less than those who apply a non-TDD approach, while testing production code makes TDD
developers significantly less happy. These results were not confirmed in the replicated experiments.
We found that the moderator that better explains these differences across experiments is experience
(in months) with unit testing, practiced in a test-last manner. The higher the experience with unit
testing, the more negative the affective reactions caused by TDD. The results from the survey seem to
confirm the role of this moderator.
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1. Introduction

Test-Driven Development (TDD) is an incremental approach to
oftware development where unit tests are written before pro-
uction code (Beck, 2003). TDD promotes short cycles composed
f three phases to implement functionality:

ed Phase. Write a unit test for a small chunk of functionality
not yet implemented and watch the test fail;

reen Phase. Implement that chunk of functionality as quickly
as possible and watch all unit tests pass;

efactor Phase. Refactor the code and watch all unit tests pass.

danilo.caivano@uniba.it (D. Caivano), davide.fucci@bth.se (D. Fucci),
imone.romano@uniba.it (S. Romano), giuseppe.scanniello@unibas.it
G. Scanniello).
TDD promises to increase external software quality (i.e., less
unctional bugs) and developers’ productivity because: (i) writing
est first forces developers to break a problem into simpler ones;
ii) the tests provide initial software quality assurance; and (iii)
he regression test suite resulting after several iterations allows
he developer to catch breaking changes early. The safety net
rovided by the regression tests boosts developers’ confidence
o the extent that TDD is referred to as ‘‘the art of fearless
rogramming’’ (Jeffries and Melnik, 2007).
The research on the claimed effects of TDD, gathered in sec-

ndary studies, has shown inconclusive results (e.g., Turhan et al.,
010; Karac and Turhan, 2018). These inconclusive results can

be due to the negative affective states that developers might
experience when applying TDD. For example, the feeling of being
unproductive due to the extra effort in writing unit tests rather
than immediately focusing on the implementation of a function-
ality, or frustration due to the counter-intuitive test-then-develop
order peculiar to TDD (e.g., Erdogmus et al., 2010). Therefore,
empirical evidence is needed to increase our body of knowledge
on the affective states of developers due to TDD, as well as
in which phases TDD influences their affective states. Such an
increased body of knowledge could also explain why TDD is not
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widely practiced in open-source projects, as Beller et al. (2019)
bserved in their long-term study by monitoring for 2.5 years the
evelopment activities from 594 open-source projects.
In this paper, we present the results of three (controlled)

xperiments – i.e., a baseline experiment (Romano et al., 2019),
first replication (Romano et al., 2020), and a second one –

o study the affective reactions of developers when applying
DD. To complement and explain the results of the experiments,
e perform an explanatory survey. In particular, we surveyed
DD experts (i.e., TDD lecturers, developers, and/or researchers)
o have a more critical perspective about some heterogeneous
esults across the experiments. In other words, our survey should
e meant as a tool to perform methodological triangulation on
hose heterogeneous results across the three experiments.

In the baseline experiment (Romano et al., 2019), the par-
icipants were third-year undergraduates in Computer Science
CS). We asked them to carry out a development task by ap-
lying TDD or a non-TDD approach. After the task, we gathered
he affective reactions of the participants by using Self-Assessed
anikin (SAM) (Bradley and Lang, 1994) complemented with a

iking scale (Koelstra et al., 2012). SAM is a self-assessment in-
trument for measuring affective reactions to a stimulus in terms
f pleasure, arousal, and dominance. We compared the affective
eactions of the participants who used TDD with those of the
articipants who did not use TDD. We replicated the baseline
xperiment twice: in the first replication (Romano et al., 2020),
he participants were second-year undergraduates in CS, while in
he second replication, the participants were first-year graduates
n CS. In each experiment, the participants that applied TDD were
ew to this development approach since they learned TDD in
he course where that experiment was conducted. As for the
urvey, the respondents were attendees of the 2020 International
onference on Agile Software Development (XP2020) having TDD
xperience.
In the baseline experiment (Romano et al., 2019), we observed

hat the participants liked TDD significantly less as compared
o a non-TDD approach; the participants following TDD liked
mplementing production code significantly less than those fol-
owing a non-TDD approach; and testing production code made
he participants who followed TDD significantly less happy. The
esults from the first replication (Romano et al., 2020) failed
o support the above-mentioned findings, as well as the results
rom the second replication and joint data analyses. We then
onducted an exploratory analysis to identify moderators2 that
ould explain the heterogeneous results across experiments. The
xperience (in months) with unit testing, practiced in a test-
ast manner, is the moderator that better explains the results. In
articular, the experience with unit testing applied in a test-last
anner: (i) causes more dislike towards TDD (as compared to a

non-TDD approach); (ii) causes more dislike when implementing
production code with TDD; and (iii) makes developers using TDD
more unhappy when testing production code. In other words,
the higher the experience with unit testing applied in a test-last
manner, the more negative the affective reactions due to TDD. The
results from the explanatory survey provided further support for
findings (i) and (iii).

This paper extends the ones by Romano et al. (i.e., the baseline
experiment, Romano et al., 2019 and the first replication, Romano
et al., 2020) by adding the following new contributions:

• We conducted a new replication with first-year graduates in
CS (who should be more experienced than undergraduates
in CS).

2 A moderator is a variable that is thought to modulate/temper the effect of
n independent variable on a dependent one (Judd, 2001).
2

Fig. 1. From top down, the graphical representations of the pleasure, arousal,
dominance, and liking dimensions.
Source: This figure has been taken from the paper by Romano et al. (2019).

• We performed joint data analyses to provide overall conclu-
sions from the three experiments.

• We performed exploratory analyses to identify moderators
that could explain potential heterogeneous results across
the experiments.

• We conducted an explanatory survey to complement and
explain the results of the three experiments.

Paper structure. In Section 2, we outline background infor-
mation and work related to ours. We present our experiments in
Section 3, while the results are outlined in Section 4. We discuss
the obtained results, as well as possible threats to their validity,
in Section 5. The survey and its results are presented in Sections 6
and 7, respectively. We discuss the results of the survey and their
limitations in Section 8. Final remarks conclude the paper.

2. Background and related work

According to Russell and Mehrabian (1977), people’s affective
states can be characterized through three dimensions: pleasure,
arousal, and dominance—i.e., the Pleasure–Arousal–Dominance
(PAD) model. Pleasure varies from unpleasant (e.g., unhappy/sad)
to pleasant (e.g., happy/joyful), arousal ranges from inactive (e.g.,
bored/calm) to active (e.g., excited/stimulated), and dominance
varies from ‘‘without control’’ to ‘‘in control of everything’’ (Koel-
stra et al., 2012). To measure a person’s affective reaction to
a stimulus in terms of PAD, Bradley and Lang (1994) proposed
a pictorial self-assessment instrument they named SAM. This
instrument graphically represents each PAD dimension and as-
signs a rating scale to it (see the first three rows in Fig. 1). For
instance, SAM pictures the pleasure dimension through manikins
varying from an unhappy manikin to a happy one. Thus, the nine-
point rating scale placed just below the graphical representation
of the pleasure dimension allows a person to self-assess, from
one to nine, the pleasure dimension of their affective reaction.
Recently, Koelstra et al. (2012) have complemented SAM with
the liking dimension ranging from dislike – pictured through a
thumb down – to like—pictured with a thumb up (see the last
row in Fig. 1).

Both Human–Computer Interaction (HCI) and affective com-
puting have used SAM in their empirical studies (e.g., Koelstra
et al., 2012; Herbon et al., 2005). Later, Software Engineering (SE)
has used SAM. For example, Graziotin et al. (2013) conducted a
study with eight developers who performed development tasks
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on individual projects. Every ten minutes, the participants self-
assessed both their affective state, by using SAM, and their pro-
ductivity. The results show that pleasure and dominance are
positively correlated with productivity.

Most SE studies have investigated the affective states of soft-
are users. For example, Curumsing et al. (2019) introduced
n emotion-oriented requirements engineering approach where
motional states are modeled as users’ goals. The authors val-
dated their approach with several field studies in the context
f smart homes for the elderly by following the participants’
motional reactions throughout the deployment of a smart-home
latform. Stade et al. (2019) enhanced traditional data analytics

with users’ emotions to improve the insights regarding how
users experience an app. In particular, they proposed a large-
scale methodology to unobtrusively collect emotions from a large
number of users. They reported a series of interviews with users
showing encouraging results regarding emotion tracking during
app usage, albeit with some minor privacy concerns.

When considering artifacts created and used by developers, Is-
lam and Zibran (2018) and Mäntylä et al. (2016) explicitly consid-
ered the pleasure and arousal dimensions. Developers’ emotions
have been recognized using biofeedback devices connected to
developers’ bodies. For example, Müller and Fritz (2015) studied
how developers’ emotions and their progress implementing a
task are related using biometric measures. In a laboratory study,
the authors asked developers wearing three biometric sensors to
self-assess their emotions. They then developed a machine learn-
ing classifier able to distinguish between positive and negative
emotions with an accuracy of 71% and progress in the task with
an accuracy of 67%. In an experiment with 28 academic practi-
tioners, Fucci et al. (2019) showed that non-invasive biometrics
an be used to predict the type of comprehension task a developer
s engaged (i.e., code vs. text comprehension) with an accuracy of
9%. Similar unobtrusive biometrics have been shown to measure
he engagement of possible software users during requirements
licitation interviews (Girardi et al., 2020).
Although TDD has been the subject of several primary

e.g., Beller et al., 2019; Fucci et al., 2016a, 2018) and secondary
tudies (e.g., Turhan et al., 2010; Karac and Turhan, 2018), only
omano et al.’s studies (i.e., the baseline experiment, Romano
t al., 2019 and its first replication, Romano et al., 2020) focused
n the affective reactions of developers when practicing TDD. We
bserved heterogeneous results across the baseline experiment
nd the first replication. We also speculated that the experience
f developers with unit testing, applied in a test-last manner, can
nfluence their affective reactions due to TDD. In particular, de-
elopers who have more months of experience with unit testing
applied in a test-last manner) can have affective reactions, due
o TDD, which are more negative as compared to developers who
ave no/few months of experience.

. Experiments

In this section, we describe the planning and execution of
he baseline experiment and its two replications. We followed
ohlin et al.’s guidelines (Wohlin et al., 2012) to plan and execute

hese experiments.

