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Abstract— Neurodegenerative diseases, as for instance 

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD), affect 

the peripheral nervous system, where nerve cells send the 

messages that control muscles in order to allow movements. Sick 

neurons cannot control muscles properly. Handwriting involves 

cognitive planning, coordination and execution abilities. 

Significant changes in the handwriting performance are a 

prominent feature of AD and PD. This work addresses the most 

relevant results obtained in the field of on-line (dynamic) analysis 

of handwritten trials by AD and PD patients. The survey is made 

from a pattern recognition point of view, so that different phases 

are described. Data acquisition deal not only with the device, but 

also with the handwriting task. Feature extraction can deal with 

function and parameter features. The classification problem is 

also discussed along with results already obtained. The paper 

also highlights the most profitable research direction.   

 
Index Terms— On-line Handwriting Analysis, Kinematics, AD 

assessment, PD assessment, Task analysis, Motor control. 

I. INTRODUCTION 

eurodegenerative disorders, such as Parkinson’s disease 

(PD) and Alzheimer’s disease (AD), affect the structure 

and functions of certain brain regions resulting in a 

progressive cognitive, functional and behavioural decline. 

Changes in the brain result in degradation of the performance 

of motor skills.  

A special role in the context of neurodegenerative disease 

assessment can be covered by handwriting. Cerebral cortex, 

basal ganglia and cerebellum are involved in learning and 

performing handwriting [92]; it is a complex activity entailing 

cognitive, kinaesthetic and perceptual-motor components. 

Handwriting problems can be related to the disease as well as 

to its severity, so changes in writing can be considered a 

prominent biomarker. For example, it is well-known that 

micrographia (an abnormal reduction in writing size) is 

typically associated with PD and it can be easily detected by 

conventional pen-and-paper tasks [40]. Dysgraphia (a 

progressive disorganization and degeneration of the various 
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components of handwriting) has been observed in patients 

presenting mild to moderate AD levels [51], [21], [27].  

 Several advances have already been made in the offline 

(static) domain [96] but, nowadays, online (dynamic) systems 

can be adopted. In this case, the trait is represented as a 

sequence {S(n)}n=0, 1,...,N, where S(n) is the signal value 

sampled at time n∆t of the writing process (0 ≤ n ≤ N), ∆t 

being the sampling period. The online case concerns the 

treatment of a spatio-temporal representation (see Fig. 1).  

 

 
Fig. 1. Dynamic handwriting (“” : pen-down; “•” : pen-up) 

 

The main advantage of on-line acquisition devices is their 

ability to acquire kinematics (dynamics) of the writing process 

which are lost in off-line systems. More specifically, dynamic 

features are: position (x,y), pressure over the writing surface 

(pad in the following), azimuth (i.e. angle of the pen in the 

horizontal plane) and altitude (i.e. angle of the pen with 

respect to the vertical axis). The movement of the pen can be 

recorded not only while the pen is on the writing surface (on-

pad movements), but also when the pen is in the proximity of 

the surface, i.e. in-air movements (see Fig. 2). The max height 

at which the pen tip is detected is typically in the range of 0.6-

1.0 cm depending upon the specific device adopted. 

 

 
Fig. 2. Dynamic acquisition (“” : pen-down; “•” : pen-up; black dots: on pad 

samples; red dots: on air movement samples) 

 

Studies on fine motor control in healthy and unhealthy people 

have been available so far, so that a growing research interest 

has arisen towards the possibility to automatically discriminate 

between impaired subjects and healthy controls (HC), based 

on the kinematic features [69]. The aim is to develop research 

in the direction of a Computer Aided Diagnosis (CAD) 

system. It must be underlined that these systems are not 

intended to replace doctors or to perform a self-diagnosis, but 

rather to provide a set of additional evidences to the medical 

staff to support the diagnosis.  
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This paper points out the most relevant research results 

related to the application of on-line handwriting analysis to the 

assessment of PD and AD disorders. The review is principally 

organized from a Pattern Recognition perspective, typically 

based on data acquisition, feature extraction and data analysis 

and classification. Therefore, the paper intends to: 

• Provide details about data acquisition, feature extraction 

and recognition applied to AD as well to PD; 

• Point out and discuss the main findings from the two 

different diseases; 

• Discuss open issues. 

The paper is organized as follow. Section II presents the main 

aspects related to the on-line data acquisition and Section III 

discusses the pre-processing and feature extraction phase. 

Section IV describes research activities concerning the data 

analysis and the classification phase and presents the main 

results. Promising research directions are reported in Section 

V, and the summary of the paper in Section VI.  

II. DATA ACQUISITION 

Different issues must be taken into account: participant 

recruiting, choice of the acquisition device and identification 

of the most appropriate handwriting tasks. Once all these steps 

have been completed samples can be collected within a 

dataset: currently available databases are described at the end 

of this section.  

 

A. Participant recruiting 

Three aspects can be typically addressed: 

1. Patients: severity of the illness in accordance with standard 

clinical test scores must be taken into account. The Unified 

PD Rating Scale (UPDRS) is the most commonly used 

scale in case of PD. It is based on interview and clinical 

observations most concerning motor evaluation [47]. 

Standard assessments of AD include cognitive and 

functional tests such as Mini-Mental State Examination 

(MMSE). It consists in a 30-point questionnaire including 

questions and problems in many areas ranging from 

orientation to time and place to registration recall [22]. 

2. Patients: whether the patient is ON/OFF medication. For 

example, studies involving PD have shown handwriting 

changes based on the level of treatment [20], [84].  

3. Healthy Controls (HC): a set of healthy people (controls) 

must be enrolled. In general elderly controls (EC) and 

young controls (YC) can be taken into account; however a 

fair comparison should consider demographic as well as 

educational characteristics. 

