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Artificial intelligence (AI) is rapidly becoming the pivotal solution to support critical judgments
in many life-changing decisions. In fact, a biased Al tool can be particularly harmful since these
systems can contribute to or demote people’s well-being. Consequently, government regulations
are introducing specific rules to prohibit the use of sensitive features (e.g., gender, race, religion)
in the algorithm’s decision-making process to avoid unfair outcomes. Unfortunately, such
restrictions may not be sufficient to protect people from unfair decisions as algorithms can still
behave in a discriminatory manner. Indeed, even when sensitive features are omitted (fairness
through unawareness), they could be somehow related to other features, named proxy features.
This study shows how to unveil whether a black-box model, complying with the regulations, is
still biased or not. We propose an end-to-end bias detection approach exploiting a counterfactual
reasoning module and an external classifier for sensitive features. In detail, the counterfactual
analysis finds the minimum cost variations that grant a positive outcome, while the classifier
detects non-linear patterns of non-sensitive features that proxy sensitive characteristics. The
experimental evaluation reveals the proposed method’s efficacy in detecting classifiers that learn
from proxy features. We also scrutinize the impact of state-of-the-art debiasing algorithms in
alleviating the proxy feature problem.

1. Introduction

The Cambridge Dictionary defines discrimination as the act of “treating a person or particular group of people differently, especially in
a worse way from the way in which you treat other people, because of their skin color, sex, sexuality, etc.”.! Recently, various regulations
have been designed to face the discrimination problem. For instance, Article 21 of the EU Charter of Fundamental Rights defines
the non-discrimination requirements: “any discrimination based on any ground such as sex, race, color, ethnic or social origin, genetic
features, language, religion or belief, political or any other opinion, membership of a national minority, property, birth, disability, age or sexual
orientation shall be prohibited”.? In 2015, the United Nations General Assembly set up the Sustainable Development Goals (SDGs) or
Global Goals, a collection of 17 interlinked global goals designed to be a “blueprint for achieving a better and more sustainable future
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for all”.® Most of the SDGs are somehow related to the discrimination problem, such as no poverty, zero hunger, gender equality, and
reduced inequality. The discrimination problem is well-known and recognized in the financial domain where, for example, the decision
to approve or deny credit has been regulated with precise and detailed regulatory compliance requirements (i.e., Equal Credit
Opportunity Act,* Federal Fair Lending Act,> and Consumer Credit Directive for EU Community®). However, these laws were set to
prevent discrimination in human decision-making processes and not in automated ones, such as those exploiting Machine Learning
(ML) or, more generally, Artificial Intelligence (AI) systems. The EU Commission, in the wake of the GDPR’ (i.e., a regulation to
safeguard personal data), seeks to regulate the use of Al systems with the “Ethics Guidelines for Trustworthy AI” and more recently
with “The Proposal for Harmonized Rule on AI”. The regulated characteristics are various (e.g., technical robustness, privacy, data
governance, transparency, accountability, societal and environmental well-being), and the European legislature deems adopting
non-discriminatory Al models crucial. Therefore, the financial domain is the perfect workbench to test these regulations. Indeed,
financial services are considered high-risk Al applications on the European Al risk scale (the levels are: minimal, limited, high, and
unacceptable risk). As a consequence, a financial AI model must demonstrate fairness concerning sensitive characteristics to protect
the social context in which it operates.

Since unfair treatment is strictly related to discriminatory behavior, fairness can be seen as the antonym of discrimination.
Unfortunately, finding a strict and formal definition of fairness is challenging, and the subject is still under debate. Mehrabi,
Morstatter, Saxena, Lerman, and Galstyan (2021) proposed a definition that could fit the financial domain and its discrimination-
derived risks. They defined fairness as “the absence of any prejudice or favoritism towards an individual or a group based on their inherent
or acquired characteristics”. Another relevant aspect of fairness is highlighted by Ekstrand, Das, Burke, Diaz, et al. (2022) that refer
to unfairness when a system treats people, or groups of people, in a way that is considered “unfair” by some moral, legal, or ethical
standard. The exciting aspect is that, in that case, “fairness” is related to the normative aspects of the system and its effects. For
this work, the counterfactual fairness as defined by Pitoura, Stefanidis, and Koutrika (2022) is particularly relevant. The intuition, in
this case, is that an output is fair towards an entity if it is the same in both the actual world and a counterfactual world where the
entity belongs to a different group. Causal inference is used to formalize this notion of fairness. This definition inspired the design of
our model. From a geometrical perspective that considers how a decision model works, Dwork, Hardt, Pitassi, Reingold, and Zemel
(2012) say that items that are close in construct space shall also be close in decision space, which is widely known as individual
fairness: similar individuals should receive similar outcomes. In contrast to individual fairness, Deldjoo, Jannach, Bellogin, Difonzo,
and Zanzonelli (2022) define group fairness that aims to ensure that “similar groups have similar experiences”. Typical groups in
such a context are a majority or dominant group and a protected group (e.g., an ethnic minority). Following this overview, some
critical aspects of this work emerged: the legislation, the counterfact, and the group. More specifically, the legislation is the primary
motivation behind this work, the counterfactual generation is the strategy we exploited for detecting unfairness, and the group is the
subject of discrimination we want to catch. Although system designers train a model without any discriminatory purpose, several
studies demonstrated that using Al systems without considering ethical aspects can promote discrimination (Bickel, Hammel, &
O’Connell, 1975; Corbett-Davies, Pierson, Feller, Goel, & Hug, 2017; Dressel & Farid, 2018). Moreover, while the financial domain
regulations strictly prohibit using sensitive characteristics for decision-making, some researchers defend their usage and believe
the model should avoid unfair treatments (i.e., active bias detection) (Elliott, Fremont, Morrison, Pantoja, & Lurie, 2008; Ruf &
Detyniecki, 2020). Nevertheless, only avoiding using sensitive features for training AI models does not guarantee the absence of
biases in the outcome (Agarwal & Mishra, 2021). Indeed, there could be features in the dataset that can represent an implicit
sensitive feature. In this study, we name these independent features as a proxy features for the sensitive one. For instance, education,
smoking and drinking habits, pet ownership, and diet can be proxy variables for the feature age. The relationship between proxy
and sensitive features generally depends on multicollinearity, namely a highly linear relationship between more than two variables.
Unfortunately, non-linear relationships are more challenging to detect.

This investigation relies on the “Fairness Under Unawareness” —or “blindness” Pitoura et al. (2022)- definition (i.e., “an algorithm
is fair as long as any protected attributes are not explicitly used in the decision-making process” (Chen, Kallus, Mao, Svacha, & Udell,
2019)). The choice of this definition is a logical consequence of current regulations. Indeed, like for other high-risk applications,
the law dictates that Al applications in the financial domain cannot use sensitive information.

This work investigates a strategy to detect decision biases in a realistic scenario where sensitive features are absent, and there
could be an unknown number of proxy features. We propose to tackle this challenging task by designing a system composed of
three main modules. The first module encapsulates the classifier to analyze, named the outcome classifier. This predictor, as
regulations suggest, is trained without any sensitive features. The second module trains a separate classifier, named sensitive feature
classifier, on the same features to predict the sensitive characteristics. The third module calculates the minimal counterfactual
samples, i.e., variants of the original sample, by modifying the values of non-sensitive features to obtain a different outcome with
the outcome classifier. Finally, the sensitive feature predictor classifies the generated samples to check whether the samples do still
belong to the original sensitive class. If this does not occur, the outcome predictor is biased, and its unfairness can be quantified.

To better explain the idea behind our approach, let us introduce a simple example regarding the loan granting process. Suppose
our goal is to assess whether our loan classifier discriminates against women. In this example, the protected class is women, and

United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017
https://www.ftc.gov/enforcement/statutes/equal-credit-opportunity-act
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/4/iv-1-1.pdf
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008L0048
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679


https://www.ftc.gov/enforcement/statutes/equal-credit-opportunity-act
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/4/iv-1-1.pdf
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008L0048
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

G. Cornacchia et al. Information Processing and Management 60 (2023) 103224

the sensitive feature is gender. The outcome classifier is a whatsoever state-of-the-art classification model trained without gender.
The sensitive feature classifier will then distinguish men from women by exploiting the other non-sensitive features in the dataset
(e.g., car type, job, education). An event triggers the system’s operation: a woman uses the outcome classifier to obtain a loan,
and her request is rejected. Therefore, the counterfactual module modifies the values of her non-sensitive attributes until the loan
is approved (e.g., increasing income, reducing the loan duration). The sensitive-feature classifier then classifies the new approved
counterfactual sample. Is she still classified as a woman by the system? What could we say if the features that approved the loan
are the same that classified her as a man? The decision model may still be biased and thus unfair, and since it does not use sensitive
features, this is due to proxy features.

Overall, this study proposes an approach for detecting bias in machine learning models using counterfactual reasoning, even
when those models are trained without sensitive features, i.e., in the case of Fairness Under Unawareness. This setting could be
summarized as outlined by Mehrabi et al. (2021): “An algorithm is fair as long as any protected attributes are not explicitly used in the
decision-making process”. This research aims to investigate the presence of bias in an algorithm using counterfactual reasoning as an
effective strategy for bias detection and evaluate if different counterfactual strategies have dissimilar efficacy in detecting biases. In
detail, with this study, we intend to answer the following research questions:

» RQ1: Is there a principled way to identify if proxy features exist in a dataset?

» RQ2: Does the Fairness Under Unawareness setting ensure that decision biases are avoided?

» RQ3: Is counterfactual reasoning suitable for discovering decision biases?

» RQ4: Is our methodology effective for discovering discrimination and biases? Are there limitations in its application?

To provide an answer to the previous RQs, we performed an extensive experimental evaluation on three state-of-the-art datasets,
broadly recognized as datasets containing Social Bias. The remainder of the paper is organized as follows: Section 2 provides an
overview of the most relevant research in the fields of fairness and counterfactual reasoning, Section 3 provides the preliminaries of
the work, while Section 4 describes the methodology. Section 5 introduces the experiments, while results are discussed in Section 6.
Conclusion and future work are drawn in Section 8.

2. Related work

This study presents a strategy for detecting bias in machine learning models using Counterfactual Reasoning. This section aims
to provide the reader with an adequate background, introducing the most relevant works in Fairness and Counterfactual Reasoning
research fields.

2.1. Fairness, fairness under unawareness, and proxy features

In machine learning research, fairness is a well-studied topic with a considerable body of knowledge to draw from Ashokan and
Haas (2021), Pedreschi, Ruggieri, and Turini (2008) and Zhu, Hu, and Caverlee (2018). The first domains to take an interest in
the theme were Financial Services, Banking, and Health. In fact, due to the critical impact of decision-making in these domains
on people’s well-being, today, the use of sensitive characteristics is strictly prohibited. The decisional tasks, i.e., regression and
classification tasks with models deprived of sensitive features, took the name of Fairness Under Unawareness assessment. However,
companies and institutions must demonstrate the fairness and impartiality of their systems despite the absence of such sensitive
characteristics (Chen, 2018).

While designing the decision-making algorithm not to leverage sensitive information is simple, assuring the same accuracy as
before and demonstrating that the predictor is unbiased is another matter. In fact, for tasks like granting credit cards or approving
loans and mortgages, financial companies should collect and use sensitive features to ensure their tools are non-discriminatory. On
this point, the EU Commission proposes a conformity assessment before Al systems are put into service or placed on the market.® In
fact, their tools are subject to fair and trustworthy audit assessments to check their conformity. However, is a shallow check of the
input characteristics sufficient to determine that a predictor will not suggest unfair treatment? Even though the user does not provide
protected characteristics, the system could predict sensitive features from variables, i.e., proxy variables, that still represent protected
characteristics. The models that infer sensitive features from proxy variables are known as “probabilistic proxy models (Bureau,
2014; Chen et al., 2019)”.