.1. Goals

We conducted our experiments to answer the following main
esearch Question (RQ):

Q. Is there a difference in the affective reactions to using TDD
or a non-TDD approach?
3

e formulated RQ to understand the affective reactions that TDD
aises in developers in terms of pleasure, arousal, dominance, and
iking. We also studied in which phases TDD would influence the
ffective reactions of developers. To this end, we formulated the
ollowing RQs:

Q1. Is there a difference in the affective reactions of developers
to implementing (production) code when applying TDD or
a non-TDD approach?

Q2. Is there a difference in the affective reactions of develop-
ers to testing (production) code when applying TDD or a
non-TDD approach?

Q3. Is there a difference in the affective reactions of developers
to refactoring code when applying TDD and a non-TDD
approach?

n particular, we aimed to understand the affective reactions of
evelopers – in terms of pleasure, arousal, dominance, and liking
when they write production code (RQ1), test production code

RQ2), and refactor code (RQ3).

.2. Participants

The participants in the baseline experiment (named BASIL-
CATA) were 29 third-year undergraduates in CS at the Uni-
ersity of Basilicata (Italy). The participants were taking the SE
ourse when they took part in the experiment. All participants
ad passed the exams of Procedural Programming and Object-
riented Programming—i.e., the courses about C and Java pro-
ramming, in which refactoring principles were also provided
eing this practice part of day-to-day programming.
The participants in the first replication (named BARI) were

9 second-year undergraduates in CS at the University of Bari
Italy). The students were enrolled in the SE course when they
articipated in the replicated experiment. Before attending the
ourse, the participants had passed the exams of the Program-
ing I and Programming II courses, which focused on C and Java
rogramming, along with refactoring principles.
The participants in the second replication (named SALERNO)

ere 13 first-year graduates in CS at the University of Salerno
Italy). The students were taking the Software Testing course
hen they were involved in the replication. The students had
assed the following exams: Programming, Advanced Program-
ing, Object-oriented Programming, and SE. These courses cov-
red both basic and advanced notions of C and Java programming,
long with software design and refactoring principles.
The students voluntarily participated in all the three

xperiments—i.e., we did not pay them for their participation. As
uggested by Carver et al. (2003), the students were rewarded
or their participation, regardless of their performance, with two
onus points on the final mark of the course in which the
xperiment was executed. The participants were aware that their
ata would be confidentially treated and anonymously shared
ith the research community through an experimental package
vailable on the web.3
The participants of each experiment had no knowledge of TDD

efore starting the course in which the experiment took place—in
ection 3.7, we describe how the participants were trained to let
hem take part in the experiments.

3 https://doi.org/10.6084/m9.figshare.15015837.v1.

https://doi.org/10.6084/m9.figshare.15015837.v1
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.3. Experimental material

In each experiment, we used two experimental objects: Bowl-
ing Score Keeper (BSK) and Mars Rover (MR). The participants
who received BSK, in an experimental session, had to develop an
API for calculating the score of a bowling game. The API allowed
adding frames and bonus throws to a bowling game, identifying
spare and strike frames, and computing the score of both frames
and bowling game. On the other hand, the participants who
worked on MR had to develop an API to move a rover on a
planet. The planet was represented as a grid of cells. A cell could
contain an obstacle that the rover could not go beyond. The API
allowed moving the rover by using a string of basic commands
(i.e., turning left/right and moving forward/backward).

To develop BSK and MR, the participants had to write Java
code. As for the unit tests, the participants had to use JUnit.
Both BSK and MR are commonly used as experimental objects in
empirical studies on TDD (e.g., Fucci et al., 2016a, 2018, 2016b)
and could be fulfilled in about three hours each (Fucci et al.,
2018) (so mitigating a threat of maturation due to tiredness/
boauredom Wohlin et al., 2012).

At the beginning of each experimental session, the students
eceived the following material: (i) a brief description of the
PI to be implemented; (ii) a list of user stories concerning the
eatures to be implemented; (iii) a template project for Eclipse
ontaining stubs of the expected API signatures and a sample
Unit test class; and (iv) an acceptance test suite to simulate
ustomers’ acceptance of user stories.4
To gather the affective reactions of the participants, we used

AM (Bradley and Lang, 1994) and the liking scale (Koelstra et al.,
012). They allowed measuring affective reactions to a stimulus
ver nine-point rating scales.

.4. Independent and dependent variables

In each experiment, we had two groups: treatment and con-
rol. The treatment group was made up of participants who had
o use TDD to perform development tasks, while the control
roup was made up of participants who had to perform devel-
pment tasks by using a non-TDD approach named YW (Your
ay development)—i.e., the approach each participant would
ormally utilize to develop (Fucci et al., 2018). Therefore, the
ain independent variable, or main factor, we manipulated in
ach experiment was Approach. This variable is nominal and
ssumes the following two values: TDD or YW.
To quantify PLeaSure (PLS), ARouSal (ARS), DOMinance (DOM),

nd LIKing (LIK) raised by the development APProach (APP),
e used four dependent variables: APPPLS, APPARS, APPDOM, and
PPLIK. These variables assume integer values between one and
ine because of the nine-point rating scales to measure affective
eactions. To quantify the affective reactions (in terms of pleasure,
rousal, dominance, and liking) to IMPlementing (IMP), TESting
TES), REFactoring (REF) code, we used the following dependent
ariables: IMPPLS, IMPARS, IMPDOM, IMPLIK, TESPLS, TESARS, TESDOM,
ESLIK, REFPLS, REFARS, REFDOM, and REFLIK.

.5. Hypotheses

To answer our RQs, we formulated and tested the following
arameterized null hypothesis:

0X . There is no (statistically) significant difference between
TDD and YW with respect to the dependent variable X ∈

{APPPLS, APPARS, APPDOM, APPLIK, IMPPLS, IMPARS, IMPDOM,
IMPLIK, TESPLS, TESARS, TESDOM, TESLIK, REFPLS, REFARS,
REFDOM, REFLIK}.

4 We developed the acceptance test suite by using the Concordion framework.
4
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3.6. Experimental design

BASILICATA and BARI. We used a 2 × 2 factorial
esign (Wohlin et al., 2012). It is a kind of between-subjects

design where each participant experimented only one devel-
opment approach (i.e., TDD or YW) on only one experimental
object (i.e., BSK or MR). This implies that we had four groups of
participants—i.e., the number of all possible combinations of de-
velopment approaches and experimental objects. The assignment
of the participants to the four groups was done randomly in both
experiments. In BASILICATA, 15 participants were assigned to
TDD– eight with BSK and seven with MR – while 14 participants
were assigned to YW—seven with BSK and seven with MR. As for
BARI, 28 participants were assigned to TDD– 14 with BSK and 14
with MR – while 31 participants were assigned to YW—16 with
BSK and 15 with MR.

SALERNO. We used an ABBA crossover design (Vegas et al.,
2016). It is a kind of a within-subjects design where each partici-
pant experimented each development approach only once. There
are two sequences (i.e., TDD-YW and YW-TDD), defined as the or-
er with which the development approaches were administered
o the participants, and two periods (i.e., P1 and P2), defined as the
imes at which each approach was administered. The assignment
f the participants to the sequences was done randomly. The
articipants in the sequence TDD-YW (i.e., Group1) were six: they
pplied TDD (on BSK) in P1 and then YW (on MR) in P2. The
articipants in the sequence YW-TDD (i.e., Group2) were seven:
hey applied YW (on BSK) in P1 and then TDD (on MR) in P2.

.7. Experimental procedure

BASILICATA. The used experimental procedure follows.

1. We used a pre-questionnaire to collect students’ availabil-
ity to participate in BASILICATA, along with some demo-
graphic information (e.g., months of experience with unit
testing) about the participants.

2. All participants attended lessons on unit testing, JUnit,
Test-Last Development (TLD), and Iterative-Test Last Devel-
opment (ITLD). The participants also practiced unit testing
with JUnit in a (laboratory) training session.

3. We randomly split the participants into the TDD and YW
groups.

• The participants in the TDD group attended a lesson
on TDD and then applied this approach during two
(laboratory) training sessions—i.e., in each session, the
participants developed a program by using TDD. The
participants in the TDD group also carried out three
homework assignments (i.e., development tasks) by
using TDD.

• The participants in the YW group neither attended
a lesson on TDD nor used this approach. These par-
ticipants practiced TLD and ITLD in two (laboratory)
training sessions and fulfilled the same homework as
the TDD group but by practicing TLD and ITLD.

It is worth mentioning that the participants in the TDD
and YW groups underwent a similar training regardless of
the group. This was to let them practice the administered
development approaches as similarly as possible.

4. All participants took part in the experimental session in
a laboratory—the laboratory was the same as the training
sessions. All computers, in this laboratory, had the same
hardware/software configuration. During the experimen-
tal session, the participants performed the development

task by using the assigned development approach (i.e.,
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TDD or YW) and then self-assessed, through SAM com-
plemented with the liking scale, their affective reactions
to: (i) the used development approach; (ii) implement-
ing (production) code, (iii) testing (production) code; and
(iv) refactoring code.

BARI. The experimental procedure used in this replication
differs from that of BASILICATA in the third step. In particular, the
participants in BARI fulfilled two homework assignments rather
than three. We were forced to introduce this difference because
the participants in BARI could not carry out a third homework
assignment before the experiment took place. This was due to the
strict teaching schedules and learning plans of the participants
in BARI.

SALERNO. The experimental procedure was the same as BASIL-
ICATA except for the third and fourth steps, whose description
follows:

3. All participants practiced TLD and ITLD in a (laboratory)
training session and fulfilled a homework assignment by
using TLD and ITLD. The participants then followed a lesson
on TDD, practiced TDD in a training session, and
fulfilled one homework assignment by using that devel-
opment approach. We were forced to execute one train-
ing session with the participants and assign them one
homework assignment per development approach due to
the strict teaching schedules and learning plans of the
participants.

4. As mentioned in Section 3.6, the participants were split
into: Group1 and Group2. The participants in Group1 prac-
ticed TDD and then YW in two experimental sessions, while
Group2 practiced YW and then TDD in those experimental
sessions. The experimental sessions took place on different
days in the same laboratory as the training session. The
execution of the experimental sessions on two different
days was to have an adequate washout period between the
two laboratory sessions.

In any experiment, the time span between the execution of
the first step (i.e., filling in the pre-questionnaire) and the ex-
ecution of the last step (i.e., participating in the experimental
session/s) was of about two weeks. It is also worth mentioning
that, whatever the experiment was, the participants who applied
YW, similarly to those who applied TDD, were asked to refactor
their code every time they believed it was necessary. If a partic-
ipant did not apply any refactoring, she would be asked not to
rate her affective reaction to refactoring code (since she was not
exposed to refactorings).