 

B. Acquisition Device 

A wide set of devices for data acquisition is available. In 

some situations the use of an electronic pen on a digital screen 

could be unusual or unfamiliar to patients, so writing with an 

ink pen on paper fixed to the tablet may be an option [69], 

[92]. Some “training” task to let the user familiarize with the 

tool can be also considered [88]. The main attributes acquired 

depends upon the specific tool, however, typically acquired 

parameters are: (x-y)coordinates of the pen position, time 

stamps, pen orientation (azimuth and altitude) and pressure. In 

air movements can be also considered taking into account the 

so-called button status, which is a binary variable (0) for pen-

up state (in-air movement) and (1) for pen-down state (on-

surface movement).  

 Electronic (smart) pens have been adopted as an alternative 

to tablets. In this case active sensors are within the pen and are 

able to capture position, acceleration and tilt angle of the pen, 

as well as pressure and vibration (generated in the refill during 

writing or drawing on a pad) and the pressure of the fingers 

holding the pen [55], [86]. 

 

C. Writing Tasks 

The writing process involves a complex feedback system 

and implicates the participation of several cognitive and motor 

processes. Acquisition tasks can be classified as follow.  

1. Simple Drawing tasks. Straight lines, spirals, meanders 

and circles have been frequently used for the evaluation 

of the motor performance in both PD and AD [20], [56], 

[72], [12]. In general all simple drawings have been used 

for trajectory, tremor, dimension (size), velocity and 

acceleration evaluations.  

2. Simple Writing tasks. Non-sense words containing one or 

more character repetitions have been used, see table 1 for 

details. Such characters are easy to write in a recursive 

and continuous way. Moreover, to better address the 

motor processes, their use minimizes the linguistic-

comprehension processes. The “e” and “l” characters 

both contain an up- and a down- velocity stroke. 

According to the Delta-Lognormal Kinematic Theory 

[62] of the handwriting process which “describes a 

stroke velocity profile as the output of a system made up 

of two neuromuscular systems, one agonist (acting in the 

direction of the movement) and the other antagonist 

(acting in the opposite direction)”, the “e” as well the “l” 

characters are constituted by just two velocity strokes. 

Moreover, the use of “l” and “e” involves the 

handwriting of the same character scaled in amplitude. In 

addition, simple words and short sentences have been 

also widely adopted (see table 1). Typically, 

words/sentences used in these tasks are chosen based on 

their simple orthography and easy syntax. In some 

situations the sentence contains words having a common 

“core” (e.g. “The leveler leveled all levels” [88]) in order 

to verify how a common pattern is modified with or 

without a prefix or a suffix. Sentences have been built by 

including words with ascendant and descendent traits 

(e.g. “g” and “l”). A sentence requires a high degree of 

simultaneous processing and may have a higher neuro-

motor programming load than a sequence of identical 

cuttings. It also offers the possibility to better evaluate 

the motor-planning activity between a character and the 

following one (in general a hesitation or pause between 

two characters or words could point out the necessity to 

re-plan the writing activity, while fluid writing can reveal 

the presence of an anticipated motor planning). A 

sentence allows the capturing of a large number of in-air 

movements between words [18], conversely a word 

could also be written without lifting the pen tip from the 

pad. It has been observed that AD patients, in order to 

proceed with the writing of a part of the word or of a new 
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word, need to come back on the previously written one 

and to “re-write” it, to some extent, in the air again. This 

aspect is important to evaluate patients with both the 

sequential programming engine and the competing 

processes altered [35]. Moreover, a sentence composed 

of more than one word allows the recording of the effect 

of fatigue during writing [16], [17]. Handwritten 

signatures have been taken into account [59], [3] since a 

signature conveys a lot of information about the signer 

related not only to the representation of the name and 

surname of the signer, but also to the writing system 

[58], [29]. Variations have been observed on global 

parameters (e.g. signature size) and on local ones related 

to longitudinal compression [95]. 

3. Complex tasks. In this case the handwriting task is part of 

a more complex task involving motor, cognitive and 

functional issues (see table 2). Van Gemmert et al. [88] 

were among the first to verify that PD patients are more 

vulnerable to a secondary task load than elderly or young 

controls. The handwriting task has been coupled with a 

simultaneous hearing and tone counting [8]. When a 

functional writing task, such as copying the details of a 

bank check into the appropriate places, is considered, the 

patient should be able to read the source field, locate the 

target field to be filled in and write the correct content 

there. These tasks are typically applied for the analysis of 

AD more than PD, since AD is primarily characterized 

by cognitive deficits. Very recently the Clock Drawing 

Test (CDT) has also been used [6], [25], [48]. CDT is 

able to reveal visual-spatial deficits: in some cases of 

dementia the deficit is evident from the early stages. 

CDT, as well as many other complex tasks, involves 

various neuro-psychological functions: auditory 

perception, auditory memory, abstraction capacity, visual 

memory, visual perception, visual-space functions, 

programming and execution capacity. Similarly, 

constraints on time (duration) and stroke dimension have 

been investigated [87], [89], as well as the use of visual 

feedback, in order to reach specific targets while writing 

[23], [83]. Verbal feedback (reminders to write bigger) 

have also been investigated [50]. 
 

D. Datasets 

Most research has been conducted on reduced sets of 

patients and HC. A brief description of the most consistent 

ones is here reported  (see table 3).  

The Parkinson’s Disease Handwriting Database (PaHaW) 

consists of multiple handwriting samples from 37 

Parkinsonian patients and 38 age- and gender-matched 

controls [14]. Tasks include words written in Czech (the 

native language of the participants). The main characteristic of 

the selected words is that they can be written without lifting 

the pen above the surface. A tablet was overlaid with a white 

template paper and a conventional ink pen was used. 

The original HandPD dataset comprises handwritten/drawn 

trials from healthy and PD people and was primarily designed 

for static analysis. The dataset was further extended for 

dynamic analysis and it contains data from 66 individuals (35 

healthy controls and 31 PD patients). The new extended 

version is simply called NewHandPD [55]. Handwritten 

dynamics were captured by means of a smart pen (BiSP).  