Most of the approaches proposed in the literature for identifying proxy features rely on techniques capable of discovering mul-
ticollinearity between variables. If the correlation between two independent variables is 1 or —1, we have perfect multicollinearity
between them (Agarwal & Mishra, 2021). Methods for discovering multicollinearity are based on Linear Regression, Variance
Inflation Factor, and Pearson correlation coefficient (Yeom, Datta, & Fredrikson, 2018). However, the relationships may not be
linear. In that case, cosine similarity and mutual information are the most used approaches (Agarwal & Mishra, 2021). Elliott et al.
(2009) investigated, in their work, whether from customer characteristics such as name and geolocation information (e.g., residence
address) the information about the race can be inferred. Using a Bayesian classifier model, they demonstrated that first-name listings
might improve prediction estimates. In particular, they showed that in some Asian and black subgroups, first names tend to have

8 https://digital-strategy.ec.europa.eu/en/policies/regulatory- framework-ai
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low sensitivity. Conversely, imputing native American and multiracial identities from surname and residence remains challenging.
Chen et al. (2019) studied the relationship between proxy features and sensitive variables (i.e., geolocation and race). In their work,
bias seems to depend on the chosen threshold, suggesting an ad-hoc threshold estimation to produce fair thresholded classifiers and
probabilistic proxy models.

Fabris, Esuli, Moreo, and Sebastiani (2021) use a quantification approach to measure group fairness when sensitive features are
unknown. The advantage is that quantification-based estimates are robust to distribution shifts and do not allow the inference of
sensitive attributes at the individual-class level. Biswas and Mukherjee (2021) likewise employ quantification techniques. In detail,
they propose a mitigation model in which training and test population subgroups structurally differ. The proposed model, CAPE
(i.e., Combinatorial Algorithm for Proportional Equality), aims to minimize a peculiar loss to obtain a Proportional-Equality-fair
model.

The exposure of some groups on a geographic and demographic basis is also a problem that impacts the Recommender Systems
community. In this direction, there are some attempts to analyze and mitigate this type of issue. One possible solution is the re-
ranking strategy (Gomez, Boratto, & Salamd, 2022), to balance the items produced in a continent and the ranking of the items.
Another recent proposal is FairLens (Panigutti, Perotti, Panisson, Bajardi, & Pedreschi, 2021), a framework to discover the bias
of a generic Decision Support System model. The authors tested the approach in the medical domain. Interestingly, this strategy
involves human experts in analyzing misclassifications. Specifically, the expert describes which aspects of the impacted patients’
clinical history are responsible for the model error in the considered groups. It is essential to underline that the human expert, who
thoroughly analyzes potential fairness issues, plays a crucial role in the operational loop.

2.2. Counterfactual reasoning

Counterfactual Reasoning is an active and flourishing field in artificial intelligence research (Ginsberg, 1986; Miller, 2019). This
research was initially born to investigate causal links (Pearl, 1994), and today it can count on several contributions (Ferrario, 2001).
Most of them define and employ counterfactuals as a helpful tools to explain the decisions taken by modern decision support systems.
The underlying rationale is that some aspects of past events could predict future events. In detail, some studies focus on identifying
causality-related aspects to discover the link between the counterfactuals and the analyzed phenomenon (DeMartino, 2020).

Counterfactual Reasoning finds application in various fields. To summarize what we have briefly detailed before, machine
learning research has positively valued these contributions ranging from Explainable AI (Mothilal, Sharma, & Tan, 2020) to the most
recent counterfactual fairness measures (Joo & Karkkdinen, 2020; Kusner, Loftus, Russell, & Silva, 2017). Beyond the theoretical
aspects, Counterfactual Reasoning is extensively applied to interactive systems (Bottou et al., 2013; Cornacchia, Narducci, & Ragone,
2021a; Swaminathan & Joachims, 2015; Tavakol, 2020). Unfortunately, this important application showed some limitations. These
systems employ machine learning models that reflect the data they use for learning. Consequently, the same information influences
the reasoning, and the contribution of Counterfactual Reasoning could be limited or somehow biased. The explaining policy, coming
from Counterfactual Reasoning, exhibits a bias towards the implemented learning model. Researchers devoted considerable effort
to tackle this issue and proposed new models such as doubly robust estimators (Dudik, Langford, & Li, 2011).

Overall, even though limitations that need a solution, Counterfactual Reasoning is taking over Explainable Al and it is becoming
the de facto standard for explaining decisions taken by autonomous systems. In this respect, the European Union’s “right to
explanation” played a crucial role in arousing a further interest in this methodologies (Korikov, Shleyfman, & Beck, 2021). Indeed,
they are compliant with the regulation and easily interpreted by either a domain expert or a layperson (Sokol & Flach, 2019).

Decision support systems particularly benefited from these models. However, the more the application domain is vital, the more
the fairness problem emerges. For instance, the issue cannot be overlooked in sensitive domains such as justice, risk assessment,
or clinical risk prediction. This need promoted the most promising research in the Counterfactual Reasoning field to analyze
and mitigate this issue. Kusner et al. (2017) proposed a metric exploiting causal inference to assess fairness at an individual
level by requiring that a sensitive attribute not be the cause of a change in a prediction. Even though the proposed solution
and the involved methodologies differ from ours, the studies take the first steps from the same motivations. Pfohl, Duan, Ding,
and Shah (2019) further extended the metric for clinical risk assessment. They aim to mitigate the exposure of medical care
disparities due to bias implicitly embedded in data for historically underrepresented and mistreated groups. For what concerns
the risk assessment domain, Mishler, Kennedy, and Chouldechova (2021) put forward a similar working hypothesis. They propose a
counterfactual equalized odds ratio criterion to train predictors operating in the post-processing phase. They extend and adapt
previous post-processing approaches (Hardt, Price, & Srebro, 2016) to the counterfactual setting and employ doubly robust
estimators.

In contrast to the majority of the mentioned studies, our investigation aims to leverage a counterfactual generation tool to reveal
the presence of implicit biases in a decision support system. Interestingly, this motivation is similar to Bottou et al. (2013). In fact,
both aim to answer the question: “How would the system have decided if we had replaced some user characteristics?”. Beyond this
commonality, the two studies differ significantly. Indeed, they focus on measuring the fidelity level of the system and robustifying
the model. Instead, our study is in line with the goal of other investigations (Denton, Hutchinson, Mitchell, Gebru, & Zaldivar,
2019; Mikolajczyk, Grochowski, & Kwasigroch, 2021) that aim to use the counterfactual approach to uncover the bias present in
the dataset that plagues the predictive model itself.
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Table 1
List of the main notational conventions used in this document.
Notation Description
X A vector of values for non-sensitive features x =< x;,x,,...,x, >.
s A vector of binary values for sensitive features s =< s,,s,,...,s; >. When no confusion arises,
s is reported instead of s;
y A binary class value from the target domain for a single data point, with y € {0,1}
p A vector of values for proxy features, i.e., a subvector of x, with A(-) being an unknown
function s.t. h(p) =s;
» A binary class prediction value from the target domain for a single data point, with y € {0, 1}
5 A binary prediction value of the ith sensitive feature, with §; € {0,1}
fx) =y A binary classification function of the target variable y
fi(x) =3 A binary classification function of the sensitive variable s,
g(x) = C A function that, given a data point x, returns k counterfacts.
¢, €C, A counterfact of x. ¢, is a vector ¢, =<¢, .¢,,,....¢, >=Xzxe¢, with e being a perturbation

such that f(¢,)=1-f(x)=1-j.

2.3. Social, theoretical, and practical implications on information access systems

The UN Agenda 2030 for Sustainable Development sets out 17 Sustainable Development Goals, which are part of a broader
program of actions consisting of 169 associated targets to be achieved in the environmental, economic, social, and institutional
domains by 2030. Among them, there are ‘gender equality’, ‘reducing inequalities’, and ‘responsible consumption and production’
—i.e., goals 5, 10, and 12, respectively. As a consequence, current and impending regulations affecting high social impact tasks will
comply with the UN Agenda 2030. Among the others, the financial sector is a high-risk domain, as unethical use of AI can have
significant repercussions from a social point of view, such as for instance discriminatory access to credit. Several works attempted
to tackle the fairness problem or provide model explainability for tasks ranging from classification to loan recommendation (Chen,
2018; Cornacchia et al., 2021a; Cornacchia, Narducci, & Ragone, 2021b; Das et al., 2021). The “Fairness Under Unawareness” setting
(i.e., “an algorithm is fair as long as any protected attributes are not explicitly used in the decision-making process”) mitigated
the discrimination. However, the evaluation and the quantification of bias in a situation of “Fairness Under Unawareness” are of
worryingly little interest to researchers. The investigation at hand proposes a theoretical approach to identify the existence of bias
even when sensitive information is not exploited in the training of the machine learning model. The proposed approach is general
enough to neglect what kind of classifier is adopted under the hood and could be used in any classification task. The whole approach
could be practically very useful for any practitioner since it could be used as a black box that measures and returns several pieces
of information regarding the potential bias. Finally, the approach is designed to be a support tool for several kinds of Information
Access Systems. The prominent potential application of the proposed approach is in Conversational-Agent systems that rely on
lending recommendations (e.g., peer-to-peer lending) in which social bias may imply different access to credit. In that setting, the
proposed system sheds light not only on the features that are necessary to reverse the decision but also on the potential biases of
the decision maker. More generally, every Information Access System exploiting machine learning models that imply life-changing
decisions can use our methodology to assess the bias in the models.

2.4. Contextualizing our work

To the best of our knowledge, and quite unexpectedly, the idea of learning a classifier on sensitive features for discovering
biases is unexplored in the financial domain literature. Furthermore, given the regulator’s intervention, the concept of fairness under
unawareness has assumed a crucial role in financial decision-making systems. However, the research on detecting bias for models
trained in a fairness-under-unawareness setting is still in a very early stage. The experimental setup adopted in this investigation
rigorously follows the best practice proposed in the recent literature and complies with the regulations. Nevertheless, the study
shows that removing sensitive features from a decision support system does not guarantee a fair outcome. Concerning existing
state-of-the-art approaches, the analysis tackles the fairness theme in the financial domain and proposes a general approach to
identify implicit bias in a decision support system. Finally, instead of leveraging Counterfactual Reasoning to explain outcomes, the
approach exploits the causal link between the counter-facts and the prediction to reveal the otherwise unnoticed bias.

3. Preliminaries

This section introduces some useful notation that is extensively used in the rest of the paper. To ease the reading and for a
rapid understanding, the definition of protected groups has some commonalities with Chen et al. (2019), while some other aspects
necessarily diverge from it due to the different nature of the study. The notation used is further condensed in Table 1, while in
Table 2 we can find the list of acronyms used in the work.

In the following, we will refer to a set D, with |D| = m, of data points whose domain dom(D) is composed by a number n of
non-sensitive features and a number / of sensitive ones, i.e., |dom(D)| = n+ [. Given a data point d € D, we can represent it as the
concatenation of a vector x containing values of non-sensitive features and a vector s containing values for sensitive features.

Non-sensitive Features: We use x = (x|, x,, ..., x,,) to represent a vector of values for non-sensitive features in dom(D). The value
of x;, with 1 <i < n, can be categorical (set of discrete values) or numerical (set of continuous values).