3.8. Analysis procedure

We analyzed the data from our experiments by following the
procedure recommended by Santos et al. (2019) for analyzing
groups of SE experiments. This procedure consists of four steps,
each comprising two or more activities. A description of these
steps and how we instantiated them in our analysis follows.

1. Describe participants. The objective of this step is to in-
form about the population which the results should be gen-
eralized to, as well as suggest possible sources of hetero-
geneity that may emerge when providing joint conclusions.
This step consists of two activities.

Activity 1.1—Provide summary statistics. For each exper-
iment, we provided some descriptive statistics of
the metrics (e.g., months of experience in Java pro-
gramming) used to assess the characteristics of the

participants (e.g., experience in Java programming). r

5

Activity 1.2—Provide profile plot. We used profile plots
to show the characteristics of the participants aver-
aged across the experiments.

2. Analyze individual experiments. The objective of this step
is to provide findings from each individual experiment. This
step is composed of the following activities.

Activity 2.1—Provide summary statistics and visualiza-
tions. For each treatment (i.e., TDD or YW) and each
experiment, we provided descriptive statistics and
used boxplots to describe the distribution of the de-
pendent variable values.

Activity 2.2—Provide profile plot. We used profile plots
showing, for each treatment, the dependent variable
values averaged across the experiments.

Activity 2.3—Perform consistent individual analyses. For
each experiment, we tested the defined null hypothe-
ses introduced in Section 3.5. As suggested by Santos
et al. (2019), we used a consistent method of statisti-
cal inference across the experiments. We applied the
ANOVA-Type Statistic (ATS) method (Brunner et al.,
2017), a non-parametric alternative to the ANOVA
method. The ATS method was applied to test the
null hypotheses in our previously published exper-
iments (i.e., BASILICATA, Romano et al., 2019 and
BARI, Romano et al., 2020). This method has been
recommended in HCI to analyze rating-scale data in
factorial designs (Kaptein et al., 2010) (like the cases
of BASILICATA and BARI). More recently, the ATS
method has also been recommended in SE (where it
is known as the rank-based ANOVA-like method) to
analyze rating-scale data (Kitchenham et al., 2017).
Due to the 2 × 2 factorial design of BASILICATA and
BARI, the model underlying the ATS method had to
take into account the Approach and (Experimental)
Object factors as well as their interaction (Wohlin
et al., 2012). As for SALERNO, we followed the pro-
cedure that Wellek and Blettner (2012) proposed for
the analyses of ABBA crossover experiments. This
procedure consists of two steps: (i) run a pre-test to
check the assumption of negligible carryover5 effect
by using the participant-wise sums as the data; and
(ii) run a test to check for significant differences
between the treatments (i.e., TDD vs. YW, in our case)
by using the participant-wise differences as the data.
Wellek and Blettner’s procedure (Wellek and Blet-
tner, 2012) allowed us to apply the ATS method to
test the defined null hypotheses (as well as to check
the assumption of negligible carryover effect), and
thus perform a consistent inferential analysis across
the experiments as Santos et al. (2019) suggested.
As usual, we fixed the significance level, α, at 0.05—
i.e., if a p-value is less than 0.05, then there is a
(statistically) significant difference.

3. Aggregate results. The goal of this step is to provide joint
conclusions across the experiments. This step includes two
activities.

Activity 3.1—Apply AD. We used Aggregated Data (AD),
which is also known as meta-analysis of effect sizes
in SE. There are two kinds of meta-analysis models

5 It is an internal validity threat, which occurs when a treatment is admin-
stered before the effect of a previously administered treatment has completely
eceded (Vegas et al., 2016).
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– fixed- and random-effects (Borenstein et al., 2009)
– and different strategies concerning how to apply
these models based on the between-study hetero-
geneity (e.g., Scanniello et al., 2018). Santos et al.
(2019) recommended the use of random-effects
meta-analysis models independently from the
between-study heterogeneity. We followed such a
recommendation when pooling the effect sizes from
our experiments for the meta-analyses. Since rating-
scale data (like ours) are often treated as continuous
data in meta-analyses (Higgins et al., 2019), we used
the Standardized Mean Difference (SMD) – also known
as Hedges’ (adjusted) g – as the effect size measure.
It is worth noting that we computed the SMD values
from
SALERNO as suggested by Madeyski and Kitchenham
(2018) so making the SMD values from a crossover
experiment comparable with those from between-
participants experiments like BASILICATA and BARI.

Activity 3.2—Apply IPD-S. We exploited Stratified Individ-
ual Participant Data (IPD-S), which consists in jointly
analyzing the data from all experiments by acknowl-
edging which experiment the data come from. There
are two kinds of IPD-S models: fixed- and random-
effects (Whitehead, 2003). Wellek and Blettner (2012)
recommended the use of random-effects IPD-S mod-
els. Commonly used random-effects IPD-S models are
Linear Mixed Models (LMMs) with two factors: Ex-
periment and Treatment (Whitehead, 2003). Accord-
ingly, we used LMMs and modeled Experiment and
Approach as the two factors. LMMs allowed us to
analyze data from different kinds of experiments (i.e.,
between- and within-participants experiments).

4. Conduct exploratory analyses. In case of heterogeneous
results across the experiments, this step allows investi-
gating the underlying reasons by identifying experiment-
and participant-level moderators. This step includes the
following activities.

Activity 4.1—Identify experiment-level moderators. We
used AD (i.e., we performed subgroup meta-analyses
by using random-effects models) and IPD-S (i.e., we
fitted LMMs with interaction terms) in tandem to
identify experiment-level moderators. When using
LMMs, we fixed α at 0.1 as Santos et al. (2019) sug-
gested.

Activity 4.2—Identify participant-level moderators. We
used IPD-S (i.e., we fitted LMMs with interaction
terms) to identify participant-level moderators. Again,
we fixed α at 0.1 (as suggested).

Activity 4.3—Acknowledge exploratory analysis limita-
tions. We acknowledged the limitations of our ex-
ploratory analyses when discussing the limitations of
our experiments in Section 5.2.

. Experiment results

In this section, we present the results from our experiments
ased on the steps of the analysis procedure outlined in Sec-
ion 3.8. We conclude the section by reporting the results of a
uantitative further analysis.
6

able 1
ean (and SD) of the months of experience (in Java programming, as
rofessional developer, and in unit testing) of the participants in each
xperiment.
Experiment Months of experience

Java programming Professional developer Unit testing

BASILICATA 9.310 (4.115) 0 (0) 4.724 (4.651)
BARI 18.893 (28.060) 2.036 (8.038) 1.714 (2.484)
SALERNO 21.538 (10.556) 4 (6.671) 0 (0)

4.1. Description of participants

In Table 1, we show mean and Standard Deviation (SD) of
the months of experience in Java programming, as professional
developer, and in unit testing that the participants had in each
experiment (Activity 1.1). The profile plot in Fig. 2 graphically
depicts the months of experience averaged across the experi-
ments (Activity 1.2). We can observe that the participants with
the highest experience in Java programming and as professional
developers are those in SALERNO (on average, 21.538 and 4
months, respectively) followed by the participants in BARI (on
average, 18.893 and 2.036 months, respectively). As for the ex-
perience in unit testing, the most experienced participants are
those in BASILICATA (on average, 4.724), followed by BARI (on
average, 1.714). It is worth mentioning that the participants were
not knowledgeable on TDD when we gathered their experience
in unit testing—i.e., about two weeks before the experimental
session/s took place (see Section 3.7). Therefore, they were used
to practice unit testing in a test-last manner. That is, they were
used to write unit tests after they had written production code.
We can also notice that, although the participants in SALERNO
were graduates, they had no experience with unit testing—as op-
posed to the participants in BASILICATA and BARI that, although
undergraduates, had more experience with unit testing. This dif-
ference can be explained by the different university curricula: in
SALERNO, unit testing was one of the topics of the Unit Testing
course—i.e., the course in which the experiment was conducted.
When the participants in SALERNO filled in the pre-questionnaire,
they had no experience with unit testing.

Summing up, the results shown in Table 1 and Fig. 2 sug-
gest the presence of heterogeneity in the averaged experience
of the participants across the experiments, which could cause
between-study heterogeneity when providing joint conclusions.

4.2. Analyses of individual experiments

In Table 2, we report mean and SD summarizing the depen-
dent variable values for each development approach across the
experiments. In Fig. 3, we show the boxplots summarizing the
values of the dependent variables grouped by experiment and
treatment (Activity 2.1). The profile plots in Fig. 4 show the mean
values of the dependent variables of each approach across the
experiments (Activity 2.2). Finally, in Table 3, we report the p-
values for the Approach factor that the ATS method returned for
each dependent variable and experiment (Activity 2.3). In the
rest of this subsection, we present the results of the experiments
individually.

4.2.1. BASILICATA
Affective reactions to development approach. The boxplots

in Fig. 3.a do not show a huge difference in the affective reactions
to TDD and YW in terms of pleasure (APPPLS), arousal (APPARS),
and dominance (APPDOM) – the boxes mostly overlap one another
– despite we can notice that the participants who used YW were
slightly more positive than those who used TDD with respect
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Fig. 2. Profile plot showing the months of experience (in Java programming, as professional developer, and in unit testing) of the participants averaged across the
experiments.
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Table 2
Mean (and SD) for each dependent variable grouped by approach and experiment
Dep. Var. Approach Experiment

BASILICATA BARI SALERNO

APPPLS TDD 4.933 (1.87) 6.036 (2.236) 6.538 (2.222)
YW 6.357 (1.692) 6.065 (1.389) 6.769 (1.641)

APPARS TDD 5.333 (1.447) 5.321 (1.722) 6.154 (1.908)
YW 6 (1.468) 5.097 (1.557) 6 (2.16)

APPDOM TDD 5.4 (1.549) 6.286 (2.307) 7.154 (2.193)
YW 6.214 (1.762) 6.581 (1.689) 6.462 (1.613)

APPLIK TDD 5.2 (1.656) 6.214 (2.699) 7.308 (1.548)
YW 7 (1.24) 6.613 (1.783) 6.308 (2.394)

IMPPLS TDD 5.2 (1.474) 6.143 (1.995) 7 (1.78)
YW 6.143 (2.143) 6.097 (2.181) 7 (1.633)

IMPARS TDD 5.533 (1.125) 5.786 (1.893) 6.231 (2.242)
YW 5.929 (1.979) 5.903 (2.087) 6.385 (1.446)