The ParkinsonHW [32] consists of 62 PD patients and 15 

HCs. Three types of handwriting tasks were considered: the 

Static Spiral Test (SST), the Dynamic Spiral Test (DST) and 

the Stability Test on a Certain Point (STCP). In addition, the 

images of the spirals drawn by the PD patients are included. In 

the SST test, three wound Archimedean spirals are displayed 

on the tablet screen and patients are asked to retrace the same 

spiral. In the DST test, the Archimedean spiral appears and 

disappears at certain time intervals. In the STCP, a red point is 

displayed in the middle of the screen and subjects are asked to 

hold the pen on the point without touching the screen. 
 

TABLE I  

SIMPLE WRITING TASKS 

Pattern Reference 

“eeee” 
Cobbah et al. [10]; Contreras-Vidal et al. [11]; 

Poluha et al. [64] 

“elel” Gangadhar et al. [24]; Smits et al. [77] 

“ellhell” Teulings et al. [83] 

“hello hello” Caligiuri et al. [9] 

“l” “le” “les” Drotár et al. [13]; [14], [15], [16], [17], [18] 

“lilili” Van Gemmert et al. [87] 

“lll” Bidet-Ildei et al. [5] 

“llll” 

Cobbah et al. [10]; Contreras-Vidal et al., [11]; 

Oliveira et al. [50]; Poluha et al. [64]; Slavin et 

al. [75]; Teulings et al. [82]; Ünlü et al. [86]; 
Van Gemmert et al. [87], Senatore et al. [73]; 

“lln” Bidet-Ildei et al. [5]; Van Gemmer et al. [89] 

“Die Wellen schlagen 

hoch” 
Siebner et al. [74] 

“Ein helles grelles 
Licht” 

Lange et al. [41]; Tucha et al. [84] 

“en liesje leerde 

loesje lopen” 
Ponsen et al. [65] 

“lektorka” 
“nepopadnout” 

“porovnat” 

Drotár et al. [13], [14], [15], [16], [17], [18] 

“mamma” Impedovo et al. [31] 

“The leveler leveled 
all levels” 

Van Gemmert et al. [88] 

“Tramvaj dnes už 

nepo-jede” 
Drotár et al. [13], [14], [15], [16], [17], [18] 

writing own name Rosenblum et al. [69] 

Handwritten 

Signature 
Pirlo et al. [59], Zhi et al. [95] 

 
TABLE II  

COMPLEX TASKS 

Task  Reference 

“The leveler leveled all levels” 

written under four different 
conditions 

Van Gemmert et al. [88] 

Adapt the size of a drawing to a 

given (displayed) input 

Fucetola et al. [23]; Teulings et 

al. [83] 

Constraints on time (duration) and 
stroke dimension 

Van Gemmert et al. [89]; Van 
Gemmert et al. [87] 

Loop drawing while tone-counting Broeder et al. [8] 

Bank-check field copying 
Rosenblum et al. [69]; Werner 

et al. [92] 

Address, phone number, grocery list, 

details of a check, the alphabet 

sequence and paragraph copying 

Rosenblum et al. [69]; Werner 

et al. [92]; Garre-Olmo et al. 

[25]  

Clock Drawing 
Garre-Olmo et al. [25]; Müller 
et al. [49] 
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  The ISUNIBA [59] dataset contains handwritten trials 

collected from 41 people: 12 HC and 29 AD patients. Each 

participant was requested to write the word "mamma" (i.e. 

Italian of “mom”) over different recording sessions. The 

choice of the word mom, identical to all the authors, is related 

to the importance of this word, and to the figure associated 

with it. This word, in addition to being often one of the first 

words spoken by individuals, is also repeated with high 

frequency by subjects in an advanced state of AD.  

EMOTHAW (EMOtion recognition from HAndWriting and 

draWing) has been recently developed to investigate 

emotional states. It does not involve PD and/or AD patients, 

but tasks adopted are typically used in studies devoted to PD 

and AD [43]. The dataset could be useful for comparison 

aims. 
TABLE III 

DATASETS 

Dataset 

Name 
Size 

Acq. 

Device 
Tasks Reference 

PaHaW 
37 PD 
38 ED 

Wacom 

Intuos 

4M 

Spiral drawing, 
repetition of “l”, 

“le”, “les”, 

“lektorka”, 
“porovnat”, 

“nepopadnout”, 

“Tramvaj dnes už 
nepo-jede” 

Drotár et al. 
2013 [14] 

NewHandPD 
31 PD 

35 ED 
BiSP 

Spiral and 

meander drawing 

Pereira et al. 

2016 [55] 

ParkinsonHW 
62 PD 

15 ED 

Wacom 

Cintiq 

12WX 

Spiral drawing 

and stability test 

Isenkul et al. 

2014 [32] 

ISUNIBA 
29 AD 

12 ED 

Wacom 
Intuos 

Touch 

5 

Repetition of 

“Mamma”  

Impedovo et 

al. 2013 [31] 

EMOTHAW 
 

129 HP 

Wacom 

Intuos 
4 

Copying of: 
pentagons, house 

drawing; writing 

four words; loop 
drawing; CDT; 

writing of a 

sentence 

Likforman-

Sulem et al. 
2017 [43] 

 

III. PRE-PROCESSING AND FEATURE EXTRACTION 

Raw data acquired by the device are generally enhanced by 

means of standard signal processing algorithms: filtering, 

noise reduction and smoothing. Well-known techniques could 

be applied, however, their use must be circumstantial. In fact 

they could result in the loss of important information. For 

example, the normalization of the duration of the signal (in 

order to have all S(n) sequences of the same length) is 

sometimes applied for signature verification [28]. However, in 

this domain it would lead to the loss of information related to 

the time spent by each participant in performing a specific task 

(that is a discriminative feature). Given this consideration, it is 

quite usual to not adopt pre-processing steps (e.g. [92]). 

Two types of features can be considered: function features 

and parameter features. When function features are used the 

handwritten trials are characterized in terms of a time function 

whose values constitute the feature set. When parameter 

features are used the trial is characterized as a vector of 

elements, each one representative of the value of a feature. In 

the latter case the indexes of vector are not referred to a time 

sequence. 

A. Function Features 

The most common function features are: position in terms 

of (x,y) coordinates, time stamp, button status, pressure, 

azimuth, altitude, displacement, velocity and acceleration. 