G. Cornacchia et al. Information Processing and Management 60 (2023) 103224

Table 2
List of the most frequent and useful acronyms used in this document arranged in alphabetic order.
Context Acronym Meaning
Al Artificial Intelligence
CF Counterfactual
FAccT Fairness, Accountability and Transparency
Behavior FUU Fairness Under Unawareness
ML Machine Learning
SDG Sustainable Development Goals
XAI eXplainable Artificial Intelligence
AdvDeb Adversarial Debiasing
CAPE Combinatorial Algorithm for Proportional Equality
DiCE Diverse Counterfactual Explanation
DNN Deep Neural Network
Model LFERM Linear Fair Empirical Risk Minimization
LGBM Light Gradient Boosting Machine
LR Logistic Regression
SVM Support-Vector Machines
XGB eXtreme Gradient Boosting
DAO Difference in Average Odds
DEO Difference in Equal opportunity
Metric DI Disparate Impact
DSP Difference in Statistical Parity
AUC Area Under the Receiver Operative Curve

Sensitive Features: We use s = (s}, 55, ..., s;) to represent a vector of values for sensitive features in dom(D). When no confusion
arises, s is reported instead of s;. Without loss of generality, we assume the value of s;, with 1 <i <, as binary, i.e., s; € {0,1}.
Based on the value of s;, the advantaged group is referred to as privileged and associated with s; = 1, the disadvantaged group is
referred to as unprivileged and associated with s; = 0.

Target Labels: Given a target feature y € {0,1}, we use y* to represent the positive outcome y = 1 (the negative outcome is
associated to y = 0).

Proxy Features: Let p C x be a subset of x, and A(-) be a such that a(p) = s;, i.e., the value returned by h applied to the values
associated to the features in p is equal to the values associated to s;. We say that p is a set of proxy features for the sensitive
feature s;.

In practical terms, if we knew h(-), a set of proxy features could be used to predict a certain sensitive feature.

Outcome prediction: Let y € {0,1} be the prediction for a given data point. The notation = 1 denotes a favorable prediction
(e.g., loan application approved), while $ = 0 an unfavorable one (e.g., loan application rejected). Let f(-) be a function such that
fx) =7.

Sensitive Feature Prediction: Let §; € {0,1} be the prediction of the ith sensitive feature. The notation §; = 1 denotes the
prediction to belong to a privileged group, while §; = 0 denotes the prediction to belong to an unprivileged group.

Let f,(-) be a function able to predict the value of a sensitive feature given the value of non sensitive ones, i.e., f (x) = §;. Since
the set of proxy features p is unknown, we can use f(-) to predict the value of s,.

Counterfactual samples: Given a vector x and a perturbation ¢, we say that a vector ¢, = (c,,, ¢,,, ..., ¢, ) = X+€ is a counterfactual
of x if f(c;) =1— f(x) =1— ). We use the set C,, with |C;| = k, to denote the set of possible counterfactuals for x. A function g(x)
is used to compute k counterfactuals for x.

Our investigation focuses on unfavorable outcome predictions. Consequently, all the generated counterfactuals are associated with
a favorable f(c,) = 1. When no confusion arises, ¢ and C are reported instead of ¢, and C,, respectively.

4. Methodology

The fairness under unawareness setting (see Section 2.1) poses several challenges to the identification of discriminatory behaviors
performed by intelligent systems. On the one hand, the prohibition of exploiting sensitive features makes it extremely difficult
to guarantee fair treatment for the various categories of users. On the other hand, proxy features can be non-linearly correlated
with sensitive ones, thus making the commonly used statistical approaches useless. This section aims to define a model to identify
discriminatory behaviors put in place by applications that make a decision that impacts, in some way, users’ lives.

Fig. 1 depicts the principal components of our model, namely the decision-maker, the counter-fact generator, and the sensitive-feature
classifier. As a relevant case study, the model has been specialized in the financial domain, considering the tasks of predicting
loan-repayment default and individual income. However, its generality remains.

4.1. Decision-maker

The decision-maker is the key component of the decision support system. Even though the nature of the decisions can be
heterogeneous, the decision-maker implements a machine-learning algorithm trained using past human decisions. Although it does
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Fig. 1. The process of bias identification. The user’s characteristics feed the target decision-maker. If the classifier returns a negative outcome, the counterfactual
generator creates counterfactuals (CFs) to unveil how the user could achieve a positive outcome. A potential discriminatory behavior is identified if the CFs are
classified into another demographic group.

not use sensitive features in the learning phase, we assume the predictive model is not necessarily bias-free, thanks to current
regulations. This phenomenon could be due to proxy features.

To keep the approach as general as possible, to implement the decision-maker, we have chosen four largely adopted approaches
to tackle the classification task. As far as possible, we avoided domain-specific models, preprocessing steps, and operations, and
we relied on the general best practices that apply to a broader set of machine learning domains. Our choice was to sacrifice a
small quantity of accuracy (even though the performance remains highly competitive) to gain the generality of the approach. In
detail, we opted for Logistic Regression (LR), Support-Vector Machines (SVM), XGBOOST (XGB),’ and LightGBM (LGBM).!° LR
is a linear statistical model that predicts the probability of one event taking place through a linear combination of independent
variables. SVM is a pattern classification technique aiming to minimize an upper bound of the generalization error by maximizing
the margin between the separating hyperplane and data instances (Boser, Guyon, & Vapnik, 1992). We exploited LR and SVM’s Scikit-
learn'' implementation. XGB stands for eXtreme Gradient Boosting, and it implements gradient boosting machines guaranteeing high
computational speed and performance. XGB learns both classification and regression models employing gradient-boosted decision
trees. LGBM stands for Light Gradient Boosting Machine and uses an approach similar to XGB, thus favoring speed to robustness.
Since the two approaches are state-of-the-art solutions yielding the best results in many competitions, we considered them despite
their similarity.

4.1.1. Debiased decision-makers

To evaluate whether debiasing algorithms can reduce discriminatory behavior even in a “Fairness under unawareness” setting,
we also considered decision-makers that exploit debiasing approaches. The overall system is the same as the one depicted in Fig. 1.
This variation aims to assess whether debiasing models guarantee fair behavior and counterfactual reasoning can help discover
discrimination even when these models are chosen as decision-makers. The debiasing algorithms we chose to investigate are
Adverarial Debiasing (Zhang, Lemoine, & Mitchell, 2018) and Linear Fair Empirical Risk Minimization (Donini, Oneto, Ben-David,
Shawe-Taylor, & Pontil, 2018).

Adversarial debiasing. Zhang et al. (2018) propose an adversary framework for debiasing algorithms (AdvDeb). The model comprises
two elements: a target predictor and an adversary. The target label predictor consists of a Deep Neural Network that, given a general
input x, tries to predict the target label y. The adversary is a simple Neural Network that, fed by the predicted output of the DNN 5,
tries to predict the sensitive label s. The DNN and the Adversary Network (AN) are trained to optimize both their model weights,
W (for DNN) and U (for AN), by minimizing the losses Lp(J,y) and L 4(3, s), respectively. Lp(9, y) is the target discrimination loss
of the classification task, typically a CrossEntropy loss. L,(3,s) is the loss the adversary aims to maximize to predict the sensitive
label. To ease the understanding of the adversarial learning process, L,(8,s) is herein used with an opposite sign with respect to
the original paper, in which the adversary aims to minimize L ,(3, s).

mui/n Lp(.y) — [ mlf]ix PVOjVWLA(g,S)LP(f’» V) +aLly@,s) ] @

best-case loss L, = optimal prediction of the sensitive feature

robust classification against the prediction of the sensitive feature

The overall learning process resembles a min-max game in which the discriminator tries to minimize the loss of the predictor while
the adversary tries to maximize its utility (see Eq. (1)). The middle term (i.e., projy,, LA@,S)) limits the predictor from moving in
a direction that promotes the adversary’s loss reduction. For reproducibility, we adopt the IBM implementation available in the
AIF360'? framework.

9 https://github.com/dmlc/xgboost
10 https://github.com/microsoft/LightGBM
11 https://scikit-learn.org/
12 https://github.com/Trusted-Al/AIF360
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Linear fair empirical risk minimization. Donini et al. (2018) propose a method that applies a fairness constraint to the loss function
of an SVM classifier. In detail, they constrain the Hinge-loss to respect the “Equality of Opportunity” condition. The underlying
goal is to remove the discrepancy between the false-negative rates of the privileged and unprivileged groups. The fairness condition
is implemented by imposing an orthogonality constraint directly on the sample. Specifically, the sample vector is required to be
orthogonal to the vector formed by the difference between the barycenters of the positive input samples in the two groups. Let
W = U, = Uy D the difference between the two barycenter vectors of the privileged and unprivileged groups, respectively, and
let|u;| be the maximum valued feature in the vector, and x be a sample in the original space. The fairness-constrained representation
X is then calculated as follows:

u.
X =x;-x—~, je{l..i-li+l,...d} (2)
u;

with d being the number of features. In this study, to ensure the reproducibility of the results, the implementation provided by
the authors'® is used. Specifically, the reader can refer to the linear implementation of Fair SVM, named linear fair empirical risk
minimization (LFERM) therein.

4.2. Counterfactual generator

This study leverages the counterfactual reasoning approach to explore the decision-maker boundary in the feature space. Thanks
to the sample generation process, this strategy can ease the analysis of the decision boundary even though the decision-maker is
a black-box model. Moreover, the proposed model is utterly agnostic about the algorithm chosen as the decision-maker. The input
of the counterfactual generator is the same sample previously evaluated by the decision-maker. When the system takes a decision
adverse to the user (e.g., loan request rejected, income under a given threshold), the counterfactual generator is called in, and
it produces new samples that would lead to a favorable outcome, as we discussed in Section 3. Under the hood, it modifies user
characteristics following various strategies (e.g., increasing savings or changing education level). Each generated counterfactual
feeds the decision-maker, and all the counterfactuals that switch the decision outcome, e.g., granting the loan, constitute the input
of the next module of the system. For the sake of reproducibility and reliability, the counterfactuals are generated with an external
counterfactual framework. We opted for DiCE (Mothilal et al., 2020), an open-source framework developed by Microsoft.'* Mothilal
et al. (2020) built their framework to satisfy two fundamental requirements. The generated counterfactuals should be (1) plausible
and associated with actions that could be actionable by users and (2) diverse from each other. Both requirements fit the goals of
our work. The first ensures that generated counterfactuals are close to the original sample and thus realistic. The second guarantees
that they are all different, thus suggesting various strategies to solve the problem. The diversity requirement is fulfilled thanks to
determinantal point processes (DPP), commonly used in selection problems with diversity constraints (Kulesza & Taskar, 2012).

For the sake of completeness, we briefly introduce the DiCE counterfactual generation process using the notation adopted in this
study. Let x be a candidate sample, C, = {cl,¢2,...,ck} be a set of k candidate counterfactual samples, with k being the desired
number of counterfactuals, and f(-) being a predictor function, i.e., a machine learning model. The optimization function, the module
generates counterfactual samples on, is then the following:

k k
1 . i o
g(x) = argmin Z yloss(f(cl),y*) + ?1 Z dist(cl,x) — Aydppd(cl, ..., ) 3)
i=1

k .
CyoeensCy i=1

where yloss(-) is a metric (e.g., £,-loss, £,-loss, or hinge-loss) minimizing the distance between the predicted output of c; and the
desired y*; dist is a proximity function that quantifies the distance between ¢! and x; dppd(-) is the determinantal point processes
diversity, i.e., the determinant of the kernel matrix of the inverse distance between counterfactuals. More formally:

dppd = der(K), with Kjj= —— @
1+ dist(ck, c))
where dist in the previous equation denotes a generic distance metric between counterfactuals. Finally, 4, and 4, are hyperparam-
eters that balance the contribution of the distance and the diversity part, respectively.

DiCE offers several strategies for generating candidate counterfactual samples. We decided to use three different approaches:
Random, Genetic, and KDtree generation. The choice of these strategies allows (i) to assess whether it is possible to generate a
large enough number of counterfactuals from a sample; (ii) to investigate which strategy is most effective for our purposes, and (iii)
to find the most robust and valid method in generating plausible counterfactuals. The Random strategy randomly selects a set of
features to perturb and replace the original sample. The perturbation goes ahead until the counterfactual satisfies the requirement
f(cy) = y*. The KDtree strategy computes a tree-based distance between all the dataset samples; it chooses the samples that are close
to the original one and that switch the outcome prediction to y*. The Genetic strategy can start with a Random initialization or a
KDtree initialization and then iterates by generating new samples close to the original one that switches the outcome prediction to

s

y.