IMPDOM TDD 4.933 (1.534) 6.536 (2.027) 7.615 (0.87)
YW 5.857 (2.143) 6.484 (2.08) 6.462 (1.898)

IMPLIK TDD 5.267 (1.534) 6.607 (2.166) 7.615 (0.87)
YW 6.714 (1.729) 6.742 (2.113) 6.692 (2.136)

TESPLS TDD 4.867 (1.685) 5.786 (2.5) 6.385 (2.022)
YW 6.357 (1.393) 5.806 (1.642) 6 (2.041)

TESARS TDD 5.4 (1.352) 5.214 (1.833) 6 (1.826)
YW 6.071 (1.685) 5.258 (2.144) 6.077 (1.382)

TESDOM TDD 5.467 (1.506) 6.286 (2.225) 6.769 (1.964)
YW 5.857 (1.46) 6.774 (1.765) 6.846 (2.115)

TESLIK TDD 5.533 (1.685) 5.75 (2.548) 6.538 (1.984)
YW 6.714 (1.326) 6.516 (1.313) 5.923 (2.1)

REFPLS TDD 5.333 (1.118) 5.52 (2.044) 6.846 (1.772)
YW 5.846 (1.573) 5.448 (1.429) 6.727 (1.902)

REFARS TDD 5.667 (1.581) 5.24 (1.985) 6.846 (1.772)
YW 5.538 (2.025) 5.138 (1.807) 6.545 (2.018)

REFDOM TDD 5.778 (1.481) 6.16 (2.055) 7.231 (1.092)
YW 6 (1.732) 6.172 (1.311) 6.545 (1.635)

REFLIK TDD 5.333 (1.118) 5.92 (1.998) 7.154 (1.405)
YW 6.308 (1.702) 5.793 (1.264) 6.636 (1.748)

to the PAD dimensions (e.g., Fig. 4.a). The results from the ATS
ethod in Table 3 do not indicate significant differences between
DD and YW—no p-value is less than 0.05. Therefore, we cannot
eject the corresponding null hypotheses (i.e., H0APPPLS , H0APPARS ,
nd H0APPDOM ). As for the affective reactions to TDD and YW in
erms of liking (APPLIK), the boxplot in Fig. 3.a suggests that
the participants in the YW group liked the experienced approach
more than the participants in the TDD group (7 vs. 5.2 on average,
as shown in Table 2). The p-value (0.002) returned by the ATS
ethod (Fig. 3) allows us to reject H0APPLIK and then accept the
lternative hypothesis: there is a significant difference between
DD and YW (in favor of YW) with respect to APPLIK.
Affective reactions to implementing code. Fig. 3.b does not
how remarkable differences between TDD and YW for pleasure n

7

(IMPPLS), arousal (IMPARS), and dominance (IMPDOM) when consid-
ering the implementation of production code, although there is
a slight trend in favor of YW (Fig. 4.b). The results in Table 3
seem to confirm that there is not a significant difference be-
tween TDD and YW regarding these dimensions. Accordingly, the
corresponding null hypotheses cannot be rejected (i.e., H0IMPPLS ,
H0IMPARS , and H0IMPDOM ). As far as liking (IMPLIK) is concerned,
ig. 3.b suggests that the participants who applied YW liked
mplementing code more than those who applied TDD (the mean
alues are 6.714 and 5.267, see Table 2). The p-value (0.04)

returned by the ATS method (Table 3) confirms that there is a
significant difference between TDD and YW (in favor of YW) with
respect to IMPLIK—i.e., we can reject H0IMPLIK and then accept the
alternative hypothesis.

Affective reactions to testing code.When considering arousal
(TESARS) and dominance (TESDOM) to testing code, we cannot
notice substantial differences between the two development ap-
proaches (Fig. 3.c). On the contrary, when considering liking
(TESLIK), we can notice a more evident difference between TDD
and YW (Figs. 3.c and 4.c) in favor of YW. However, the results
from the ATS method (Table 3) do not allow rejecting the re-
spective null hypotheses (i.e., H0TESARS , H0TESDOM , and H0TESLIK ).
y looking at Fig. 3.c, we can notice that there is a remarkable
ifference between TDD and YW in terms of pleasure (TESPLS).
he participants using YW were happier than those using TDD
hen testing code (6.357 vs. 4.867 on average, see Table 2).
he p-value (0.018) returned by the ATS method allows rejecting
0TESPLS and then accepting the alternative hypothesis: there is a
ignificant difference between TDD and YW (in favor of YW) with
espect to TESPLS.

Affective reactions to refactoring code. The boxplots
n Fig. 3.d do not highlight substantial differences between TDD
nd YW in terms of pleasure (REFPLS), arousal (REFARS), dom-
nance (REFDOM), and liking (REFLIK) when refactoring code—
hatever the dependent variable is, the box for TDD mostly
verlaps with the one for YW. The ATS method does not allow
ejecting the null hypotheses (Table 3).

Further results. The p-values returned by the ATS method for
bject and the Approach × Object interaction (which we did not
eport in Table 3 for the sake of readability) are always no less
han 0.05.

.2.2. BARI
Affective reactions to development approach. The boxplots

n Fig. 3.a do no show huge differences in the affective reactions
o the used development approach in terms of all studied dimen-
ions. The p-values returned by the ATS method (Table 3) are all

ot less than 0.05, thus we cannot reject any null hypothesis.
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Fig. 3. Boxplots summarizing the dependent variable values for each approach in each experiment.
Affective reactions to implementing code. As shown
n Fig. 3.b, there is no remarkable difference between TDD and
W regarding the studied dimensions of the affective reactions to
mplementing code. The results from the ATS method (Table 3) do
ot suggest any significant difference between TDD and YW—no
-value is less than 0.05.
Affective reactions to testing code. The boxplots in Fig. 3.c

how that, regardless of the dimension, the affective reactions of
he YW group to testing code are quite similar to those of the
DD group. In no case, the results from the ATS method (Table 3)
llow rejecting the null hypotheses.
Affective reactions to refactoring code. By looking at the

oxplots in Fig. 3.d, no noticeable difference emerges between
DD and YW in terms of the dimensions of affective reactions to
efactoring code. The p-values of the ATS method (see Table 3) do
8

not indicate the presence of a significant difference between TDD
and YW.

Further results. For APPLIK, the p-value for Object is 0.032
(not reported in Table 3 for readability reasons), suggesting that
the used experimental objects significantly influenced the affec-
tive reactions of the participants to the development approach in
terms of liking. However, the effect of the experimental objects
is consistent within both TDD and YW groups since the Approach
× Object interaction is not significant.

4.2.3. SALERNO
Affective reactions to development approach. The boxplots

in Fig. 3.a suggest no substantial difference in the affective reac-
tions to TDD and YW in terms of the considered dimensions. The
p-values returned by the ATS method (Table 3) are not less than
0.05.
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Fig. 4. Profile plots showing the mean values for each dependent variable and each approach across the experiments.
Table 3
p-values for the Approach factor that the ATS method returned for each dependent variable in each experiment. p-values
less than α = 0.05 are highlighted in bold.
Dep. var. BASILICATA BARI SALERNO

p-value H0X outcome p-value H0X outcome p-value H0X outcome

APPPLS 0.162 Failed to reject 0.694 Failed to reject 0.783 Failed to reject
APPARS 0.277 Failed to reject 0.642 Failed to reject 0.78 Failed to reject
APPDOM 0.28 Failed to reject 0.83 Failed to reject 0.26 Failed to reject
APPLIK 0.002 Rejected in favor of YW 0.921 Failed to reject 0.095 Failed to reject

IMPPLS 0.201 Failed to reject 0.904 Failed to reject 0.779 Failed to reject
IMPARS 0.68 Failed to reject 0.778 Failed to reject 0.685 Failed to reject
IMPDOM 0.345 Failed to reject 0.953 Failed to reject 0.005 Rejected in favor of TDD
IMPLIK 0.04 Rejected in favor of YW 0.805 Failed to reject 0.01 Rejected in favor of TDD

TESPLS 0.018 Rejected in favor of YW 0.572 Failed to reject 0.364 Failed to reject
TESARS 0.415 Failed to reject 0.745 Failed to reject 0.833 Failed to reject
TESDOM 0.634 Failed to reject 0.509 Failed to reject 0.945 Failed to reject
TESLIK 0.05 Failed to reject 0.459 Failed to reject 0.26 Failed to reject

REFPLS 0.548 Failed to reject 0.918 Failed to reject 0.527 Failed to reject
REFARS 0.892 Failed to reject 0.908 Failed to reject 0.606 Failed to reject
REFDOM 0.847 Failed to reject 0.993 Failed to reject 0.239 Failed to reject
REFLIK 0.225 Failed to reject 0.92 Failed to reject 0.08 Failed to reject
Affective reactions to implementing code. Fig. 3.b does not
how remarkable differences between TDD and YW for pleasure
9

and arousal when studying the implementation of the production
code. The p-values returned by the ATS method (Table 3) seem
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o confirm that there is not a significant difference between TDD
nd YW regarding these dimensions. With respect to dominance
nd liking, Fig. 3.b suggests that the participants who applied TDD
ere more in-control when implementing code, as compared
o the ones who applied YW (on average 7.615 vs. 6.462, see
able 2), and also more liked implementing code (on average
.615 vs. 6.692). The p-values (Table 3) for IMPDOM and IMPLIK are
.005 and 0.01, respectively, so allowing us to reject H0IMPDOM and
0IMPLIK . Therefore, there is a significant difference between TDD
nd YW (in favor of TDD) with respect to IMPDOM and IMPLIK.
Affective reactions to testing code. The boxplots in Fig. 3.c

how that the affective reactions of the YW group to testing code
re quite similar to those of the TDD group, whatever the dimen-
ion is. The results reported in Table 3 do not allow rejecting the
ull hypotheses.
Affective reactions to refactoring code. As Fig. 3.d suggests,

here is no noticeable difference between TDD and YW when
efactoring code, regardless of the dimension considered. The
-values in Table 3 do not indicate the presence of significant
ifferences between TDD and YW, and thus we cannot reject the
ull hypotheses.
Further results. We met the assumption of negligible carry-

ver effect for all dependent variables—i.e., in no case, the pre-test
eturned a p-value less than 0.05 (not reported in Table 3 for
eadability reasons). (See Fig. 6.)