Some of these features are directly conveyed by the 

acquisition device, whereas others are numerically derived 

(see Table 4 for details). It is not surprising to note that the 

most used are velocity (speed) and acceleration: the former 

conveys information related to the slowness of PD and AD 

movements, while changes on the acceleration profile are able 

to reveal tremor. Displacement, Velocity and Acceleration can 

be computed as reported in table IV, as well as they can be 

computed along the x or y direction. In order to evaluate in-

air-based features, coordinates, azimuth, altitude, velocity, 

acceleration, azimuth and altitude can be considered for 

timestamps having the button status b(t)=0. It has been 

recently demonstrated that in-air features conveys very useful 

information [48], [49]. In fact it has been showed that the in-

air time in writing is related to functional decline, as well as to 

difficulties in planning an activity [68]. In order to have an 

idea of the potentialities of in-air movements see fig. 3: 

handwriting fluidity is much more evident in in-air 

movements than on-the-pad ones.  

 

 
(a) 

 
(b) 

Fig. 3. On-pad (black) and in-air (gray) movements. (a) belongs to a HC, (b) 
belongs to a suspected case. Both users were required to write an invented 

signature. 

 

B. Parameter Features 

In this case the trait is characterized as a vector of elements, 

each one representative of the value of a feature. Parameter 

features are obtained by means of transformations upon the 

function features (see Table 5 for details). To some extent also 

features used in the off-line domain could be used [54].  

Some parameters have been specifically inspected and/or 

designed with the aim of performing AD and PD analysis. 

Amongst others two interesting parameters are the total time 

of the pen movement in-air and on-the-pad while performing a 

task. In fact, it has been observed that these values increase, as 

task length and difficulty increase while other values (e.g. 

pressure) remain constant. When a copy task is considered, the 

in-air time reflects the hesitations of AD patients.  

Parameters can be evaluated at global (task level) or even at 

local level (typically at stroke level). Although a formal 

definition of the velocity stroke has been reported in the 

above, in AD and PD works,  stroke is generally considered as  
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Fig. 4. On-pad strokes of the word in fig. 2. 

 

TABLE IV 
FUNCTION FEATURES 

Feature Name  Source Description Disease Reference 

Position Device Position in terms of s(x,y) AD, PD 
Drotár et al. [13], [14], [15], [16], [17], [18]; 
Pereira et al. [55]; Rosenblum et al. [69]; Werner et 

al. [92] 

Button Status Device 
Movement in the air: b(t)=0  
Movement on the pad: b(t)=1 

AD, PD 
Drotár et al. [13], [14], [15], [16], [17], [18]; 
Rosenblum et al. [69]; Werner et al. [92] 

Pressure  Device 

Pressure of the pen on the pad (levels of pressure 

depend upon the acquisition device and are generally 
normalized [0,1]) 

AD, PD 

Drotár et al. [13], [14], [15], [16], [17], [18]; Garre-

Olmo et al. [25]; Ünlü et al. [86]; Rosenblum et al. 
[69],  

Azimuth  
 

Device  
Angle between the pen and the vertical plane on the 
pad 

AD, PD 

Drotár et al. [13], [14], [15], [16], [17], [18]; 

Rosenblum et al. [69]; Ünlü et al. [86]; Werner et 

al. [92] 

Altitude Device  Angle between the pen and the pad plane  AD, PD 

Drotár et al. [13], [14], [15], [16], [17], [18]; 

Rosenblum et al. [69]; Ünlü et al. [86]; Werner et 

al. [92] 

Displacement Calculated 

It can be computed as 𝑑𝑖 =

{
√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)22 , 1 ≤ 𝑖 ≤ 𝑛 − 1

𝑑𝑛 − 𝑑𝑛−1,                                                   𝑖 = 𝑛
 

PD Lange et al. [41] 

Velocity Calculated It can be computed as 𝑣𝑖 = {

𝑑𝑖

𝑡𝑖+1−𝑡𝑖
,    1 ≤ 𝑖 ≤ 𝑛 − 1

𝑣𝑛 − 𝑣𝑛−1,            𝑖 = 𝑛
 PD, AD 

Broderick et al. [7]; Broeder et al. [8]; Caligiuri et 
al. [9]; Cobbah et al. [10]; Eichhorn et al. [20]; 

Fucetola et al. [23]; Garre-Olmo et al. [25]; 

Impedovo et al. [31]; Kotsavasiloglou et al. [38]; 
Oliveira et al. [50]; Pirlo et al. [59]; Ponsen et al. 

[65]; San Luciano et al. [70]; Schröter et al. [72]; 

Slavin et al. [75]; Smits et al. [77]; Tucha et al. 
[84]; Werner et al. [92]; Yu et al. [94] 

Acceleration Calculated It can be computed as 𝑎𝑖 = {

𝑣𝑖

𝑡𝑖+1−𝑡𝑖
,    1 ≤ 𝑖 ≤ 𝑛 − 1

𝑎𝑛 − 𝑎𝑛−1,            𝑖 = 𝑛
 PD, AD 

Broderick et al. [7]; Cobbah et al. [10]; Eichhorn et 

al. [20]; Fucetola et al. [23]; Garre-Olmo et al. [25]; 
Oliveira et al. [50]; Tucha et al. [84]; Van Gemmer 

et al. [89] 

 
TABLE V 

PARAMETER FEATURES 

Feature Name  Description Disease Reference 

Task duration Total time duration of the performed task 

AD Schröter et al. [72]; Werner et al. [92]; Yan et al. [93] 

PD 
Cobbah et al. [10]; Drotàr et al. [13]; Smits et al. [78], Teuligngs 

[81] 

Dimension  
Length and/or height of the trait in terms of samples 

or pixels both at task and at stroke level 

AD Werner et al. [92] 

PD Drotàr et al. [13], [16], [17];Smits et al. [78] Rosenblum et al. [69] 

in-air time 
Total time of the pen in-air movements while 

performing a task 

AD Schröter et al. [72]; Werner et al. [92]; Yan et al. [93]  