13 https://github.com/jmikko/fair ERM
14 https://github.com/interpretml/DiCE
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Fig. 2. An example of a loan-approval decision is analyzed through the model. Users’ features are taken as inputs of the decision-maker module that decides
whether the loan request is approved or not. The counterfactual generator creates new samples for all those with a negative outcome that would lead to approval.
The Sensitive-Feature classification module predicts the counterfactuals’ gender. If the predicted gender differs from the gender of the original sample, a warning
is raised.

4.3. Sensitive-feature classifier

The sensitive-feature classifier performs a classification of the sample generated by the counterfactual generator (that caused a
decision flip) into one of the sensitive categories. This component plays a crucial role in our methodology since it allows the system
to discover hidden discriminatory models. For each sensitive feature (e.g., gender, race, etc.), a classifier is thus learned. In Fig. 1, the
counterfactual sample that caused the flip becomes the input of the sensitive-feature classifier. If the sensitive-feature classification
predicts a category different from the one initially (i.e., before generating counterfactuals) associated with the sample (e.g., from
female to male), a bias in the decision-making process could occur. In fact, a change in the sensitive-feature classification means
that there are some non-sensitive features (whose values have been changed by the counterfactual generator) that allow the system
to recognize the counterfactual sample as belonging to the privileged class (i.e., male). Hence, the sensitive-feature classifier gives us
an indication of the existence of a function that links non-sensitive features to sensitive ones, namely a proxy feature.

4.4. The model at work

Fig. 2 exemplifies the operation of the model. In the depicted example, the system provides a preliminary decision to grant a
loan or not. The user profile is preprocessed and feeds the decision-maker. It determines whether to approve the user request or
not by analyzing her characteristics. Suppose the request is rejected (in the example, this is the case for users #2 and #3). The
counterfactual generator begins to craft counterfactuals by modifying the user characteristics. Concerning user 2, the counterfactual
generator reduces the education level and increases the capital gain. For user 3, it increases the education level and reduces the
capital gain. User 1 is not involved in the counterfactual generation step since its request has been accepted. The counterfactual
samples for users 2 and 3 feed the decision-maker. When the decision-maker returns a different outcome (i.e., we have a decision
flip from rejected to accepted), those samples are analyzed and classified by the sensitive-feature classifier. For simplicity, the
example reported only one classifier for all the sensitive characteristics. Behind the curtains, each sensitive feature has a dedicated
classifier. The classifier predicts the sensitive feature that could be different from the user’s actual sensitive feature. If a mismatch
occurs, it raises a warning since the counterfactual sample that received the loan approval is identified as belonging to another class
(e.g., another gender). The following section introduces a metric — “Counterfactual Flips” — to assess how often the counterfactuals
generated by a decision model represent individuals of another sensitive class. The metric intuitively gives an intuition of the
potentially discriminatory behavior of the model.

Definition 4.1 (Counterfactual Flips). Let x be a sample belonging to a demographic group associated with the sensitive feature value
s whose model output is denoted as f(x). Suppose the counterfactual generator produced a set C, of k counterfactuals with desired
y* outcome f (c;'() =y Vc; € C,, with i € {1...k}. The Counterfactual Flips indicate the percentage of counterfactual samples
belonging to another demographic group (i.e., f’ S(c;) # f,(x), with f(x) = s).

1 if fy(e)) # f,(x)

CFlips(x, Cy, f,(-)) = 0 if £.6e) = £.00)

where ]l(c;) =

ke
L) withe, <, ®
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Algorithm 1: Algorithm for model training and counterfactual generation

Input:

the Train and Test datasets D,,;,, and D,,,;, where D,..., = {X,rain> Virain> Strain}> @0 Dyosr = {05t Viests Stest }»
the target label Classifier = f(-),

the sensitive label Classifier = f,(-),

the classification loss Loss(-)
the number of train epochs Epochs,

the number of counterfactuals to be generated for each sample N,

the counterfactual generator g(-).
Result:

+ the set .A composed of tuples of objects related to the samples associated with a negative outcome (i.e., f(x) = 0),
belonging to an privileged group (i.e., s = 1), and correctly predicted to belong to the same sensitive class
G.e., f(x)=1),

« the set B composed of tuples of objects related to the samples associated with a negative outcome (i.e., f(x) = 0),
belonging to an unprivileged group (i.e., s = 0), and correctly predicted to belong to the same sensitive class

(.e., f,(x)=0).

Randomly initialize 6, for target output classifier f(-), and 6, for sensitive label classifier f,(-);
for epoch < 1 to Epochs do

Ajtrain’ ytrain’ Strain « Dtrain;

thrain - f(Xtrain);

strain « fs(Xtrain);

01 < argmin LOSS(yrm,-,,, ytmin);
61

92 «arg min Loss(strain’ Strain);
0,

ndfor
ord? € D,,,, do
FOINORRUIEPTOR
D« FxD);
80 « f(xOy;
Cyiy < gx®) with f(e,) = y*;
Scp < £, for &) € C;
if © = 0 then
if §0=1 A sV=1 then
| AU D, C. 90,59, 8¢ ) s
end
if §0=0 A sV=0 then
| BU XD, Cr, 9,50, 8¢ 1) );
end

I~ ¢']

end
endfor

The higher the CFlips value is, the more severe the discriminations between privileged and unprivileged groups are. To evaluate
the fairness of the models, we propose a Counterfactual approach to produce counterfactuals for each sample. For reproducibility
reasons, the framework adopted for the generation of the Counterfactual samples is DiCE (see Section 4.2) with three different
strategies: Random, Genetic, and KDtree generation. We first train the models for the target label binary classification task f(-),
i.e., the decision-maker. Analogously, we train the models for the sensitive classification task f,(-), i.e., the sensitive-feature
classifiers. The counterfactual module generates k counterfactuals for each original sample. Whether the sample is associated
with a negative outcome (i.e., f(x) = 0), it belongs to a privileged group (i.e., s = 1), and it is correctly predicted to belong
to the same sensitive class (i.e., f,(x) = 1), then the sample and its counterfactuals are added to the set A. Alternatively, if the
sample is associated with a negative outcome (i.e., f(x) = 0), it belongs to an unprivileged group (i.e., s = 0), and it is correctly
predicted to belong to the same sensitive class (i.e., f (x) = 0), then the sample and its counterfactuals are added to the set 5. In
detail, for each sample, a tuple of objects is stored, including: (i) the original sample x, (ii) the predicted target label f(x), (iii)
the sensitive feature of the sample as it is predicted by the dedicated classifier f(x), (iv) the set of counterfactual samples C,,
(v) and the predictions of the sensitive labels performed on the counterfactuals f,(c,) V ¢, € C,. The process is summarized by
Algorithm 1.

10
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Algorithm 2: Counterfactual Flips Evaluation

Input:
+ the number of counterfactuals to be generated for each sample N,
« the set .A composed of tuples of objects related to the samples associated with a negative outcome (i.e., f(x) =0),
belonging to an privileged group (i.e., s = 1), and correctly predicted to belong to the same sensitive class
(.e., f,(x)=1),
« the set B composed of tuples of objects related to the samples associated with a negative outcome (i.e., f(x) =0),
belonging to an unprivileged group (i.e., s = 0), and correctly predicted to belong to the same sensitive class

(.e., f,(x)=0).
Result:

» the vector priv of size N that contains averaged CFlips values, across all samples, of counterfactuals in A sorted in
descending order of similarity, as returned by the counterfactual generator. The ith element of priv is the average of
CFlips values considering i counterfactuals for all the samples.

+ the vector unpriv of size N that contains averaged CFlips values, across all samples, of counterfactuals in 5 sorted in
descending order of similarity, as returned by the counterfactual generator. The ith element of unpriv is the average of
CFlips values considering i counterfactuals for all the samples.

Initialize priv = {0,0,...,0}, and unpriv = {0,0,...,0};
for k < 1to Nop do
n, < 0;
for l; € A do
X0, s 90,89, 8¢y 1
n, < n,+ 1;
priv[k] < priv[k] + CFlips(x"", sorted(Cy»)[: k1,8¢cp[: k1);
end
priv(k] < priv[k]/n,;
Ny < 0;
for l:m,, € Bdo
X0, Ca. 3050 8cp < 1,5
Mypp < Mypp +1;
unpriv([k] < unpriv[k] + CFlips(x®, sorted(Cyi))[: k1,8¢p[: kD)
end
unpriv[k] < unpriv(k]/n
end

unp>

The sets set A and set B are evaluated using the counterfactual metric CFlips (see Eq. (5)). Specifically, the metric CFlips applies
for each tuple in A and B to all the counterfactuals therein. The CFlips values are then averaged to obtain an overall value for A
and B, respectively. The evaluation pipeline is graphically depicted in Fig. 3. The procedure can be repeated for different values of
k and the different counterfactual generation strategies. To efficiently compute the metric CFlips for several values of k, two vectors
(i.e., for A and B) of size k can be created to accumulate the CFlips values before averaging them. These vectors can be used to
plot how CFlips vary over the number of considered counterfactuals (see plots in Section 6). The optimized procedure is condensed
into Algorithm 2.

5. Experimental evaluation

This section details our experimental settings, designed to answer the research questions defined in Section 1. Two different
models are trained: on the one hand, we train a model for making decisions for a specific task (i.e., income prediction or loan
prediction), and on the other hand, we train the sensitive-feature classifiers to predict the sensitive group the samples belong to.

Specifically, we focus on the samples predicted as negative by the main task classifier. Next, we exploit counterfactual reasoning:
starting from these samples classified as negative, we aim to modify features to cause a flip concerning the final prediction
class (i.e., the prediction class goes from 0 to 1 by modifying one or more features). Subsequently, these new counterfactual
samples feed the classifier for the sensitive features to predict the demographic group they belong to. In this way, we check if
the counterfactual modifications have caused a flip concerning the sensitive group to which the sample belongs. The intuition here
is that counterfactual-generated data are more explanatory in showing the model unfairness resulting from proxy features. The
system’s fairness can be evaluated by analyzing, for each test sample, any existing correlations between the target classification task
and the protected classes inferred from counterfactuals.

11
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Fig. 3. Pipeline to detect bias, leveraging the proposed approach for a loan granting task. Mary, a woman, asks for a loan. Since the decision-maker operates in
a fairness under unawareness setting, Mary does provide her gender information. The decision-maker denies the loan to Mary. Due to the denial, the counterfactual
generator creates a group of seven potential profiles similar to Mary, who would have the loan request accepted. The Sensitive Feature Classifier reveals that
most (five) of the profiles correspond to male profiles. This insight is summarized by the Counterfactual Flips (CFlips) metric, which measures the ratio of the
counterfactuals identified as belonging to another demographic group. The pipeline resembles the evaluation workflow we applied for the German dataset (cf.
Section 5.1.2).

Table 3
Adult and German datasets characteristics.
(a) Adult
Samples n* Target Y=1
Train 40699 6 Income > $50,000
Test 4523 6 Income > $50, 000
(b) German
Samples n' Target Y =
Train 900 17 Credit score Good
Test 100 17 Credit score Good

*Number of non-sensitive features in the dataset.

5.1. Datasets and preprocessing

Experiments are conducted on three state-of-the-art datasets, used as benchmarks in several works (Balunovic, Ruoss, & Vechev,
2022; Das et al., 2021; Donini et al., 2018; Pedreschi et al., 2008). Despite their small dimension, as stated by Rossini, Croce,
Mancini, Pellegrino, and Basili (2020), these datasets are useful to evaluate fairness approaches because they represent real-world
problems and provide a wide range of attributes that can be used to develop ethical standards. These are Adult and German, two
real-world datasets used for income prediction and default prediction respectively. Now we provide a preliminary analysis of these
datasets.