.3. Aggregation of results

In Fig. 5, we show the results of our meta-analyses – a meta-
nalysis for each dependent variable – through forest plots (Activ-
ty 3.1). Each forest plot reports, besides the SMD estimates and
he corresponding 95% Confidence Intervals (CIs), two statistics
o assess the between-study heterogeneity: the p-value from
he Q -test and I2 statistic (Borenstein et al., 2009). The Q -test
llows determining whether the between-study heterogeneity is
statistically) significant—the most used α value is 0.1 (Scanniello
t al., 2018). Therefore, if the Q -test p-value is lower than 0.1,
e assume that the between-study heterogeneity is (statistically)
ignificant. We use the I2 statistic to measure the extent of
he between-study heterogeneity6 when the Q -test reveals that
he between-study heterogeneity is significant (Scanniello et al.,
018). As for the IPD-S results, they are summarized in Table 4
Activity 3.2). In particular, for each dependent variable, Table 4
hows the LMM estimates for TDD, YW, and their Mean Difference
MD). The CI and p-value of each estimate are also shown. In the
ollowing of this subsection, we report the aggregated results by
Q.

.3.1. RQ—Affective reactions to development approach
As Fig. 5.a shows, the affective reactions to the development

pproach in terms of pleasure (APPPLS) are more positive for
W than for TDD in any experiment. The joint effect (SMD =
0.232), in favor of YW, is small7 and not significant—the CI
pans 0. The IPD-S results shown in Table 4 confirm that, overall,
leasure due to the development approach is greater for YW,
ut the joint effect (MD = −0.473) is not significant—the p-value
0.331) is not less than 0.05. Regarding arousal (APPARS) due
o the development approach, the joint SMD (−0.011) is nearly
ull and not significant (Fig. 5.a). The IPD-S results (Table 4)

6 According to Higgins et al.’s guidelines (Higgins et al., 2019), the between-
tudy heterogeneity can be interpreted as: unimportant, if I2 ≤ 40%; moderate,
f 30% ≤ I2 ≤ 60%; substantial, if 50% ≤ I2 ≤ 90%; or considerable, if I2 ≥ 75%.
7 According to Cohen’s guidelines (Cohen, 1992), the SMD can be considered:

negligible, if |SMD| < 0.2; small, if 0.2 ≤ |SMD| < 0.5; medium, if 0.5 ≤ |SMD| <

.8; or large, otherwise.
10
confirm that the joint effect on APPARS is nearly null (MD =
0.015) and not significant (p-value = 0.959). As for dominance
(APPDOM), the overall SMD (−0.118) is in favor of YW and indicates

negligible and not significant joint effect (Fig. 5.a). The IPD-
results confirms these outcomes (Table 4). As Fig. 5.a shows,

he between-study heterogeneity is not significant for APPPLS,
APPARS, and APPDOM—the Q -test p-values (0.25, 0.434, and 0.304,
respectively) are all not less than 0.1. As for the affective reactions
to the development approach in terms of liking (APPLIK), we
can notice that the joint effect (SMD = −0.279) is in favor of
YW, it is small and not significant (see Fig. 5.a). The results in
Table 4 confirm that the joint effect (MD = −0.38) is in favor of
YW and not significant. Finally, Fig. 5.a suggests a significant and
substantial/considerable between-study heterogeneity (p-value =
0.01 and I2 = 82%). Therefore, moderators should be identified to
explain the detected between-study heterogeneity. As suggested
by Santos et al. (2019), we analyzed these moderators in the
fourth step of the analysis procedure and show the results of
these analyses in Section 4.4.

Answer to RQ. Although we found that the participants
in BASILICATA liked YW significantly more than TDD, the
overall conclusion is that there is no significant difference
between the affective reactions of developers when using
YW or TDD.

4.3.2. RQ1—Affective reactions to implementing code
As for IMPPLS and IMPARS, the joint effects, both in favor

of YW, are negligible and not significant as shown in Fig. 5.b
and Table 4. The between-study heterogeneity for both IMPPLS
and IMPARS is not significant as the Q -test p-values in Fig. 5.b
suggest. As for IMPDOM and IMPLIK, the overall SMD values (0.101
and −0.101, respectively) indicate negligible effects—the former
n favor of TDD, the latter in favor of YW. These effects are
oth not significant. The IPD-S results in Table 4 are consis-
ent with those above-mentioned. Finally, the Q-test p-values
eported in Fig. 5.b indicate a significant between-study hetero-
eneity for both IMPDOM and IMPLIK. Based on the I2 values, the
etween-study heterogeneity is substantial for IMPDOM, while sub-
tantial/considerable for IMPLIK. Therefore, we need to identify
oderators for both IMPDOM and IMPLIK (see Section 4.4).

Answer to RQ1. We found that the participants in BASILI-
CATA who used TDD liked implementing production code
significantly less than those who used YW, while the par-
ticipants in SALERNO who applied TDD were significantly
more in-control when implementing production code and
also liked implementing production code significantly more.
However, the joint conclusion does not indicate a signif-
icant difference between the development approaches in
terms of the affective reactions of developers to imple-
menting production code.

4.3.3. RQ2—Affective reactions to testing code
As shown in Fig. 5.c, the joint effects of the development

approach on TESPLS (SMD = −0.174), TESARS (SMD = −0.118),
and TESDOM (SMD = −0.174) are in favor of YW. The effects are
negligible and not significant. The IPD-S results (see both MD p-
values and estimates in Table 4) confirm that these effects are
in favor of YW and not significant. By looking at Fig. 5.c, we
can also observe a significant (Q -test p-value = 0.038) and sub-
stantial between-study heterogeneity (I2 = 74%) for TESPLS. This
outcome deserves an exploratory analysis to identify moderators
(see Section 4.4). Regarding both TESARS and TESDOM, the Q -test
p-values indicate that the between-study heterogeneity is not
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Fig. 5. Forrest plots depicting the SMD values for each dependent variable.
ignificant. Finally, the joint effect of the development approach
n TESLIK (SMD = −0.279) is in favor of YW, small, and not
ignificant as Fig. 5.c suggests. These results are consistent with
he IPD-S results shown in Table 4. Moreover, there is a signif-
cant and substantial/considerable between-study heterogeneity
or TESLIK (Fig. 5.c). Accordingly, we must identify moderators
(see Section 4.4).

Answer to RQ2. In BASILICATA, we found that testing pro-
11
duction code made the participants using TDD significantly
less happy. However, the joint conclusion does not in-
dicate a significant difference between the development
approaches in terms of the affective reactions of developers
to testing production code.

4.3.4. RQ3—Affective reactions to refactoring code
As Fig. 5.d shows, the joint effects of the development ap-

proach on the affective reactions to refactoring code are in favor
of TDD for any dimension—e.g., for REF , the overall SMD value
PLS
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Fig. 5. (continued).
is 0.022. The effects are negligible and not significant for any
dimension. The IPD-S results in Table 4 confirm that these effects
are not significant. In no case, the Q-test p-values in Fig. 5.d
suggest a significant between-study heterogeneity.

Answer to RQ3. The joint conclusion does not indicate a
significant difference between the development approaches
in terms of the affective reactions to refactoring code.
12
4.4. (Quantitative) exploratory analyses

Since the participants in both BASILICATA and BARI were un-
dergraduates and those in SALERNO were graduates, a potential
experiment-level moderator is Graduate—i.e., a binary factor that
assumes 0 if the student is undergraduate, while 1 otherwise. In
Fig. 6, we show the results of our subgroup meta-analyses by
using forest plots. It is worth recalling that, in these subgroup
meta-analyses, we focused on the dependent variables for which
we observed a significant between-study heterogeneity, namely:
APP , IMP , IMP , TES , and TES . We also built LMMs
LIK DOM LIK PLS LIK
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Table 4
IPD-S results for each dependent variable. p-values less than α = 0.05 are highlighted in bold.
Dep. var. TDD YW MD

Estimate [95% CI] p-value Estimate [95% CI] p-value Estimate [95% CI] p-value

APPPLS 5.81 [4.976, 6.644] 0 6.275 [5.793, 6.756] 0 −0.473 [−1.489, 0.544] 0.331
APPARS 5.569 [5.002, 6.136] 0 5.556 [4.979, 6.132] 0 0.015 [−0.613, 0.643] 0.959
APPDOM 6.262 [5.32, 7.204] 0 6.465 [5.96, 6.97] 0 −0.202 [−1.297, 0.893] 0.695
APPLIK 6.235 [5.061, 7.409] 0 6.617 [5.991, 7.242] 0 −0.38 [−2.099, 1.338] 0.638

IMPPLS 6.062 [5.233, 6.891] 0 6.271 [5.648, 6.893] 0 −0.212 [−0.912, 0.487] 0.521
IMPARS 5.791 [5.316, 6.266] 0 5.978 [5.511, 6.445] 0 −0.187 [−0.852, 0.478] 0.551
IMPDOM 6.393 [4.829, 7.957] 0 6.285 [5.681, 6.89] 0 0.108 [−1.321, 1.537] 0.872
IMPLIK 6.518 [5.2, 7.837] 0 6.689 [6.193, 7.185] 0 −0.167 [−1.685, 1.352] 0.815

TESPLS 5.675 [4.885, 6.465] 0 5.939 [5.407, 6.471] 0 −0.262 [−1.396, 0.871] 0.623
TESARS 5.479 [4.924, 6.033] 0 5.639 [5.088, 6.189] 0 −0.161 [−0.768, 0.447] 0.575
TESDOM 6.152 [5.416, 6.888] 0 6.515 [5.783, 7.247] 0 −0.363 [−1.114, 0.387] 0.313
TESLIK 5.965 [5.276, 6.654] 0 6.345 [5.727, 6.963] 0 −0.376 [−1.574, 0.822] 0.507

REFPLS 5.908 [5.042, 6.773] 0 5.86 [5.133, 6.587] 0 0.049 [−0.61, 0.707] 0.873
REFARS 5.873 [4.925, 6.82] 0 5.676 [4.75, 6.602] 0 0.197 [−0.553, 0.947] 0.572
REFDOM 6.392 [5.605, 7.179] 0 6.206 [5.711, 6.702] 0 0.183 [−0.579, 0.945] 0.605
REFLIK 6.163 [5.249, 7.077] 0 6.069 [5.572, 6.565] 0 0.092 [−0.773, 0.957] 0.817
Table 5
IPD-S results for the dependent variables involved in the study of the experiment- and participant-level moderators (i.e., Graduate, Java Programming, Professional
eveloper, and Unit Testing). p-values less than α = 0.1 are highlighted in bold.
Dep. var. Graduate Java programming Professional developer Unit testing