PD Drotár et al. [15]; Rosenblum et al. [69] 

Normalized Time 
in-air 

Time in-air normalized on the total task duration PD Drotár et al. [18]  

On-the-pad time Total time of the pen on-pad  
AD Schröter et al. [72]; Yan et al. [93], Werner et al. [92] 

PD Drotár et al. [15], [17], [18]  

Normalized Time 
on-the-pad 

Time on-the-pad normalized over the total task 
duration 

PD Drotár et al. [15], [18] 

In-air/on-the-pad 

ratio 

Ratio of the total time of the pen in-air movements 

over the on-the-pad movements 

AD Yan et al. [93] 

PD Drotár et al. [15], [17] 

Stroke Number Number of strokes within a task AD Schröter et al. [72]; 

NCV 
Number of changes of velocity. (NCV has also been 

normalized on the duration of the task/stroke) 

AD Yan et al. [93] 

PD Cobbah et al. [10]; Drotár et al. [13], [15], [16], [17], [18]  

NCA 
Number of changes of acceleration. (NCA has been 

also normalized on the duration of the task/stroke) 

AD Yan et al. [93] 

PD Cobbah et al. [10]; Drotár et al. [13], [15], [16], [17], [18]  

NCP 
Number of changes of pressure. (NCP has been also 

normalized on the duration of the task/stroke) 
PD Drotár et al. [17], [18] 

Entropy Shannon or Rény operators applied on (x,y)  PD Drotár et al. [16], [17]; López et al [45] 

Energy Teager-Kaiser energy or conventional energy PD Drotár et al. [16], [17]; 

NLOGnorm Number of log-normal components  AD Impedovo et al. [31], Pirlo et al. [59], Van Gemmert et al. [91]; 

EMD Empirical mode decomposition  PD Drotár et al. [16] 
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a single component of the handwritten trait which is connected 

and continuous: a stroke is the sequence of samples between 

two consecutive pen-downs and pen-ups on the pad (see fig. 

4). The number of strokes per second can be considered to be 

representative of the handwriting frequency: in AD patients a 

significantly low writing frequency has been observed [35]. 

Jerk (which characterizes PD) can be measured in terms of 

Number of Changes in Acceleration (NCA) over time per 

stroke and it is often taken into account with the Number of 

Changes in Velocity (NCV). These features are also typically 

normalized on a per-feature basis. In order to obtain complete 

statistical representation of the available function features, 

max, min, means, standard deviation, range and median have 

been considered (e.g. vmax, prange, etc.).  

Tremor and irregular muscle contractions introduce 

randomness to the movements: entropy and energy have the 

potential to describe “noise” in the handwriting process. 

Entropy- and energy- based features have been calculated 

starting from the (x,y) coordinates, adopting well-known 

Shannon and Rény operators. Recently a metric named 

Normalized Velocity Variability (NVV) has been introduced 

[38]: low-level control of opposing muscular systems occurs 

in terms of milliseconds, while conscious control of movement 

cannot be at the same frequency. Similarly, Empirical Mode 

Decomposition decomposes a signal within finite and a small 

number of components able to reveal information regarding 

the most oscillating (high-frequency) part of the signal [16]. it 

is quite evident that although there are many other frequency 

analysis techniques (e.g. Fourier and all the related discrete 

transforms, etc.), these do not seem to have been still 

investigated within this field.  

Features based on the kinematic theory of rapid human 

movement have also been considered by adopting the Sigma-

Lognormal model to represent the information of both the 

motor commands and timing properties [59]. This model has 

also been adopted to study and model children’s movement 

[19] and to differentiate between children of different school 

levels [21], as well as for synthetic handwritten gesture 

generation [2]. 

Many of the above reported parameters have been 

normalized, based on the total time duration of the task or 

stroke.  

Finally, in order to reduce data dimensionality and to select 

the most discriminating features, well known feature selection 

schema have been adopted: Mann-Whitney U-test [16] and 

Relief algorithm [16], [95]. 
 

IV. DATA ANALYSIS AND CLASSIFICATION 

The aim of this section is to point out relations between the 

tasks, features and main findings observed in the literature. 

For the sake of simplicity and clarity the results are discussed 

separately for PD and AD 

 

A. Parkinson’s Disease  

1) Handwriting and PD: insight 

PD is usually diagnosed by the first motor synptoms : in 

particular slowness [7], [9], [65], [77], [83], [88], [57], 

reduction in amplitude of repeated actions (bradykinesia) and 

micrografia [8], [23], [46], [56], [65], [77], [87], [89], [44], 

[90], [89], tremor and rigidity are observed [7], [38], [56], 

[79], [88], [12], [42]. PD patients, if compared to controls, 

write smaller letters, apply less pressure and require more 

performance time. 

Phillips et al. [56] adopted a simple zig-zag drawing: results 

revealed that patients had more difficulties in producing 

smooth movements rather than in controlling stroke length or 

duration. This result is confirmed by the one obtained in [83], 

where users were asked to produce handwriting modifying 

speed and dimension. Similar results (reduced length, velocity 

and height) have been mostly observed also in other different 

tasks [5], [10], [65], [77]. However it must be underlined that 

not all the mentioned characteristics (micrographia, slowness, 

longer time duration, etc.) have been simultaneously observed 

during any task. Just for instance [5] did not observe 

micrographia or reduction in letter size. However, in the latter 

case, the result could be related to the reduced length of the 

adopted pattern (“lll” and “lln”), in fact micrographia have 

been generally observed over longer words or within 

signatures or sentences [89]. In this direction, a unique result 

has been obtained on non-western languages (that can be 

written horizontally as well as vertically from top to bottom): 

a decrease in size was observed only in the horizontal 

direction [46]. Regarding micrographia, two recent studies [5], 

[46], seem to confirm it may be tied to the control of the 

extension of the wrist. Moreover, the “Λ” drawing task was 

considered [7]: the drawing of the shape was requested to be 

performed from left to right and vice versa. This specific task 

requires movements in four directions: PD patients showed 

significantly lower mean velocity, lower acceleration, and 

higher jerk scores than controls.  