5.1.1. Adult dataset

Adult’® is a popular UCI Machine Learning dataset extracted from the 1994 US Census database. The prediction task is to
determine whether a person earns more than 50K a year. The sensitive attributes consider for this dataset are gender which indicates
the sex of an individual, and marital status, whether an individual is married or not.

In the Adult dataset, there are other sensitive characteristics (i.e., age, relationship, and race). Since Fairness Under Unawareness,
the setting most coherent with current Al regulations, requires bereaving the dataset of sensitive information during training, we
decided not to use these features to learn the model. From the whole set of sensitive features we chose to investigate but not to
use in the training phase, only gender and marital-status as classic sensitive information for benchmarking debiasing models (Donini
et al., 2018; Guntzel, 2022; Oneto & Chiappa, 2020). As regards the non-sensitive features used for training the models, 6 out of
15 were used: education num, occupation, work class, capital gain, capital loss, hours per week. The remaining non-sensitive features
are filtered out because they show a high correlation with the sensitive features (Pearson’s correlation coefficient greater than
0.35). Furthermore, the feature work class is condensed into three classes: Private, Public, and Unemployed. We replace the categories
in work class Private, SelfEmpNotinc, SelfEmpInc, with Private, the categories FederalGov, LocalGov, StateGov, with Private, and the
category WithoutPay with Unemployed. This choice is taken to simplify the calculation of distances between counterfactual samples
and x samples (see Section 6.3). The Adult dataset is imbalanced, as shown in Table 4a. This can emphasize some biases (Donini
et al., 2018; Zemel, Wu, Swersky, Pitassi, & Dwork, 2013; Zhang et al., 2018). The target label income >= 50K is strongly
unbalanced towards the privileged class (male, married). More detailed statistics, including the number of samples, the sensitive
feature distribution, and the ex-ante statistical parity, are summarized in Table 3a, Table 4a, and Table 4c.

15 https://archive.ics.uci.edu/ml/datasets/adult
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Table 4

Overview of relevant dataset information, including sensitive feature distribution (a, b), name of privileged group
(a, b), ex-ante Statistical parity (a, b), sample distribution over the target class and sensitive feature in the form
of a confusion matrix (c, d).

(a) Adult sensitive feature distribution and ex-ante Statistical Parity

Sensitive-feature Frivileged Distribution’ ex-ante statistical parity
M Gender Male 0,675/0,325 0.199
S, Marital status Married 0,478/0,522 0.378

(b) German sensitive feature distribution and ex-ante Statistical Parity

Sensitive-feature Privileged Distribution ex-ante Statistical Parity

M Gender Male 0,690/0,310 0.075

fProbability distribution of the advantaged and disadvantaged group:

P(S, = 1)/P(S, = 0).

A priori Statistical Parity probability, based on Independence Statistical Criteria:
Py =1|8=0)-P¥=1]|S=0).

(c) Adult sensitive feature distribution over the target class income

Marital-Status Gender
s=0 s=1 s=0 s=1 Samples
Income y=0 2201 1201 1303 2099 3402
y=1 158 963 167 954 1121
Samples 2359 2164 1470 3053

(d) German sensitive feature distribution over the target class credit score

Gender
s=0 s=1 Samples
. y=0 11 19 30
Credit score y=1 20 50 70
Samples 31 69

5.1.2. German dataset

German'® is another popular UCI Machine Learning dataset extracted from a German bank loan approval history. Demographic
and financial characteristics of individuals who applied for a loan are collected in this dataset, along with the decision to grant them
a loan or not. The prediction task is the binary decision of approving a loan based on the probability of repaying it. The sensitive
characteristic take into account is gender. As for the Adult dataset, German contains other sensitive characteristics (i.e., age and race)
beyond those exploited in this study. Also, in this case, we do not include these features for learning the model for guaranteeing the
fairness under awareness setting. We exploit 17 non-sensitive features to train the predictive models (i.e., existingchecking, duration,
credithistory, purpose, creditamount, savings, employmentsince, installmentrate, otherdebts, residencesince, property, otherinstallmentplans,
housing, existingcredits, job, peopleliable, telephone). As for the Adult dataset, German is imbalanced (Donini et al., 2018; Zemel et al.,
2013; Zhang et al., 2018). Table 4b shows that the privileged group is overrepresented for both the sensitive features. Moreover,
the ex-ante statistical parity metric indicates that the advantaged target label (Y = 1) is strongly associated with the privileged
group (S; = 1) compared to the unprivileged group (.S; = 0), which confirms that the data is imbalanced and strongly biased. Useful
statistical details are reported in Table 3b, Table 4b, and Table 4d.

5.2. Evaluation metrics

The evaluation includes two different groups of metrics: accuracy-based and bias-based metrics. The accuracy-based metrics are
mainly based on the confusion matrix, which quantifies how many samples are correctly classified or misclassified for both the
negative and positive classes. For self-consistency, this section details all the considered metrics. Some are just recalled, reporting
the formulas. The others, used in cutting-edge fairness research, are described. The first metric is the Accuracy, which quantifies
the overall number of correct classifications over the predictions:

TP + TN ©)
TP +FP+ TN + FN

The Recall metric measures the number of positive correctly classified samples with respect to all the real positive ones:

Accuracy =

TP
Recall = — > _ 7
= TPy EN @

16 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Precision measures the ratio of samples correctly classified as positive over the ones classified as positive:

. TP
P = — 8
recision TP + FP (€3))
The F1 score is the harmonic mean between recall and accuracy:
Fl= 2 —» Precision - Recall ©)

LS Precision + Recall
Precision = Recall

The primary goal of the F1 score is to combine the precision and recall metrics into a single metric. Indeed, this metric is useful for
evaluating classification methods when dealing with imbalanced data. The Area Under the Receiver Operating Characteristic Curve
(AUQ) is a metric that measures the capability of a classifier to separate the positive class from the negative class correctly. It can
be formulated as follows:

Ymex- Lrex+ (I (7) < f(x*))

AUC =
X1~ +1Xx1*

where 1(-) = 1 if f(x7) < f(x¥) else 1(-) = 0; (10)

where X7 is the set of positive sample, X~ is the set of negative sample, f(-) is the result of model prediction, and 1(-) an indicator
function (Calders & Jaroszewicz, 2007).

To quantify the presence of bias in the decision of the two classifiers several fairness metrics were used that consider the
Independence and Separation statistical criteria. For the Independence statistical criteria, we used Difference in Statistical Parity (DSP)
and Disparate Impact (DI). DSP measures the difference between the probability that samples belonging to the privileged group and
to the unprivileged group are classified in a positive outcome class (Hardt et al., 2016). It is the equivalent of the difference between
the sum of the TP rate and FP rate of the privileged and unprivileged group (see Eq. (11)). A model is considered Fair w.r.t. DSP if
the measure is equal or, at least, very close to zero.

DSP=|PP =1|s=1)-PF = 1|s = 0)| = ‘(TPrate + FPrate,,;,) — (TPrate,,, ., + FPrate,,,.;,) a1

The latter, i.e., DI, measures the ratio between the probability that samples belonging to the unprivileged group and to the
privileged group are classified in a positive outcome class (Das et al., 2021). It can also be formulated as the ratio between the sum
of the TP and FP rate for each group (see Eq. (12)). A model is considered Fair w.r.t. DI if the considered measure is near the value
of one.”

priv pri U) unpriv

_ IP(? = 1|S = 0) _ TPrateunﬂriv + FPrateunpriU

DI

S = (12)
PY =1ls=1) TPrate,,,;, + FPrate

priv

For the Separation statistical criteria, we used Difference in Equal Opportunity (DEO) and Difference in Average Odds (DAO). The
former, i.e., DEO, measures the difference between the probability of instances in a privileged group and the probability of instances
in an unprivileged group being correctly classified in a positive outcome class (Hardt et al., 2016). The formulation of the DEO metric
is shown in Eq. (13).

DEO=|P@ =1|Y =1,s=1) - PP =1|Y = 1,5 = 0)( =‘TPrate — TPrate

priv unpriv (1 3)

The latter, i.e., DAO, measures the difference between the probability of instances in a privileged group and the probability
of instances in an unprivileged group being correctly classified in a positive outcome class, as DEO does. Furthermore, DAO also
considers the difference between the probability of instances in a privileged group and the probability of instances in a privileged
group being incorrectly classified in a positive outcome class. DAO gives a broader intuition of how much imbalanced the classifier
accuracy is between the two groups (Hardt et al., 2016). The formulation of the DAO metric is shown in Eq. (14).

‘IP(Y: Y =0,s=1)-PF = 1|Y=0,s=0)‘+)1P(1?=1|Y= Ls=1)-PF =1y =1,5=0)

2
— TPrate

DAO =

a4

+ ‘TPrate

2
In either case, for DEO and DAO, a model is considered fair if the measure is equal or, at least, very close to zero.

‘Fpratepriu - Fprateunpriu priv unpriv

5.3. Evaluation protocol and reproducibility

Dataset Splitting. The dataset was split with the random 90/10 hold-out method to partition train and test sets, with
stratification based on the target variable Y and the sensitive features S. For the Adult dataset, we have 40699 train samples and 4523
test samples (see Table 3a), and for the German dataset, 900 train samples and 100 test samples (see Table 3b). For reproducibility,
we used the Scikit-learn implementation for splitting with a random seed set to 42.'%

17 In an employment context in the US, the regulation of The Equal Opportunity Act is known as “80% rule” or as a “rule of thumb” for measuring disparate
impact (Das et al., 2021); DI value should be between 0.8 and 1.2
18 https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.train_test_split.html
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Table 5
Hyperparameter list, values and type for the classification models reported in this work.

Algorithm Hyperparameter Values Type
seed {42} Integer
penalty {11,12} String
tol {0.0001,0.00001} Float

—4+(2 i) -

Logistic Regression C {10 x" for i in range(1,21)} Float
fit_intercept {True, False} Boolean
class_weight { dict, balanced, None} String
solver {newton-cg, 1bfgs, liblinear, sag, saga} String
warm_start {True, False} Boolean
seed {42} Integer
C {0.1, 1, 10} Float

Support Vector Machines class_weight {balanced, None} String
gamma {scale, auto} String
kernel {linear, rbf, sigmoid} String
seed {42} Integer
min_child_weight {1, 5, 10} Integer
gamma {0.01, 0.1, 0.5} Float
learning_rate {0.1, 0.01, 0.001} Float

eXtreme Gradient Boosting max_depth {3, 5, 6} Integer
subsample {0.4,0.6,0.8,1.0} Float
colsample_bytree {0.6, 0.8, 1} Float
n_estimators {50, 100, 300,500} Integer
reg_alpha {0.1, 0.01, 0.02} Float
seed {42} Integer
learning_rate {0.1, 0.05} Float
num_leaves {3, 10, 30, 50, 100, 200} Integer

. . . reg_alpha {None, 0.01, 0.05, 0.1} Float

Light Gradient Boosting colsample_bytree {0.6, 0.8,1} Float
max_depth {-1, 3, 5, 8, 10} Integer
reg_lambda {None, 0.01, 0.02, 0.03} Float
n_estimators {50, 100, 300} Integer
seed {42} Integer
adversary_loss_weight {0.01, 0.05, 0.1} Float

. L. num_epochs {50, 70, 150, 250, 500} Integer

Adversarial Debiasing batch_size {64, 128, 256, 512} Integer
hidden_units {64, 128, 256} Integer
number_of layers {132 Integer

. . - . seed {42} Integer

;?;;if:goﬁmpmal Risk C {0.01, 0.1, 1} Float

kernel {linear} String

2AIF360 implementation of Adversarial Debiasing does not allow to change the number of layers.