Estimate [95% CI] p-value Estimate [95% CI] p-value Estimate [95% CI] p-value Estimate [95% CI] p-value

APPLIK 2.015 [−0.747, 4.776] 0.137 0.023 [−0.025, 0.07] 0.319 0.039 [−0.150, 0.227] 0.662 −0.278 [−0.512, −0.043] 0.021
IMPDOM 1.577 [−0.645, 3.799] 0.147 0.009 [−0.032, 0.05] 0.644 0.015 [−0.126, 0.155] 0.821 −0.069 [−0.280, 0.141] 0.515
IMPLIK 1.676 [−0.947, 4.3] 0.187 0.019 [−0.024 0.062] 0.356 0.054 [−0.082, 0.191] 0.4 −0.138 [−0.362, 0.085] 0.222
TESPLS 1.057 [−1.61, 3.724] 0.402 0.028 [−0.015, 0.07] 0.179 −0.051 [−0.186, 0.083] 0.419 −0.246 [−0.456, −0.037] 0.021
TESLIK 1.519 [0.173, 2.864] 0.03 0.029 [−0.013, 0.071] 0.154 0.105 [−0.037, 0.247] 0.133 −0.253 [−0.467, −0.039] 0.021
with the Approach × Graduate interaction term to complement
the study of the experiment-level moderator (Activity 4.1). For
the above-mentioned variables, we then fitted LMMs, each with
an interaction term, to identify participant-level moderators (Ac-
tivity 4.2). The considered interactions are Approach × {Java
Programming, Professional Developer, Unit Testing}. These three
factors represent, respectively, the months of experience as java
programmer, as professional developer, and in unit testing. The
LMM results about the study of the experiment- and participant-
level moderators are summarized in Table 5. In this subsection,
we present the results of our exploratory analyses by dependent
variable.

4.4.1. Exploratory analysis of APPLIK
As Fig. 6 shows, the heterogeneous results for APPLIK should

not be due to an experiment-level moderator because a sig-
nificant (Q -test p-value = 0.036) and considerable (I2 = 77%)
between-study heterogeneity can be observed within the under-
graduate subgroup of experiments. Also, there is no significant
difference between TDD and YW when considering the levels
of the Graduate factor—the CIs of the joint effects span 0 for
both subgroups of experiments. The IPD-S results in Table 5
do not show a significant effect of the Approach × Graduate
interaction—the p-value (0.137) is not less than 0.1. Therefore,
to explain the heterogeneous results on APPLIK, we need to
focus on participant-level moderators. As shown in Table 5, the
highest estimate (in absolute value) is the one for the Approach
× Unit Testing interaction (−0.278) and it is also significant (p-
value = 0.021). That is, the moderator that better explains the
heterogeneous results on APPLIK is Unit Testing (i.e., the months
of experience with unit testing). The results from the LMM fitted
for APPLIK suggest that the higher the months of experience with
unit testing, the more negative the affective reactions to TDD, in

terms of liking, are (as compared to YW).

13
4.4.2. Exploratory analysis of IMPDOM
As shown in Fig. 6, the between-study heterogeneity for IMPDOM

is not significant within both subgroups of experiments (as the
Q-test p-values suggest). Moreover, the joint effect for the un-
dergraduate subgroup is not significant, while the one for the
Graduate factor is significant. Accordingly, the Graduate moder-
ator can explain the heterogeneous results on IMPDOM although
the IPD-S results in Table 5 fail to show a significant effect
of the Approach × Graduate interaction. When considering the
participant-level moderators (Table 5), we can observe that all
estimate p-values are not less than 0.1. Moreover, the estimates
are close to 0 for any interaction. We thus confirm with more
strength that the Graduate moderator can explain the hetero-
geneous results on IMPDOM. In particular, graduates who applied
TDD were more in-control than those who applied YW when
implementing production code, while for undergraduates this
was not true.

4.4.3. Exploratory analysis of IMPLIK
By looking at Fig. 6, we can observe that there is a significant

and substantial between-study heterogeneity for IMPLIK when
considering the undergraduate subgroup. Moreover, the results
in Table 5 suggest that the Graduate factor is not significant.
Therefore, the heterogeneous results (highlighted in Section 4.3.2)
should be due to a participant-level moderator. However, Table 5
does not show significant interaction effects for the participant-
level moderators—all p-values are not less than 0. The highest
estimate (in absolute value) is the one for the Approach × Unit
Testing interaction (−0.138). Therefore, the moderator, better
explaining the heterogeneous results on IMPLIK, seems to be Unit
Testing. The higher the months of experience with unit testing,
the less the participants liked implementing production code

when using TDD (as compared to YW).



M.T. Baldassarre, D. Caivano, D. Fucci et al. The Journal of Systems & Software 185 (2022) 111154

4

i
T
A
r
m
l
a
s
w
e
i
p
t
c

Fig. 6. Forrest plots depicting the SMD values for the dependent variables involved in the study of the Graduate experiment-level moderator.
.4.4. Exploratory analysis of TESPLS
The Q -test p-value and I2 value in Fig. 6 indicates that there

s a significant and substantial between-study heterogeneity for
ESPLS within the undergraduate subgroup. The effect of the
pproach × Graduate interaction is not significant as the results
eported in Table 5 suggest. Accordingly, the participant-level
oderators should be investigated, rather than the experiment-

evel moderation, to explain the heterogeneous results for TESPLS
cross the experiments. The IPD-S results in Table 5 show a
ignificant effect for Approach × Unit Testing (p-value = 0.021)
ith an estimate equal to −0.246—it is the highest obtained
stimate (in absolute value). Based on these results, the Unit Test-
ng moderator explains the heterogeneous results for TESPLS. In
articular, the higher the months of experience with unit testing,
he less happy the participants were when testing production
ode using TDD (as compared to YW).
14
4.4.5. Exploratory analysis of TESLIK
As Fig. 6 shows, there is not a significant between-study het-

erogeneity for TESLIK in both subgroups of experiments. More-
over, the joint effect for the undergraduate subgroup is significant
and medium (SMD = −0.50). The IPD-S results in Table 5 show a
significant effect of the Approach × Graduate interaction. There-
fore, the Graduate moderator can explain the heterogeneous re-
sults for TESLIK. As for the participant-level moderators, we can
observe that there is a significant effect for Approach × Unit Test-
ing (p-value = 0.021). The estimate is equal to −0.253. Therefore,
besides the Graduate moderator, the Unit Testing moderator can
explain the heterogeneous results for TESLIK. In particular, the
undergraduates who applied TDD liked testing production code
less than the undergraduates who applied YW. For the graduates,
this was not true. Also, the higher the months of experience with
unit testing, the less the participants liked testing production
code when using TDD (as compared to YW).
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Table 6
p-values for the Approach factor that the ATS method returned for the Line Coverage, Mutation Score, and Tests
dependent variable in each experiment. p-values less than α = 0.05 are highlighted in bold.
Dep. var. BASILICATA BARI SALERNO

p-value H0X outcome p-value H0X outcome p-value H0X outcome

Line Coverage 0.569 Failed to reject 0.376 Failed to reject 0.69 Failed to reject
Mutation Score 0.897 Failed to reject 0.708 Failed to reject 1 Failed to reject
Tests 0.435 Failed to reject 0.315 Failed to reject 0.108 Failed to reject
4.5. Further analyses

In this subsection, we present the results of a quantitative
urther analysis. In particular, besides investigating whether and
n which phases TDD influences the affective states of developers,
e also studied whether TDD affects the code quality of the
eveloped software, as well as the number of written tests. To
uantify the code quality of the developed software, we used two
dependent) variables: Line Coverage and Mutation Score. The
ormer represents the percentage of lines (of production code)
hat are covered by the test suite each participant wrote. The
atter represents the percentage of mutants that are killed by the
articipant’s test suite.8 We computed both Line Coverage and
utation Score by using PIT (Coles et al., 2016), a state-of-the-
rt mutation testing tool for Java (Kintis et al., 2018). To generate
he mutants and thus compute the mutation score, we used the
efault mutation operators of PIT since they are designed to be
table (i.e., not too easy to detect) and minimize the number of
quivalent mutants (i.e., mutants functionally equivalent to the
riginal program). Both Line Coverage and Mutation Score are
xpressed in percentage values—the higher the values of these
ariables, the better it is. As for the number of written tests, we
sed Tests as the dependent variable. This variable indicates the
umber of tests written by a given participant and therefore it
ssumes integer values greater than or equal to zero.
In Fig. 7, we show the boxplots depicting the values for the

ine Coverage, Mutation Score, and Tests dependent variables for
ach approach in each experiment. As for Line Coverage, we can
bserve that there is not a huge difference between TDD and YW
ince, whatever the experiment is, the boxes overlap one another.
imilar outcomes can be observed when considering Mutation
core and Tests.
To confirm these outcomes, we also performed inferential

nalyses. In particular, we tested the H0LineCoverage, H0MutationScore,
nd H0Tests null hypotheses – i.e., there is no significant difference
etween TDD and YW with respect to Line Coverage (or Mutation
core or Tests, respectively) – by using the ATS method (i.e., we
pplied the same analysis procedure of Activity 2.3 shown in
ection 3.8). The results from the inferential analyses are shown
n Table 6; where we can observe that there is no significant
ifference between TDD and YW for Line Coverage, Mutation
core, and Tests in any experiment.

. Discussion and limitations of experiment results

In this section, we discuss the results from the experiments
nd highlight implications from these results from the educa-
or, researcher, and practitioner perspectives. We conclude by
iscussing possible limitations of these results.