Handwriting in PD patients seems to be mainly impaired in 

force amplitude [80], [83]. Constrains on time (duration) and 

stroke dimension have been investigated by imposing different 

dimension targets while writing [87], [89]: a matching to the 

imposed targets has been observed only to a certain extent, 

inadequate matching to the required target (in time and 

dimension) has been related to acceleration inefficiencies.  

Visual feedback has been taken into account [23], [83], in 

order to inspect the capability of adjusting the size of a 

drawing given an input. In PD patients, the effect was 

particularly pronounced when they were requested to draw 

smaller than normal, even if, with practice, improvements 

were observed. Overall, these findings support the opinion that 

PD patients may have specific difficulty adjusting to a change 

in gain (or discrepancy) between visual and kinaesthetic 

feedback. Visual (target points or examples) and verbal 

feedback (reminders) have been used to verify whether 

micrographia could migrate to normal amplitude [50], as well 

as to study perception and its usage [82]. It has been shown 

[50] that the stroke dimension can be improved and that 

improvements persist also shortly afterwards in free 

handwriting (without feedback), however, the increase in the 

amplitude obtained is due more to an increase in movement 

time rather than in peak velocity. Practice can help PD patients 

to partly overcome bradykinesia and to improve the control of 

repetitive forces [80].  

Anticipation can be referred to the ability of the handwriting 

motor system to plan forthcoming strokes of the writing 

sequence while the movement of the current stroke is being 

executed [34]. The anticipation capability has been 
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investigated observing that patients are able to write the 

pattern without pauses between characters [5], [41]. On the 

other hand, in different and more complex tasks (involving not 

only handwriting), difficulties in anticipating the upcoming 

component of the movement have been observed [76].  

The effects of medication (levodopa, dopamimetic and/or 

neurostimulation) on handwriting have also been investigated. 

The evidence is that kinematic handwriting analysis is useful 

for monitoring the effect of medication [20] in terms of 

parameter changes as well as tremor reduction. It has been 

observed [11], [64] that handwriting changes across the 

medication cycle [10], [41], [84]. The velocity measure was 

able to distinguish drug-induced PD patients from HC with a 

high level of accuracy [10]. High-frequency neuro stimulation 

of the subthalamic nucleus has been considered: during 

stimulation handwriting movements became faster and 

smoother, moreover a reduction in micrographia has been 

observed [67], [74]. 

Even if PD mainly affects the motor system, also cognition, 

planning and execution impairments can be observed in the 

early stages and, in some situations, prior to diagnosis [33]. So 

far, it has been positively tested the hypothesis that PD 

patients are more vulnerable to a moderate level of secondary 

task load than elderly or young controls [88]. Different 

conditions were considered: PD patients had increased 

movement duration, increased total pause duration and 

increased jerk. More recently similar results have been 

observed by combining the writing task with (simultaneous) 

tone counting [8]. 

The use of an electronic biosensor pen named BiSP [86] 

highlighted that, amongst the other, the most discriminating 

feature is based on the difference between the controlled 

writing pressure in x-y direction and the tilt tremor of the pen. 

 

2) Handwriting and PD: the challenge of a CAD 

Although studies on the correlation of handwriting and PD 

have been available for a while, only in the last 5-6 years this 

evidence has been applied to obtain a Computer Aided 

Diagnosis (CAD) system. These studies have also highlighted 

new findings. Comparing results obtained by different 

researchers is quite difficult due to the different datasets used 

and the different experimental set ups adopted. 

The first result to be pointed out deals with a task to be used 

for assessment. It has been verified that, on the PaHaW 

dataset, the use of all tasks gives better classification 

performance (PD vs. healthy) in terms of accuracy, if 

compared to the use of a single writing task [13]. The use of 

only some specific tasks has also been investigated. In 

particular the Archimedean spiral drawing seems to be useful 

for discrimination purposes due to tremor evaluation. 

Similarly, on another dataset, the use of just this task was able 

to achieve a sensitivity of 0.86 [70]. Very recently also the use 

of a simple horizontal line drawn at a constant velocity has 

been inspected: accuracy of 88.63% was achieved [38]. An 

excellent accuracy (97.50%) has been obtained in the 

following two tasks: writing one’s own name and copying an 

address [69].  

Although an in-air feature set seems, under certain 

conditions, to outperform an on-surface one [14], better results 

can be achieved by combining both according to a feature 

selection scheme [15], [69].  

Among the other on-surface features, pressure has been 

demonstrated to be very useful [18], [70]. It has been shown 

that pressure-based features outperform other kinematic 

features [18]. However, it must be underlined that there is not 

a specific feature set able to clearly outperform the other 

independently of the considered writing task. 

In addition to conventional kinematic handwriting 

measures, entropy, signal energy and EMC gave the best 

accuracy in the PaHaW dataset [16].  

For classification purpose, Support Vector Machine – SVM 

with a Radial Basis Function Kernel [13], [14], [15], [16], 

[17], [18], Discriminant Analysis [69], Convolutional Neural 

Network [55] and Naïve Bayes [38] have been successfully 

used. Table 6 summarizes the results. 

Finally, as well as feature selection, it has been observer that 

a specific task could be better than another for discrimination 

aim. This has been the case of the guided spiral drawing which 

has provided the best classification results if compared to 

other tasks [95]. This result suggest to combine feature 

selection along with task selection. 

 Figure 5 shows a timeline of the milestones in the PD CAD 

development. 

 

B. Alzheimer’s Disease  

1) Handwriting and AD: insight 

AD firstly results in cognitive rather than motor 

degradation. In fact, handwriting tasks have generally been 

coupled with cognitive ones [72], [75], [92], [94]. So far it has 

been observed that in the mild phase of the disease there are 

few possible lexico-semantic problems in the speaking process 

which worsen with the progression of the disease. A similar 

trend can be observed in written tasks: AD is associated with 

deterioration in fine motor control and coordination [63], [93]. 

This result has been confirmed also in different writing tasks. 