Decision-Maker Hyperparameter Tuning and optimization. The target label classifiers, i.e., LR, SVM, XGB, and LGB (see
Section 4.1), have been tuned using a grid search strategy.'® For hyperparameter tuning and validation, the train data was further
split using a k-fold cross-validation strategy, with the number of folds set to five. The best models hyperparameter has been chosen
to optimize the Area under the ROC curve metric (AUC) since AUC indicates how well the classifier can separate the positive from
the negative class (see Eq. (10)). For reproducibility, the list of explored hyperparameter values is reported in Table 5.

Debiased Decision-Makers Hyperparameter Tuning and optimization. The Debiasing classifiers, i.e., AdvDeb and LFERM
(see Section 4.1.1), have been tuned using the same evaluation protocol, with a grid search for the hyperparameter values and a
5-fold cross-validation strategy. Conversely, in this evaluation, the best models have been chosen to optimize AUC and Fairness with
an overall metric that considers both:

AUCgpg = AUC - (1 — DAO) (15)

It is straightforward noticing that any other Fairness metric could replace DAO. In this work, DAO is chosen to balance fairness in
terms of correct predictions for negative and positive samples. The list of explored hyperparameter values is reported in Table 5.

Sensitive Feature Classifier Hyperparameter Tuning and optimization. The sensitive label classifiers, i.e., XGB (see Sec-
tion 4.3), are tuned using the same approach, exploiting a grid search exploration'® for hyperparameter values and a 5-fold
cross-validation strategy. Due to the imbalanced nature of the datasets concerning the sensitive classes, the models optimizing
the F1 score are chosen (see Eq. (9)). Explored hyperparameter values are shown in Table 5.

19 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Counterfactual generation. For the sake of reproducibility, the generation of counterfactual samples makes use of DiCE, as
discussed in Section 4.2. To avoid the results depending on a single counterfactual generation strategy, we considered three different
strategies, i.e., Random, Genetic, and KDtree. For the Random strategy, the seed has been set to 42, the posthoc sparsity parameter
to 0.1, and the posthoc sparsity algorithm to linear search. For the Genetic strategy, we set the initialization to kdtree, the proximity
weight to 0.2, the sparsity weight to 0.2, the diversity weight to 5, the categorical penality to 0.1, the counterfactual generation loss
to hinge-loss, the feature weights to inverse Mean Absolute Deviation (MAD), the posthoc sparsity parameter to 0.1, the posthoc sparsity
algorithm to binary search, and the max iterations to 500. For the KDtree strategy, we set the sparsity weight to 1, the feature weights
to inverse Mean Absolute Deviation (MAD), the posthoc sparsity parameter to 0.1, and the posthoc sparsity algorithm to linear search. For
each sample in the test set, an overall number of 100 counterfactuals was requested (see Algorithm 1). For reproducibility reasons,
we use all the previously listed default parameter values of the DiCE tool, except for the posthoc sparsity algorithm set to binary search
in the Genetic strategy for speeding up the search due to the expensive experimental time.

Distance between counterfactuals and original samples. To assess the quality of the counterfactuals generated with the
various strategies, the distance vector between the original samples and the corresponding counterfactuals are calculated (see
Section 6.3). Counterfactuals that belong to privileged samples (i.e., Ve, € C; A f(x) = s = 1) and counterfactuals that belong
to unprivileged samples (i.e., Ve, € C; A f,(x) = s = 0) were analyzed separately. To calculate the distance vector, we follow the
principle of Credit Risk scorecard models® in the financial domain to transform the categorical features of the dataset into continuous
variables.

For the Adult dataset, we have two categorical features: workclass and occupation. The workclass categories, i.e. Public, Private,
and Unemployed, has been substitute respectively with the values 1, 2, and 0. For the occupation feature, the category Other-service has
been substituted with the value 1, the categories Adm-clerical, Handlers-cleaners, Sales, Transport-moving, Farming-fishing, Machine-op-
inspct, Craft-repair, and Priv-house-serv with the value 2, the categories Prof-specialty, Tech-support, and Protective-serv with the value
3, and the categories Exec-managerial and Armed-Forces with the value 4. This operation was necessary to quantify the polarity of
discrimination in the categorical features analogously to how we quantify it for numerical features.

For the German dataset, we replace the category of each categorical feature with the actual scorecard value.?' The metric used
to calculate the distance vector for both privileged and unprivileged samples is formalized as follows (Eq. (16)):

S B dise, )
n-k

¢ —X

16)

Agis = where dist(x,¢y) =

6. Discussion of the results

This Section depicts, describes, and discusses the experimental results. The rationale of the discussion is to provide the reader
with an in-depth understanding of the critical classifiers and unveil how the proposed method highlights potential biases. For clarity,
the discussion follows the research questions introduced in Section 1:

» RQ1: Is there a principled way to identify if proxy features exist in a dataset?

* RQ2: Does the Fairness Under Unawareness setting ensure that decision biases are avoided?

» RQ3: Is counterfactual reasoning suitable for discovering decision biases?

* RQ4: Is our methodology effective for discovering discrimination and biases? Are there limitations in its application?

6.1. RQI: Is there a practical way to identify if proxy features exist in a dataset?

The goal of this experimental evaluation aims to assess the capability of our methodology to predict sensitive features from
non-sensitive ones. In fact, as analyzed earlier, more is needed to exclude sensitive features during the training phase to guarantee
that a decision model is not affected by biases and does not implement discrimination. In order to answer RQ1, we trained a
sensitive-feature classifier as introduced in Section 4 for both datasets. The insight is that, if we are able to predict with reasonable
accuracy sensitive features from non-sensitive ones, it is very likely that proxy features occur in the dataset. Accordingly, we evaluate
the presence of proxy features p in the data X by assessing the performance of the XGB sensitive-feature classifier.

We trained the XGB sensitive-feature classifiers for the Adult and German datasets. As mentioned in Section 5.3, both models
have been tuned to maximize the F1 score to balance the precision and the recall as a common strategy for imbalanced datasets. For
the Adult dataset, we predicted gender and marital status as sensitive features; for the German dataset, gender is predicted (other
sensitive features are not sufficiently represented for learning a classification model). The performance of these models is shown in
Table 6a for the Adult dataset, and in Table 6b for the German. On the Adult dataset, the best performance is shown for the gender
feature for all the metrics, except for AUC, which has very similar values for both gender and marital status. The gender classifier
on the German dataset shows a higher recall than the Adult (Table 6b) even though the F1 is essentially the same. Overall, the
accuracy (ACC) is around 70% (best value on Adult for gender, ~ 0.74), showing a good capability of predicting the three sensitive
features we focused on.

20 Credit Risk scorecards are probabilistic models that evaluate the creditworthiness of a credit applicant, giving a score for specific values or category based
on a probabilistic threshold risk tolerance.
21 We used the Credit scorecard values available at https://online.stat.psu.edu/stat857/node/222/ for German categorical features.
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Table 6
AUC, Accuracy, F1 score, and Recall performance of the XGB sensitive feature
classifiers for Adult (a) and German (b) dataset.

(a) Performance on Adult’s sensitive features.

Gender Marital-Status
AUC 0.7803 0.7736
ACC 0.7404 0.6920
F1 0.8067 0.6779
Recall 0.8022 0.6774

(b) Performance on German’s sensitive feature.

Gender
AUC 0.7139
ACC 0.6900
F1 0.8025
Recall 0.9130

Table 7

Accuracy and Fairness results of Classic (i.e., LR, SVM, XGB, and LGBM) and Debiasing (i.e., AdvDeb and LFERM) classifiers for
the Adult dataset stratified with respect to the income target and the sensitive label. We mark the best-performing method for
each metric in bold font;.

(a) Accuracy and Fairness results, considering income as target label and gender as sensitive label

Classifier Debiasing

LR SVM XGB LGBM AdvDeb LFERM
AUC 0.8233 0.8189 0.8592 0.8596 0.8309 0.8017
ACC 0.7367 0.7395 0.8393 0.8371 0.8203 0.7953
F1 0.5726 0.5735 0.5862 0.5796 0.5276 0.4176
Recall 0.7119 0.7065 0.4594 0.4532 0.4050 0.2962
DSP 0.1567 0.1062 0.1056 0.1093 0.0957 0.0639
DI 0.6263 0.7328 0.3919 0.3766 0.4179 0.4864
DEO 0.1515 0.1425 0.0991 0.0969 0.0852 0.0563
DAO 0.0783 0.0894 0.0548 0.0546 0.0484 0.0320

(b) Accuracy and Fairness results, considering income as target label and marital status as sensitive label

Classifier Debiasing

LR SVM XGB LGBM AdvDeb LFERM
AUC 0.8209 0.8177 0.8608 0.8633 0.8265 0.7444
ACC 0.7396 0.7433 0.8441 0.8455 0.8211 0.7590
F1 0.5771 0.5804 0.6046 0.6062 0.5316 0.1780
Recall 0.7172 0.7163 0.4808 0.4799 0.4095 0.1053
DSP 0.1793 0.1493 0.1663 0.1702 0.1241 0.0336
DI 0.6116 0.6620 0.2832 0.2707 0.3755 0.4654
DEO 0.2537 0.2515 0.1729 0.1733 0.1412 0.0457
DAO 0.1640 0.1768 0.0904 0.0882 0.0792 0.0289

6.1.1. Observations

The results from this first experimental evaluation laid the foundation for going ahead with our investigation. In fact, we
demonstrated that it is possible to learn a classifier that is able, with quite a good accuracy, to predict sensitive features even
though these are not exploited during the training phase. The motivation behind this result is that the classifier is able to discover
hidden patterns in the non-sensitive features that allow attributing a user to the privileged or the unprivileged class. We can now answer the
RQ1 positively and collect clues on RQ2, namely that the Fairness Under Unawareness setting is very likely not enough to guarantee
that biases are avoided.

6.2. RQ2: Does the fairness under unawareness setting ensure that decision biases are avoided?

The Fairness Under Unawareness setting tries to ensure fairness of treatment by removing the direct link between prediction and
sensitive features. Sensitive features are then excluded from training data. However, as demonstrated previously, it is possible to
predict sensitive information when proxy features occur in the data. Motivated by the results of the previous experimental evaluation,
here we provide a deep analysis of two decision-makers, namely the income and credit-score predictor for the Adult and German
datasets, respectively. The analysis is carried out in terms of the models’ accuracy and fairness.

The results of the income predictor for the Adult dataset are shown in Table 7, whereas those of the credit-score predictor for the
German dataset are shown in Table 8. For the Adult dataset, in order to maintain in the test set the same distribution of the original
dataset, for each sensitive feature, we performed two different stratifications: one for income and gender (Table 7a) and one for income
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Table 8

Accuracy and Fairness results of Classic (i.e., LR, SVM, XGB, and LGBM) and Debiasing (i.e., AdvDeb and LFERM) classifiers for
the German dataset stratified with respect to the credit score target and the sensitive label. We mark the best-performing method
for each metric in bold font;.