8 In mutation testing, the faulty version of a program, obtained by applying a
utation operator that automatically seeds a mutation fault in that program, is
alled mutant. A mutant is said killed when a test case of the test suite detects
he corresponding mutation fault.
15
5.1. Discussion of results

Replications that do not draw the same conclusions as the
baseline experiment can be viewed as successful on a par with
replications that come to the same conclusions as the baseline
experiment (Shull et al., 2008). Our replications fall into the for-
mer case since the outcomes of the replicated experiments, taken
individually, do not fully confirm the outcomes of the baseline
experiment. In particular, we observed that the participants in the
baseline experiment (i) liked TDD significantly less as compared
to a non-TDD approach; (ii) liked implementing production code
with TDD significantly less; and (iii) were significantly less happy
when testing production code using TDD. The replications cannot
support these findings because, as shown in Section 4.2, either
we did not observe any significant difference between TDD and
YW (this is the case of the first replication) or we observed
significant differences that did not emerge in the baseline ex-
periment (this is the case of the second replication). Neither
aggregating the results from all experiments allowed showing
the same significant differences as observed in the baseline ex-
periment (see Section 4.3). Accordingly, some moderators had
to have modulated the effect of the used development approach
on the affective reactions of the participants for APPLIK, IMPLIK,
and TESPLS—i.e., the dependent variable for which the results
from the baseline experiment are not confirmed by the results
of the replications. The results from our exploratory analyses (see
Section 4.4) indicate that the moderator that better explained the
above-mentioned inconsistent/heterogeneous results (i.e., as far
as APPLIK, IMPLIK, and TESPLS is concerned) across the experi-
ments is the experience with unit testing. In particular, the higher
the months of experience with unit testing, the more negative
the affective reactions, due to TDD, are. Since the participants in
any experiment did not know TDD (before being recruited for
participating in the experiments), they were therefore used to
practice unit testing in a test-last manner. In other words, the
participants were used to write unit tests after they had written
production code—in contrast to TDD, where unit tests are written
before producing code. That is to say that the participants in the
baseline experiment were probably more conservative and less
prone to change the order with which they usually wrote pro-
duction and testing code. Therefore, the affective reactions due
to TDD of the participants in the baseline experiment were more
negative as compared to the affective reactions of the participants
in the two replications.

The above-mentioned finding (i.e., the higher the experience
with unit testing, practiced in a test-last manner, the more nega-
tive the affective reactions caused by TDD) can be of interest to CS
educators who teach unit testing. For example, they should start
teaching TDD as soon as possible to lessen the negative affective
reactions that TDD might cause since there is empirical evidence
showing that, with time, TDD leads developers to write more unit
tests with a higher fault-detection capability (Fucci et al., 2018;
Baldassarre et al., 2021). As far as researchers is concerned, they
could be interested in studying whether the experience with unit
testing plays a relevant role in the relationship between TDD and
the affective reactions of developers (as far as APPLIK, IMPLIK, and

TESPLS is concerned) through experiments specifically designed
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Fig. 7. Boxplots summarizing the values for the Line Coverage (a), Mutation Score (b), and Tests (c) dependent variables for each approach in each experiment.
for such a purpose. In particular, researchers could conduct exper-
iments with a 2 × 2 factorial design (Wohlin et al., 2012) where
the two factors are the development approach and the experience
with unit testing.

Current research on the claimed effects of TDD (i.e., better
internal software quality and increased developers’ productivity)
shows inconclusive results (e.g., Turhan et al., 2010; Karac and
Turhan, 2018), which can be attributed to the disliking that de-
velopers experience when using TDD (e.g., Erdogmus et al., 2010).
The results from the baseline experiment give credit to such a
postulation, despite the results from the replications do not (due
to the less experience with unit testing of the participants). The
question that now arises is whether the disliking that developers
experience when using TDD can change over time (e.g., in relation
to the improved experience with TDD). Researchers could con-
duct observational studies with a cohort of developers to answer
such a question. Also, the disliking that the participants in the
baseline experiments experienced when using TDD could explain
why TDD is not widely practiced in open-source projects (Beller
et al., 2019; Barletta et al., 2020).

As for other investigated constructs (i.e., those measured
through: APPPLS, APPARS, APPDOM, IMPPLS, IMPARS, TESARS, TESDOM,
REFPLS, REFARS, REFDOM, and REFLIK), the outcomes of the baseline
experiment are confirmed by the replications and when analyz-
ing the results jointly. Also, we did not observe any significant
between-study heterogeneity. In other words, the statistical con-
clusion for each of these constructs is that we failed to reject the
16
corresponding null hypothesis. Such a kind of result is known
as a negative result. Negative results are important in showing
research directions that did not pay off and help in reorienting
the research efforts (Paige et al., 2017). Accordingly, our results
suggest avoiding spending effort investigating the constructs for
which we did not obverse any significant difference and did
not observe any significant between-study heterogeneity. On
the other hand, further replications with other types of partici-
pants (e.g., participants with high experience in unit testing) are
necessary to investigate the constructs for which we obtained
heterogeneous results.

When considering the subgroup of experiments with under-
graduates (i.e., the baseline experiment and first replication), we
observed that the participants using TDD liked testing production
code significantly less (see Section 4.4). Previous work (Romano
et al., 2016, 2017) shows that TDD developers create a mental
model of the task solution, which is then translated into unit tests.
Undergraduates can be uncomfortable with such an activity due
to the counter-intuitiveness of the TDD testing phase, along with
the difficulty of writing tests of good granularity in the absence
of the underlying production code (Fucci et al., 2017; Karac and
Turhan, 2018). Conversely, undergraduates following a non-TDD
approach can decide when and what to test without (mindlessly)
following a process. Such freedom of action – e.g., testing what is
worth according to developer’s understanding – can explain the
higher values for TESLIK among the undergraduates using a non-
TDD approach. Longitudinal studies of TDD developers’ affective
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tates can be also useful in this case. The results regarding the
egative affective reactions of undergraduates to testing code
uggest that, for greenfield development tasks, undergraduates
an skip TDD for few initial iterations and rely on their preferred
evelopment approach. This should positively impact their moti-
ation and job satisfaction (Turhan et al., 2010; Graziotin et al.,
018), along with productivity (Graziotin et al., 2013). Such a
inding is clearly relevant for software managers interested to
ave motivated developers in a software project, but also for
esearchers that could further study on the relations between
otivation and job satisfaction and the use of TDD.

.2. Threats to validity

To understand both strengths and limitations of our exper-
mental results, we discuss the threats that could affect their
alidity by using Wohlin et al.’s guidelines (Wohlin et al., 2012).
e ranked the threats from the most to the least sensible for
ur research goal—i.e., from internal to external validity threats.

The rationale behind this decision relies on the fact that we were
more interested in studying that cause–effect relationships were
correctly identified in our experiments.

Threats to internal validity. A selection threat might have af-
ected our results since the participation in the experiments was
oluntary—the participants in the experiments might be more
otivated than actual developers. Another threat that might have
ffected our results is resentful demoralization, namely partici-
ants assigned to a less desirable treatment might not behave as
hey normally would. This kind of threat holds for BASILICATA
nd BARI, but not for SALERNO where the participants experi-
ented both TDD and YW. To deal with a threat of diffusion or

reatments imitations, we monitored the participants to prevent
hem from exchanging information during the experimental ses-
ions. Exploratory analyses, like ours, are unable to demonstrate
ausation (Santos et al., 2019) (threat of ambiguity about direction
f causal influence) although they can prove associations. This is
hy we suggested (in Section 5) conducting experiments with a
× 2 factorial design to better study the role that the experience
ith unit testing has in the relationship between TDD and the
ffective reactions of developers.
Threats to construct validity. We measured each dependent

ariable once by using a self-assessment instrument (i.e., SAM). As
o, in case of measurement bias, this might affect the obtained
esults (threat of mono-method bias). Although we did not dis-
lose the research goals of our study to the participants, they
ight have guessed them and changed their behavior based on

heir guess (threat of hypotheses guessing). This threat should be
ore relevant for SALERNO since the participants experimented
oth YW and TDD. We did not evaluate the participants in the
xperiments to mitigate a threat of evaluation apprehension. In
articular, we informed the participants in all experiments that
hey would get two bonus points on the final exam mark regard-
ess of their performance. There might be a threat of restricted
eneralizability across constructs. To deal with such a threat, we
nalyzed the code coverage, mutation score, and number of writ-
en tests when using TDD or YW, and observed no significant
ifference. The results of this further analysis are reported in Sec-
ion 4.5. However, the approach might affect other non-measured
onstructs (e.g., cognitive load). The exploratory analyses pose a
hreat of confounding constructs and levels of constructs. In other
ords, despite we studied four moderators, other confounding
ariables might also be responsible for the heterogeneous results.
Threats to conclusion validity. We mitigated a threat of ran-

om heterogeneity of participants through two countermeasures:
i) we involved students so having samples of participates, in
ach experiment, with background and skills as much similar as
17
possible; and (ii) the participants in each experiment underwent a
training to make them as more homogeneous as possible within
the groups. It is worth mentioning that the training of the par-
ticipants across the experiments was similar even if organized
in different fashion due to the different peculiarity of the ex-
perimental procedure applied in the experiments (Section 3.7).
A threat of reliability of treatment implementation might have
occurred in the experiments. For example, a few participants
might have followed TDD more strictly than others and this might
have influenced their affective reactions. To mitigate this threat,
we reminded the participants assigned to TDD to apply such a
development approach as more strictly as possible on several
occasions during the experiments. It is worth noting that not
checking the conformance to the TDD process is common in
primary studies like ours (Santos et al., 2021). Although SAM
is one of the most reliable instruments for measuring affective
reactions (Morris et al., 2002), there might be a threat of reliability
of measures—the measures gathered using SAM, as well as the
liking scale, are subjective in nature. Also, in TDD, the testing,
implementation, and refactoring phases are intertwined with one
another. Therefore, it could be not easy, for the participants using
TDD, to clearly separate these phases and then rate their affective
reactions to these phases. On the other hand, for the participants
using YW, the testing, implementation, and refactoring phases
can be seen as distinct steps. This difference between TDD and
YW might have affected how the participants rated their affective
state to testing, implementing, and refactoring code. According
to Santos et al. (2019), exploratory analyses (like ours) might
lead to spurious significant results because they require, for each
dependent variable, to fit a LMM per moderator (threat of error
rate). A threat of violated assumptions of statistical tests might be
present since, as done by Santos et al. (2019), we did not check
the normality assumption of LMMs (Whitehead, 2003). However,
LMMs are robust to departures from normality (Fagerland, 2012;
McCulloch and Neuhaus, 2011)—especially when the sample size
is large as it happens when the raw data of different experiments
are pooled together (Lumley et al., 2002) (as it is our case).
Moreover, we mostly used LMMs in tandem with meta-analyses
of effect sizes so mitigating such a threat.

Threats to external validity. We involved graduates and un-
dergraduates in CS. This implies that generalizing the results to
the population of professional developers might lead to a threat
of interaction of selection and treatment. However, the use of
students has the advantage that they have a more homogeneous
background and are particularly suitable to obtain preliminary
evidence from empirical studies (Carver et al., 2003). Therefore,
the use of students could be considered appropriate, as suggested
in the literature (Carver et al., 2003; Höst et al., 2000). The use
of BSK and MR might represent a threat of interaction of setting
and treatment. These experimental objects are commonly used in
empirical studies on TDD (e.g., Fucci et al., 2016a, 2018, 2016b)
and can be fulfilled in about three hours (Fucci et al., 2018)
so allowing a better control over the participants. Furthermore,
both BSK and MR can be implemented without using mocking
techniques (e.g., mock objects or spies) and frameworks; and the
participants did not (and were not allowed to) use any mocking
technique or framework. This design choice was to limit a threat
of interaction of different treatments (i.e., TDD and mocking). While
mitigating such a threat, we acknowledge a threat of ecological
validity since TDD and mocking are sometime used together in
the industrial practice.