The popular “llll” pattern under different writing conditions 

(including visual feedback) has been considered: AD patients’ 

strokes had a less consistent length, duration and peak velocity 

than the controls [75]. A similar result has also been obtained 

in the circle drawing task: movements of AD patients have 

been observed to be significantly less automated, accurate and 

regular than the controls [72]. 

The use of the delta-lognormal [62] and the sigma-

lognormal [52] representation of handwriting generation 

showed that the maximum speed value is almost regular in 

healthy persons while it is greatly reduced at the beginning of 

the disease and completely lost in the advanced stage [31]. A 

similar result has been achieved taking into account a wide set 

of tasks dealing with fine movements (straight lines, cursive-

connected loops, a single circle, continuous circle drawing). 

Results showed that slowness and irregularity of movement of 

AD patients were not present in all tasks [94]. Impairment was 

not found in the straight lines and cursive-connected loop 

tasks. AD patients exhibited difficulties in drawing due to a 

reduced ability in wrist and finger coordination.   

In general, AD patients produce slower, less smooth, less 

coordinated and less consistent handwriting movements than 

their healthy counterparts.  
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2) Handwriting and AD: the challenge of a CAD 

Werner et al. [92] adopted a discriminant analysis to 

determine which feature would be the best predictor of group 

membership (AD vs. EC). Temporal measures (especially in-

air time) were higher in the AD patients group, while the mean 

pressure was lower. Although velocity and pressure remained 

relatively stable across the different tasks, the temporal and 

spatial measures increased with the difficulty of the task: the 

increase was reflected mainly in the in-air measures.  

Handwritten signatures have been demonstrated to be 

useful. Velocity-based features related to the sigma-lognormal 

model of the kinematic theory of rapid human movement have 

been adopted [59]. In this case, a Bagging CART 

(classification and regression tree) classifier was able to 

achieve an EER (Equal Error Rate) of 3%.   

Garre-Olmo et al. [25] were among the first to adopt 

copying tasks (including two and three dimensional figures) 

and the CDT. Several kinematic features were used in order to 

classify participants (by means of a discriminant analysis). 

Additionally, energy and complexity were also considered. 

Classification performance was strictly dependent on the task 

considered. Moreover, function features were able (in general) 

to provide better accuracy results. Regarding the CDT, it has 

been shown that in-air features are the most consistent for 

discrimination purposes [49]. 

Müller et al. [48] referred to the copying of a three-

dimensional house. A Receiver Operating Characteristic curve 

(ROC) and logistic regression analyses were used. Once again, 

in-air time was significantly different between the groups (AD 

patients vs. Controls), as well as on-surface time and total time 

(i.e., in-air plus on-surface time).  

Details are reported in table 7. Figure 6 shows a timeline of 

the milestones in the AD CAD development.  

 
TABLE VI 

PD CAD SYSTEMS 

ABBREVIATIONS: T = TABLET; ST = SHEET OF PAPER FIXED ON THE TABLET; EP = ELECTRONIC PEN: AUC = AREA UNDER THE ROC; ACC=ACCURACY 

Reference Participants Device Tasks  Features Classifier Results 

Drotár et al. 

2013 [13] 

Dataset PaHaW 

On-surface features SVM Radial Basis 

Function 

ACC = 79.4%  

Drotár et al., 
2013 [14] 

16 In-air selected features SVM Radial Basis 
Function 

ACC = 80.09% 

Drotár et al. 

2014 [15] 

On-surface features + in-air features SVM Radial Basis 

Function 

ACC = 85.61% 

Drotár et al., 

2015 [16] 

Entropy, signal energy, empirical mode 

decomposition (on-surface) + feature selections 

SVM Radial Basis 

Function 

ACC = 88.1% 

Drotár et al., 

2015 [17] 

Stroke height/width, duration, writing length, 

NCP, Entropy, Energy 

SVM Radial Basis 

Function  

AUC = 89,09% 

Drotár et al., 
2016 [18] 

Kinematic and pressure features + feature 
selection 

SVM Radial Basis 
Function 

ACC = 82,5%  

Rosenblum et 

al., 2013 [69] 

20 PD 

20 EC 

ST Name writing, 

copying an address 

On-surface + in-air features Discriminant 

Analysis 

ACC = 97.5%  

Pereira et al., 
2016 [55] 

14 PD 
21 EC 

EP Spiral and meander 
drawing 

Pressure, grip pressure, refill pressure, tilt and 
acceleration 

Convolutional 
Neural Networks 

ACC = 87.14%  

Kotsavasilogl

ou et al., 

2017 [38] 

24 PD 

20 EC 

T Line drawing Position, Normalized Velocity Variability, 

Velocity’s Standard Deviation, Mean Velocity, 

Entropy 

Naïve Bayes ACC = 88.63%  

Zham et al. 

[95] 

31 PD 

31 EC 

T Sentence and 

characters writing, 

Archimedean guided 
spiral  

Displacement, pressure, average speed,, Rate at 

which pen tip changes position and velocity, max 

acceleration, + feature selection 

Naïve Bayes AUC = 93,3% 

Archimedean 

guided spiral 

 
TABLE VII 

AD CAD SYSTEMS 
ABBREVIATIONS: T = TABLET; ST = SHEET OF PAPER FIXED ON THE TABLET;  

Reference Participants Device Tasks  Main features Classifier Results 

Werner et al., 

2006 [92] 

22 AD 

41 EC 

ST Copying: a phone number, a grocery 

list, the details of a check, the 
alphabet sequence and a paragraph 

Size, duration (on-paper time 

and the in-air),  pressure, mean 
velocity, mean pressure 

Discriminant 

Analysis  

ACC = 72%  

Pirlo et al., 

2015 [59] 

29 AD 

30 EC 

T Handwritten Signature Velocity profiles Bagging CART EER= 3% 

Garre-Olmo 
et al., 2017 

[25] 

23 AD 
17 EC 

ST Dictated sentence writing, free 
sentence writing, two and three 

dimension drawing, clock drawing  

Pressure, time, velocity, 
acceleration, energy, 

complexity 

Discriminant 
Analysis 

ACC = from 
63.5%  to 100% 

depending on 

the task 

Müller et al., 

2017 [48] 

20 AD 

20 EC 

T Three-dimensional house copying in-air time, on-surface time, 

total time  

Logistic 

Regression 

ACC = 0.925 

Müller et al., 

2017 [49] 

20 AD 

20 EC 

T Clock drawing test in-air time, on-surface time, 

total time 

Logistic 

Regression 

ACC = 87.2% 

 
. 
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Fig. 5. Timeline of the milestones in the PD CAD development. 