(a) Accuracy and Fairness results, considering the credit-score as target label and the gender as sensitive label

Classifier Debiasing

LR SVM XGB LGBM AdvDeb LFERM
AUC 0.8186 0.8109 0.8014 0.7871 0.7910 0.7686
ACC 0.7600 0.7600 0.7700 0.8200 0.7800 0.7200
F1 0.8235 0.8442 0.8477 0.8800 0.8493 0.8313
Recall 0.8000 0.9286 0.9143 0.9429 0.8857 0.9857
DSP 0.1187 0.0449 0.0986 0.0374 0.1197 0.0355
DI 1.1900 1.0540 0.8826 0.9539 0.8499 0.9634
DEO 0.0299 0.0538 0.1328 0.0683 0.1973 0.0650
DAO 0.0594 0.0762 0.0835 0.0496 0.1374 0.0472

and marital status (Table 7b). In either case, we can observe that all classifiers work well in terms of accuracy-based metrics, with
gradient boosting-based classic models (i.e., XGB and LGBM) that outperform other methods. The only metric on which XGB and
LGBM do not show excellent performance is recall, although F1 is comparable to LR and SVM due to a high Precision of gradient
boosting-based models. By comparing non-debiased with debiased models, non-debiased models (i.e., LR, SVM, XGB, LGBM) are
generally more accurate than the debiased ones (i.e., AdvDeb., LFERM). Regarding the fairness metrics, the debiased models show
an overall better performance for both statistical criteria (i.e., DI and DSP). The fairest model is LFERM, which is also the one with
the worst accuracy performance. The Adversarial Debiasing algorithm shows fairness performance similar to LR, SVM, XGB, and
LGBM models. No algorithm can be considered fair in terms of DI metric. Only SVM approaches the minimum acceptable fairness
value. The DI metric tells us that a model is fair if and only if its value is between 0.8 and 1.2, in contrast with the DSP, which does
not overly highlight unfair behavior. This discrepancy between DSP and DI, both belonging to the Independence statistical criterion,
can be due to the low probability of having a positive outcome for the privileged and unprivileged groups. Furthermore, the DSP does
not highlight the proportion between the two probabilities, which DI instead measures. Regarding the score-based metrics, i.e., DEO
and DAO, for the Separation’s statistical criterion metrics, LFERM shows better performance than all the other algorithms.

For the German dataset, the credit score predictor results are available in Table 8. In contrast with Adult, no algorithm generally
outperforms the others considering all the accuracy-based metrics. In fact, if we consider the Accuracy and F1, the best algorithm is
LGBM, while, considering AUC, LR slightly exceeds SVM and XGB. The best algorithm in terms of Recall is LFERM, while there is a
similar performance between LGBM and SVM. However, LFERM generally has the worst performance in terms of accuracy and AUC.
Regarding fairness, LFERM shows the best performance for all the metrics except for DEO, where LR and SVM outperform LFERM.
Both LGBM and SVM have performance very similar to LFERM. The Adversarial Debiasing algorithm shows the worst performance.
The cause is probably the dataset size, given the deep-learning-based nature of the classifier. On the contrary, LFERM turned out
to be an excellent model with consistently effective results. Compared to Adult, the DI values for each algorithm meet the “rule of
thumb” requirements. In fact, the DI value in each case is in the range 0.8-1.2, and the best value is achieved by LFERM, which
is the closest to 1. Finally, non-debiased models consistently outperform the debiased ones in terms of accuracy for both datasets.
Yet, they turn out to have significant shortcomings in terms of fairness.

6.2.1. Observations

The outcome of this experimental evaluation is twofold. First of all, fairness metrics confirm that all the decision-makers we tested
are more o less affected by biases; secondly, debiased algorithms are not sufficiently robust to ensure fair behaviors and decisions. Therefore,
neither avoiding the use of sensitive features nor exploiting debiased algorithms is enough to keep from discrimination. The cause
is, in our opinion, the presence of proxy features in the data. Both debiased and not-debiased algorithms make positive predictions
unbalanced towards privileged groups. We can now answer the RQ2 and confirm that the Fairness Under Unawareness setting is not
sufficient to avoid decision biases. We get further confirmation that the Fairness Under Unawareness setting turns out to be of no help when
proxy features are in the data.

6.3. RQ3: Is counterfactual reasoning suitable for discovering decision biases?

As introduced in Section 4.1, the counterfactual generator is a crucial component of the proposed methodology. Its role is to
modify the original sample to reverse the decision made by the decision-maker. However, since the counterfactual generator must
meet both feasibility and diversity of counterfactuals (CFs), it is not obvious that it succeeds in generating new counterfactuals. For
this reason, in this experimental evaluation we evaluated the counterfactual generation C, provided by DiCE. Two perspectives are
scrutinized: (i) the capability of generating a certain number of counterfactuals and (ii) their likelihood compared to the original
samples. This analysis also considers the different behavior between the privileged and unprivileged groups on the gender-sensitive
feature for both datasets. For each generation strategy and decision model, we report the total generated CFs, the average number
of generated CFs for each sample in the test set, and the number of generated CFs for unprivileged and privileged groups. The
statistics for the Adult dataset are reported in Table 9, with Table 9a considering the gender as the sensitive feature and Table 9b
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Fig. 4. Average distance of counterfactuals from the original samples (i.e., x,Vx € &,,,,), for both unprivileged (blue bar) and privileged (red bar) gender group
samples of Adult dataset. A bigger distance denotes a more substantial effort for that demographic group to reverse the decision-maker decision. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

considering the marital status as the sensitive feature. The strategy able to generate the most significant number of counterfactuals
is Random. It generates 98-100 CFs for a sample on average. The Genetic strategy has a similar behavior, while the worst approach
is KDtree. In fact, it generates 63-100 CFs per sample on average by varying the predictive model. The main reason is that KDtree
searches CFs in the original sample space. Therefore, it fails to find CFs that are similar enough to the original sample (due to the
proximity constraint) and guarantees a reverse prediction. A hindrance to the counterfactual generation can also be the predictive
model. Indeed, since the CFs must reverse the decision, this result generally depends on the decision boundary of each model. From
that perspective, the more a model is robust, the harder the generation of the counterfactuals is. In detail, SVM with KDTree is the
model that shows the lowest number of generated counterfactuals.

Statistics on the German dataset are reported in Table 10. The Random strategy generates the maximum possible number of
counterfactuals, except for AdvDeb. A possible motivation might be that DiCe fails to generate CFs that reverse the decision, probably
due to the proximity requirement. However, this aspect requires further investigation in the future. The same behavior is for LFERM
and Kdtree. The problem might be that Kdtree explores the sample space for founding CFs, and this search might fail, as explained
earlier. Another remarkable case is the number of generated CFs for LFERM, which is 0. This is due to the fact that LFERM does
not predict a negative outcome for any sample belonging to the unprivileged group. The same is for SVM.

The second analysis is related to the counterfactual likelihood. For the sake of clarity, this analysis involved two models (LGBM
and AdvDeb) for each dataset on which the generation strategy is compared. Fig. 4 reports, for each feature, the average distance
of the generated counterfactuals from the original samples for the Adult dataset, whereas Fig. 5 reports the average distance for
German. The distance has been computed following Eq. (16). These charts give us a snapshot of the effort required to change the
original sample to get a reverse decision for the privileged and unprivileged groups. For the Adult dataset, as expected, Random is
the strategy that generated the furthest counterfactuals from the original samples. We can say that Random has more ‘freedom of
movement’ in the feature space compared to other strategies since CFs are randomly generated, of course. On the contrary, Kdtree
generates the closest counterfactuals given the search-based approach adopted. Genetic is a middle ground between Random and
KDtree: it generates samples not so far as random and not so close as Kdtree. However, as mentioned above, Genetic shows better
coverage in generating CFs compared to Kdtree. Looking at the features on which changes have more impact, the KDtree behavior is
the opposite of Random and Genetic. Random and Genetic enforce a change of the capital gain feature. KDtree has minimal change
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group samples of German dataset. A bigger distance denotes a more substantial effort for that demographic group to reverse the decision-maker decision.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on that feature and impacts more occupation, hours per week, and education num. From the decision-model perspective, Adversarial
Debiasing requires more minor changes than LGBM for reversing the decision, except for the KDtree strategy that is the same for both
algorithms (as we steadily underlined, the explored sample space is the same for both the algorithms). By comparing the unprivileged
with the privileged group, the former needs more significant changes than the latter to reverse the decision, except for workclass
with Kdtree and capital gain with LGBM and Genetic. For Kdtree, the motivation is that probably the closest sample that allows
the reverse decision has a lower workclass than the unprivileged group. For LGBM and Genetic, the effect is not trivial to explain.
Probably, LGBM learns a model where men (privileged group for gender) with income >= 50,000 usually have a significant capital
gain. Surprisingly, Random has a distance between —0.2 and +1 on average for the German dataset, thus generating counterfactuals
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Table 9

Adult statistics for gender and Marital Status, for each decision-maker, i.e., LR, SVM, XGB, LGBM, AdvDeb, and LFERM, and for each Counterfactual generation
strategy. Statistics include the number of generated Counterfactuals (i.e., the sum of all the Counterfactuals samples generated for all the samples), the number
of test set samples with at least one Counterfactual, and the percentage of generated Counterfactuals for each sample (with respect to the required 100), the
number of Counterfactuals for negatively predicted samples and correctly predicted as unprivileged or privileged and collected in the sets 3 and A, respectively
(see Algorithm 1).

(a) Adult statistics considering gender as sensitive feature

CF method Statistics Gender
LR SVM XGB LGBM AdvDeb LFERM
Total generated CFs 442292 452300 452300 452300 392000 442805
Mean generated CFs for a sample 97.78 100 100 100 100 97.9
Random Percentage of X with CFs (%) 100 100 100 100 87 100
No. of CFs for f(x) =0As = f,(x) = unprivileged 81400 81200 86900 86300 86100 85700
No. of CFs for f(x) =0As = f,(x) = privileged 125500 132700 19800 195400 198200 211000
Total generated CFs 444796 438912 435069 44577 392000 449241
Mean generated CFs for a sample 98.34 97.04 96.19 98.55 100 99.3
Genetic Percentage of X with CFs (%) 100 100 100 100 87 100
No. of CFs for f(x) =0As = f,(x) = unprivileged 79882 79378 84145 85452 86200 85198
No. of CFs for f(x) =0As = f(x) = privileged 122411 129674 188601 192063 198300 209348
Total generated CFs 327693 285787 422504 402782 376729 452300
Mean generated CFs for a sample 72.45 63.18 93,412 89,051 83,291 100
Kdtree Percentage of X with CFs (%) 100 100 100 100 100 100
No. of CFs for f(x) =0As = f,(x) = unprivileged 60749 52966 84129 80556 71069 111670
No. of CFs for f(x) =0As = f,(x) = privileged 76824 63291 180078 167322 160654 207885

(b) Adult statistics considering marital-status as sensitive feature

Marital Status

CF method Statistics
LR SVM XGB LGBM AdvDeb LFERM
Total generated CFs 441897 452300 452300 452300 391700 452300
Mean generated CFs for a sample 97.70 100 100 100 100 100
Random Percentage of X with CFs (%) 100 100 100 100 86 100
No. of CFs for f(x)=0As = f,(X) = unprivileged 135700 133900 161000 161300 156600 159600
No. of CFs for f(x) =0As = f(X) = privileged 54800 61000 97900 97900 105400 133400
Total generated CFs 444888 440106 446287 447058 391700 452262
Mean generated CFs for a sample 98.36 97.30 98.67 98.841 100 99.99
Genetic Percentage of X with CFs (%) 100 100 100 100 86 100
No. of CFs for f(x)=0As = f,(x) = unprivileged 133033 131132 159104 159722 156700 159581
No. of CFs for f(x) =0As = f,(x) = privileged 53372 59565 96486 96552 105300 133393
Total generated CFs 326152 287017 401305 412508 342077 452300
Mean generated CFs for a sample 72.11 63.45 88,725 91,202 75,630 100
Kdtree Percentage of X with CFs (%) 100 100 100 100 100 100
No. of CFs for f(x) =0As = f (X) = unprivileged 93032 77567 148915 154010 112764 159600
No. of CFs for f(x) =0As = f,(x) = privileged 36479 34002 79265 81629 79214 133400

quite close to the original ones. A reason could be found for this behavior by analyzing the feature space: the more significant
number of features and the generally limited range of feature values of this dataset than the Adult dataset. Indeed, the only feature
with a large range of values is the credit amount, which also shows the most significant changes from the original samples, especially
for the AdvDeb model. For Genetic and KDtree the distances are similar and not too different from Random. The feature with a
non-constant behavior is the credit amount for both models. A common trend is not observable regarding the difference between
privileged and unprivileged groups. However, most cases require more significant changes for the unprivileged group than the
privileged.