6. Survey

We conducted an explanatory survey to explain the results
of the experiments and complement these results by performing
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methodological triangulation (Thurmond, 2001). In particular,
we took a qualitative perspective by involving respondents with
TDD experience to explain some heterogeneous results across the
experiments. Moreover, we collected their perspective on which
affective states developers experience due to TDD.

6.1. Goals

In the survey, we studied the two following RQs:

RQ4. Does the experience with unit testing, applied in a test-last
manner, lead to negative affective reactions towards TDD?

RQ5. Which affective states do developers experience when us-
ing TDD?

The goal of RQ4 is to confirm (or refute) that the higher the expe-
rience with unit testing (applied in a test-last manner), the more
negative the affective reactions caused by TDD are. As for RQ5, we
wanted to understand and possibly explain which affective states
TDD provokes by considering the perspectives of professionals
and researchers with TDD experience. The answer to RQ5 could
help us to better understand TDD as a phenomenon from a new
perspective and derive suggestions to deal with specific affective
states.

6.2. Respondents

The survey respondents were 11 TDD lecturers, developers,
and/or researchers who attended the XP2020 conference. The
participation in the survey was voluntary because we wanted
to have motivated respondents who were likely to answer the
questions truthfully. The XP2020 Onsite-research Track organiz-
ers encouraged the conference attendees to fill in our survey by
using both social media and conference website—a video was
used to sketch our investigation so encouraging the participation
in the study.9 It is easy to follow that we did not formally invite
XP2020 attendees to fill in the survey—this is why we do not have
a response rate.

6.3. Data collection method and execution

The survey was questionnaire-based (Wohlin et al., 2012) and
consisted of both open- and closed-ended questions. The survey
questionnaire was introduced with a brief motivation sketching
the general problem of the investigation. Furthermore, we clari-
fied that any information gathered through the questionnaire was
considered confidential and the data would be used for research
purposes and shared in an anonymous form only.

We identified three areas of interest that we wanted to gather
information about. Therefore, we organized the questionnaire
into three parts. The first part focused on demographic informa-
tion about the respondents (e.g., job title, expertise with TDD,
etc..) to characterize our sample. The second and third parts were
conceived to answer RQ4 and RQ5, respectively. In particular, in
the second part, we included questions on the respondents’ opin-
ion about the relationship between the experience with unit-last
testing, applied in a test-last manner, and the affective reactions
to TDD. In the last part of the questionnaire, we included an open
question to ask the respondents their thought on the affective
states (e.g., happiness, frustration, etc..) that TDD might provoke
(e.g., personal/friend’s anecdote). We developed the survey ques-
tionnaire following Ciolkowski et al.’s schema (Ciolkowski et al.,
2003). We used Google forms to create the survey questionnaire,
share it with the respondents, and gather the responses.

9 www.agilealliance.org/xp2020/xp-2020-online-program/onsite-research-
rack
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7. Survey results

In this section, we first present the demographic information
results, and then the results regarding the study of RQ4 and RQ5.

7.1. Demographic information

In Fig. 8 (upper part), we summarize the answers to the ques-
tions about the demographic part of the survey (i.e., Questions 1.1
to 1.9).

The age of the respondents ranges from 25 to 68 years with
an average age of about 44 years. The female respondents were
three, while the male respondents eight. They came from nine
different countries—the most represented countries were the USA
and the UK with two occurrences each. Most respondents had
a Master’s or Doctorate degree (nine). As for their job title, the
most represented classes were software consultants, followed
by Ph.D. students and assistant professors. The expertise of the
respondents with TDD was, overall, high—eight out of 11 respon-
dents stated that they were experts of TDD or had an advanced
experience with TDD. Most respondents have been practicing
TDD for a long time—only two respondents had been practicing
TDD for less than one year. The context in which they practiced
TDD the most was teaching (ten). The respondents also used
TDD in industrial (six), research (four), and open-source (four)
contexts.

7.2. RQ4—Experience with unit testing and affective reaction to-
wards TDD

In Fig. 8 (lower part), we summarize the answers to the
questions for RQ4 (i.e., Questions 2.1 to 2.3). It is worth not-
ing that such questions were related to the results from the
baseline experiment not confirmed by the results from the first
replications (BARI)—i.e., the results regarding APPLIK, IMPLIK, and
TESPLS. This is because we conducted the survey in parallel with
the second replication; therefore, we did not know that we would
have observed heterogeneous results for APPDOM and TESLIK when
analyzing the data from the three experiments jointly. We devise
this point as a possible direction for future work.

As for Question 2.1, we can observe a slight trend towards the
agreement that having much experience with unit testing causes
more dislike towards TDD than having no/little experience. It
seems that there is not a clear trend on Question 2.2. Finally,
most respondents (five) thought that having much experience
with unit testing makes developers more unhappy in the testing
phase of TDD than having no/little experience (Question 2.3).

7.3. RQ5—Affective states when using TDD?

Based on respondents’ responses/opinions, the testing phase
of TDD is the one that causes more negative affective states to
the developer. The opinion of R2 (i.e., the second respondent)
about this point follows: ‘‘TDD in the red phase causes more anxiety
and frustration’’. A possible reason seems to be the counter-
intuitive and hard-to-tackle test-first order that characterizes
TDD. For example, R9 stated: ‘‘I have found that Red, fail first,
is counter-intuitive for many developers and the more experienced
the more resistance’’. Also, R11 stated: ‘‘The test step is really hard
because you have to find the right tests and the right order to tackle
them’’.

Negative affective states, like unhappiness, can be also ex-
perienced when the TDD developer cannot immediately write
production code to make unit tests pass or when she writes code
that suddenly makes a lot of tests fail. R8’s perspective follows:
‘‘If you (a) don’t immediately write the correct code to make the test

http://www.agilealliance.org/xp2020/xp-2020-online-program/onsite-research-track
http://www.agilealliance.org/xp2020/xp-2020-online-program/onsite-research-track


M.T. Baldassarre, D. Caivano, D. Fucci et al. The Journal of Systems & Software 185 (2022) 111154

p
m

t
‘

Fig. 8. Summary of the results regarding the first two parts of the survey.
ass, or (b) write code that suddenly makes a lot of tests fail, you get
ore unhappy and more excited and not in-control’’.
The phase underlying TDD that mostly causes neutral affec-

ive states should be the refactor one. On this point, R8 wrote:
‘Refactoring as such is less emotional’’.
19
8. Discussion and limitations of survey results

In this section, we first discuss the survey results and then the
limitations for these results.
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.1. Discussion of results

The survey results help us to confirm the exploratory analysis
esults. In particular, the latter results suggest that the moder-
tor that better explains the inconsistent/heterogeneous results
cross the experiments – for APPLIK, IMPLIK, and TESPLS– is the
evelopers’ experience with unit testing, applied in a test-last
anner. The survey respondents confirmed that having more
xperience with unit testing, applied in a test-last manner, causes
ore dislike towards TDD and makes developers using TDD more
nhappy when testing production code.
When considering the subgroup of experiments with under-

raduates, we observed that the participants using TDD liked
ignificantly less testing production code. This result seems to be
onfirmed in the survey since TDD causes negative affective states
hen testing code. In turn, this can explain the inconclusive
esults of the research on the claimed effects of TDD (Erdogmus
t al., 2010).

.2. Threats to validity

In this section, we discuss the threats to validity that could
ffect the survey results. The discussion of these threats is shown
n increasing priority order (i.e., internal, external, and construct).

Threats to internal validity. In surveys, it is impossible to
now whether respondents answer truthfully. To mitigate such
threat, the participation in our survey was voluntary basis.
nother potential threat regards the comprehension of the survey
uestions. To lessen this threat, we asked a researcher, not in-
olved in the study, to read and provide possible issues concerned
ith the comprehension of the survey questions before the study
ook place—only minor changes were needed.

Threats to external validity. This kind of threat concerns the
epresentativeness of the respondents. The reader might object
hat XP2020 attendees were not representative of the population
rom which we would like to gather feedback to explain the re-
ults from the experiments. We believe that the attendees of that
onference are experienced in the application and/or teaching of
DD, so suitable for participating in the survey—the demographic
nformation reassures us on this matter (see Section 7.1). XP2020
as held virtually so possibly affecting the number of people who
ould participate in the survey. We believe that, in a traditional
ontext, we would have had more respondents since it would
ave been easier to personally contact potential respondents dur-
ng coffee breaks and social moments. However, the respondents
n our sample should be very motivated. Finally, we acknowledge
hat the views of XP2020 attendees may not necessarily reflect or
ccurately explain the feelings or reasoning of the participants in
he experiments.

Threats to construct validity. This kind of threat concerns the
uestions and scales used to assess the constructs. We designed
ur survey by using a standard approach and scales (Ciolkowski
t al., 2003). The design of our study also underwent a peer-
eview process—i.e., it involved the PC members of the XP2020
nsite-research Track.

. Final remarks

We studied whether, and in which phases, TDD influences
he affective states of developers in terms of pleasure, arousal,
ominance, and liking. We conducted a baseline experiment and
wo replications with participants from different contexts. We
nalyzed the data from these experiments both individually and
ointly, and performed a survey with people having experience
ith TDD to complement and explain the results from the ex-
eriments. The experiments and survey can individually pro-
ide limited insights, while the combination of their outcomes
20
can provide a substantial contribution towards understanding
the affective reactions of developers when using TDD. The most
important conclusions of the research presented in this paper are:

• The experience of developers with unit testing, applied in
a test-last manner, seems to be the most important mod-
erator, which: (i) causes more dislike towards TDD (as com-
pared to a non-TDD approach); (ii) causes more dislike when
implementing production code with TDD; and (iii) makes
developers using TDD more unhappy when testing produc-
tion code. In particular, the higher the experience with unit
testing applied in a test-last manner, the more negative the
affective reactions due to TDD. The results of our survey
provide further support for findings (i) and (iii).

• We observed that, when considering the subgroup of ex-
periments with undergraduates, the participants using TDD
liked significantly less testing production code. This seems
to be confirmed by the survey results.
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