 

 
Fig. 6. Timeline of the milestones in the AD CAD development. 

 

V. FUTURE RESEARCH DIRECTIONS  

Much evidence linking PD and AD to handwriting/drawing 

is available. Although some specific open issues have been 

already pointed out, in the following the most relevant are 

briefly discussed. 

A. Dataset 

Many researchers have adopted databases/datasets built by 

collecting data themselves. These datasets are different in 

tasks, size (in general very reduced), acquisition devices, etc.. 

The lack of a big dataset involving a statistically significant 

number of patients, as well as, a set of significant tasks, 

greatly limits research development. None of the datasets 

currently available provide meta-data that could be useful to 

perform a deep analysis and to support CAD development 

establishing stage of the disease, the medical treatment (if 

any), educational information as well as many other factors 

(risk factors, contour conditions, etc.). It must be underlined 

that there is the lack of research on non-western  languages, on 

the other hand this would be of great interest since scripts have 

many pictorial elements could convey useful information [85]. 

Acquisition sessions should be repeated over time in order 

to study the evolution of the disease and its effects on the 

handwriting (the task should be repeated ideally every 6-9 

months).  

Datasets should also include “suspected” patients.  

Unfortunately, developing such a benchmark database is a 

time-consuming and expensive process. It involves not only 

scientific and technical issues, like those related to acquisition 

devices and protocols as well as the statistical relevance of the 

population of the individuals involved, but also legal aspects 

related to data privacy and intellectual property rights.  

B. Multi modalities 

Acquisition tasks should include not only handwriting 

and/or drawing but also finger taps [36], [53]. Just think of the 

daily use of smartphones and the connected potentialities. 

From this point of view a new research direction could be the 

investigation of the evolution of keystroke and touch 

dynamics. The combination of handwriting with other 

biometrics should be also considered, since it has been showed 

the possibility to have diseases diagnosis by means of speech 

[71], [39], gait [1], eye movements [4], [66] and gesture. This 

will reinforce the overall accuracy. In order to include gesture, 

the use of a camera or a kinect could be considered during the 

writing phases [27]. This would result in a system in which the 

two modalities are referred to the same action. The recording 

of the voice would require the use of a microphone and the 

assessment of some specific tasks designed for the aim. 

The use of multiple modalities would result within a 

complete CAD framework.  

C. Features 

Many features have been considered to date. Some of them 

are directly conveyed from the handwriting recognition task, 

some others are able to better describe tremor or other 

characteristics connected to the diseases. Even if a set of more 

than two hundred features has been in general evaluated, there 

is a wide number of well-known features still not considered: 

Fourier-based and more in general transform based. At the 

same time some new specifically devoted features could be 

also designed and based on a specific task, as for instance a 

distance metrics for the guided spiral drawing task [95].  

Feature selection has been considered taking into account  

different “general purpose” strategies [16], [18], [95]: e Mann-

Whitney U-test, Relief algorithm, etc.. Also in this case there 

is a plethora of other well-known techniques could be 

considered, as well as, specifically designed schema. It is our 

opinion that feature selection should be coupled with task 

selection, in fact many researchers have found, in other 

application fields, that a set of features is better than another 

for a specific task [29]. Feature evaluation/selection could also 

be moved to a per-user or per-class (to be defined) or per-zone 

perspective. In other words, given a specific task, a set of 

features could be used in order to distinguish healthy vs. non-

healthy, another one to classify stages of the disease. The 

situation could be completely different if another handwriting 

task would be considered.  

D. Classification 

It is worth noting that up to date the classification problem 

has been considered as a binary  one [14], [15], [16], [17], 

[18], [49], [92]: i.e. healthy vs. non-healthy. This is quite 

restrictive. The classification challenge should consider 

different stages of the disease. The subsequent steps would be 

the one in which HC are classified between healthy and those 

that have a certain probability to be exposed to the disease 

risk. To this aim, stability/complexity analysis could be 

considered, in order to reveal the most relevant regions of the 

patterns [58], [29].  

Even if multiple task are available, up to date, the 

classification has been performed on a lumped feature vector 

containing features belonging to the whole set of tasks. More 

sophisticated (and probably performing) schema could be 

investigated and based on multiple classifiers [37] also 

considering feedback learning [30], [61]. In the case of 

measurement level fusion, score normalization must be 

considered [60]. 

E. Implementation 

The main advantage of a CAD system based on dynamic 

handwriting analysis is probably it is a non-invasive 

methodology so that it has a very high acceptability by final 

users. Nevertheless its implementation can be considered to be 

low cost in terms of hardware since just a professional tablet is 
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required. The system could make available to doctors at 

hospital, however also at home use could be considered. This 

last scenario has sense if we consider some handwriting task 

to be performed for “rehabilitation” or exercise purposes. In 

this case the system would be able to trace the course of the 

disease. Finally, if we consider the development of an app able 

to work with keystroke and touch dynamics more than 

handwriting, then probably it could be in the next generation 

of our mobile devices. 

 

VI. SUMMARY 

 Handwriting is a good candidate as a biomarker for the 

assessment of AD and PD. From this point of view, this paper 

has provided a comprehensive overview of the literature 

dealing with the application of on-line handwriting analysis to 

the assessment of the mentioned diseases from a pattern 

recognition perspective based on data acquisition, feature 

extraction, data analysis and classification. The main findings 

have been pointed out and discussed and many more research 

efforts have been made on PD, so that many findings are quite 

clear. Promising research has been developed on AD.  
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