6.3.1. Observations

In this experimental evaluation, we got evidence that, in most cases, starting from a given sample x, the counterfactual generation
is not a problem. However, if we impose demands on the capability of reversing the decision and maintaining the counterfactual
entirely close to the original sample, the generation may fail. In the second analysis, we tried to measure the sort of ‘effort’ required
to implement changes in the original sample to get a reverse decision. Here, the outcome is not pretty straightforward. Some methods
maintain counterfactuals quite close to the actual samples, others not. Generally, unprivileged groups require more effort to reverse the decision
than privileged. Therefore, the answer to RQ3 is, most of the time, yes, counterfactual reasoning is effective for discovering decision biases.
However, we must be aware of some exceptions mentioned above.

6.4. RQ4: Is our methodology effective for discovering discrimination and biases? Are there limitations in its application?
The previous experimental evaluation have assessed that it is possible:
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Table 10

German statistics for gender and Marital Status, for each decision-maker, i.e., LR, SVM, XGB, LGBM, AdvDeb, and LFERM, and for each Counterfactual generation
strategy. Statistics include the number of generated Counterfactuals (i.e., the sum of all the Counterfactuals samples generated for all the samples), the number
of test set samples with at least one Counterfactual, and the percentage of generated Counterfactuals for each sample (with respect to the required 100), the
number of Counterfactuals for negatively predicted samples and correctly predicted as unprivileged or privileged and collected in the sets 3 and A, respectively
(see Algorithm 1).

(a) German statistics considering gender as a sensitive feature

CF method Statistics Gender
LR SVM XGB LGBM AdvDeb LFERM
Total generated CFs 10000 10000 10000 10000 2400 10000
Mean generated CFs for a sample 100 100 100 100 100 100
Random Percentage of X with CFs (%) 100 100 100 100 24 100
No. of CFs for f(x) =0As = f,(x) = unprivileged 100 0 200 100 200 0
No. of CFs for f(x) =0As= f,(x) = privileged 2500 1200 1100 1200 1100 200
Total generated CFs 9993 9999 9967 9946 2400 10000
Mean generated CFs for a sample 99.93 99.99 99.67 99.46 100 100
Genetic Percentage of X with CFs (%) 100 100 100 100 24 100
No. of CFs for f(x)=0As= f,(x) = unprivileged 100 0 200 100 200 0
No. of CFs for f(x) =0As = f(x) = privileged 2498 1200 1100 1200 1100 200
Total generated CFs 10000 10000 10000 10000 10000 2224
Mean generated CFs for a sample 100 100 100 100 100 22.24
Kdtree Percentage of X with CFs (%) 100 100 100 100 100 100
No. of CFs for f(x)=0As= f,(X) = unprivileged 100 0 200 100 200 0
No. of CFs for f(x) =0As = f,(x) = privileged 2500 1200 1100 1200 1100 200

« to predict sensitive features from non-sensitive ones;

» to measure the discrimination levels that predictive models (also unbiased) implement;

« to verify the possibility of generating counterfactuals (CFs) with different strategies and predictive models;
+ to measure how many counterfactuals are close to the original samples.

In this last experimental evaluation, we complete our analysis by providing a further strategy for assessing the discrimination
that predictive models implement. More specifically, thanks to the sensitive-feature classifier, we verify whether the generated
counterfactuals that allow reversing the decision belong to the original sensitive class. If the sensitive class changes with the decision
(CF flip), we are dealing with a bias problem definitively.

Fig. 6 shows the result of our analysis for the Adult dataset and the gender feature. On the x-axis, there is the number of generated
counterfactuals, and on the y-axis, the percentage of flips. We observe a small percentage of flips with the random strategy. This
behavior is probably due to the random generation of new samples (with the biggest distance from the original sample) for which the
classifier does not recognize a clear pattern to change the sensitive class. On the opposite, both Genetic and KDtree get many flips. An
interesting result is that flips are more significant for the unprivileged group than the privileged. This confirms that members of the
unprivileged group have to show characteristics of the privileged group to reverse the decision. Accordingly, the counterfactuals for
the female group show male characteristics to reach a favorable decision. The result of the KDtree strategy is very significant because,
since KDtree searches counterfactuals in the real sample space, flips mean that it needs to find a sample belonging to the opposite
sensitive class to reverse the decision. From the algorithm perspective, the debiased models (LFERM, AdvDeb) generally have a
lower flip rate than the LR, XGB, and LGBM models. We also observe that the number of counterfactuals does not generally impact
the flips. This means that by increasing the number of counterfactuals, the probability of having a flip does not grow respectively.

The results of the marital status on Adult are reported in Fig. 7. Even for this feature, the unprivileged group shows more flips than
the privileged. Here we bring attention to LFERM. This debiased algorithm shows a behavior apparently against the general one:
more flips for the privileged class than the unprivileged. However, we should remember that LFERM shows very low performance
in terms of accuracy (see Table 7); thus, we can suppose that this error has been propagated in the flip count as well. This is a very
relevant result in the application of our model: the bias detection based on the sensitive-feature classifier is effective only if the
analyzed predictive model gets a reasonable accuracy. KDtree has the largest number of flips for the unprivileged group, confirming
the need to find a sample belonging to the privileged group to reverse the decision. From other perspectives, there are no significant
outcomes to be noticed that have not already been discussed for the gender feature.

Fig. 8 presents the results for the gender feature on the German dataset. At first glance, we observe a more significant number of
flips for the unprivileged group than the privileged for the Adult dataset. From the algorithm perspective, there is a good coherence
between fairness metrics and the number of flips, particularly for LGBM, XGB, and AdvDeb. LFERM and SVM do not have unprivileged
samples with a negative outcome. Thus, no flips occur. Increasing the number of counterfactuals does not proportionally increase
the number of flips. This means that the model is effective even with a quite small (< 20) number of counterfactuals. Again, KDtree
has the most significant number of flips that, further confirms the need to change the sensitive feature to get a beneficial prediction.

6.4.1. Observations
Through this last experimental evaluation, we confirmed the effectiveness of the proposed methodology for discovering

discrimination and decision biases. The results of the proposed approach are generally coherent with fairness metrics. In contrast to them
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Fig. 6. Ratio of counterfactuals for the German dataset that are identified as belonging to another gender (w.r.t. the original sample). The first row analyzes
counterfactuals for the unprivileged gender group, i.e., female group in the German dataset. The second row analyzes counterfactuals for the privileged gender
group, i.e., Male group. The plot includes all the decision-makers for the three counterfactual generation strategies and an increasing number of considered
counterfactuals.

which provide an overall value, the proposed model deeply analyzes the characteristics that the user should have to reverse the decision.
However, there is an obvious limitation in the application of the model: the decision maker must have good predictive accuracy. Another
interesting result is that a quite small (< 20) number of counterfactuals is enough for discovering biases.

7. Limitations and future work

Our work proposes a new methodology for exploring and investigating bias by exploiting advances in counterfactual reasoning.
Even though the outcomes presented are a notable achievement in bias identification, our work is not exempt from limitations.
For instance, Section 6.3 explores the distances between counterfactuals classified as privileged and underprivileged. However, an
overall distance does not highlight features that are the most important in the decision-making process and are, at the same time,
proxy features (i.e., p C x). A future version of the system could integrate a feature importance methodology like SHAP to address
this limitation and bring these features out. This future system should combine sensitive feature classifier outcomes and SHAP values.
However, it has yet to be possible to identify these proxy features clearly. Identifying the hidden proxy features is a key objective
of our future work and deserves a specific investigation. Further limitations include (i) the strategy for generating counterfactuals,
(ii) the quality of sensitive feature models, and (iii) the validation metrics. In this investigation, we relied on existing counterfactual
generation strategies, thus keeping the details outside the paper’s scope. However, we noticed that some strategies seldom succeed
in generating counterfactuals; therefore, in future work, investigating other counterfactual generation models will be necessary.
Another frustrating shortcoming is due to the pair dataset/sensitive feature classifier. The most used datasets, like German, are very
small, impacting the quality of the trained classifier. Unfortunately, the sensitive feature classifier is a critical component of our
system, and its high accuracy is crucial for correctly investigating the bias. Future work will focus on other domains that could grant
larger datasets even though they are not datasets of reference for fairness and bias research. Furthermore, the choice of the objective
to maximize/minimize — and to select the best models — deserves a specific investigation. Since this kind of study would have fallen
in the scope of multi-objective optimization, we avoided facing this aspect in this work. Instead, we prioritized a better separability
between positive and negative samples for the decision-maker through AUC. For the sensitive feature classifier, we preferred using
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Fig. 7. Ratio of counterfactuals for the Adult dataset that are identified as belonging to another marital-status (w.r.t. the original sample). The first row analyzes
counterfactuals for the unprivileged marital-status group, i.e., not married group in the Adult dataset. The second row analyzes counterfactuals for the privileged
marital-status group, i.e., married group. The plot includes all the decision-makers for the three counterfactual generation strategies and an increasing number of
considered counterfactuals.

F1 to avoid specialization on privileged or non-privileged classes and thus balance the predictions between the classes. The debiased
decision-makers are a special case, where we tuned the models by optimizing AUC and minimizing DAO through the proposed metric
(see Eq. (15)). The choice of DAO is dictated by the will to consider not only true positives (e.g., DEO) but also the true negatives.
In a future investigation, we would like to study the impact of adopting other fairness — and, in general, other validation — metrics.
Finally, the discussion regarding the validation metrics introduces a further limitation of the study. Indeed, recent literature explored
a wide range of metrics for accuracy, beyond-accuracy, fairness, and bias. In this study, we limited our analysis to some well-known
and mainstream metrics. However, several other metrics would shed light on the various aspects and behavior of the models. Future
investigations will explore these dimensions.

8. Conclusion

This study introduces a novel methodology for detecting and assessing biases in decision-making models, even if they operate
in the context of “fairness under unawareness”, and thus do not use sensitive features. The role of counterfactual reasoning in the
proposed approach is crucial. Adopting counterfactual reasoning in the proposed approach is crucial since it allows unveiling the
characteristics of original samples that could reverse the decision-makers prediction. When the counterfactual sample is identified
as a different demographic group (compared to the original sample), it could be a sign of discriminatory behavior, and we refer to
it as a counterfactual flip. We tested this counterfactual approach to detect bias with two state-of-the-art datasets for two financial
domain tasks: predicting loan-repayment default and individual income.

The experimental results show that the “fairness under unawareness” setting is insufficient to mitigate bias due to proxy features.
Moreover, the results confirmed that the proposed approach is effective for auditing bias. The proposed model complements the
state-of-the-art statistical metrics commonly adopted to evaluate the fairness level. In fact, the approach analyzes the characteristics
that a given sample should have to achieve a positive outcome, such as receiving a loan or other life-changing decisions. Furthermore,
the results show that even debiased algorithms are not enough to avoid discriminatory behaviors completely.
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Fig. 8. Ratio of counterfactuals for the German dataset that are identified as belonging to another gender (w.r.t. the original sample). The first row analyzes
counterfactuals for the unprivileged gender group, i.e., female group in the German dataset. The second row analyzes counterfactuals for the privileged gender
group, i.e., Male group. The plot includes all the decision-makers for the three counterfactual generation strategies and an increasing number of considered
counterfactuals.

Lastly, this investigation paves the way for the integration of counterfactual reasoning with fairness research. The insights that
emerged in the study gave us the idea that we have just scratched the surface of the potential of applying counterfactual reasoning
to tasks that impact user lives critically.
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