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1 Introduction

Controllability issues for parabolic problems have been a mainstream topic in
recent years, and several developments have been pursued: starting from the
heat equation in bounded and unbounded domain, related contributions have
been found for more general situations. A common strategy in showing control-
lability results is to prove that certain global Carleman estimates hold true for
the operator which is the adjoint of the given one.

In this paper we focus on a class of singular parabolic operators with interior
degeneracy of the form

u — (a(x)ug), — T)\I)u, (1.1)

associated to Dirichlet boundary conditions and with (¢,2) € Qr := (0,T) X
(0,1), T > 0 being a fixed number. Here a and b degenerate at the same interior
point xo € (0,1), and A € R satisfies suitable assumptions (see condition (2.11)
below). The fact that both a and b degenerate at xq is just for the sake of
simplicity and shortness: all the stated results are still valid if they degenerate
at different points. The prototypes we have in mind are a(z) = |2 — xo|** and
b(z) = |x — z0|%? for some K, K2 > 0. The main goal is to establish global
Carleman estimates for operators of the form given in (1.1).

Such estimates for uniformly parabolic operators without degeneracies or
singularities have been largely developed (see, e.g., Fursikov-Imanuvilov [32]).
Recently, these estimates have been also studied for operators which are not
uniformly parabolic. Indeed, as pointed out by several authors, many problems
coming from Physics (see [36]), Biology (see [21]) and Mathematical Finance
(see [35]) are described by degenerate parabolic equations. In particular, new
Carleman estimates (and consequently null controllability properties) were es-
tablished in [1], and also in [14], [40], for the operator

up — (aug) . + c(t,x)u, (t,z) € Qr,

where a(0) = a(1) =0, a € C*(0,1) and ¢ € L>=(Qr) (see also [12], [13] or [26]
for problems in non divergence form).

An interesting situation is the case of parabolic operators with singular
inverse-square potentials. First results in this direction were obtained in [46] for
the non degenerate singular potentials with heat-like operator

1
up — Au — )\Wm (t,z) € (0,T) x Q, (1.2)
T

with associated Dirichlet boundary conditions in a bounded domain Q c RY
containing the singularity = 0 in the interior (see also [45] for the wave and
Schrodinger equations and [16] for boundary singularity). Similar operators of
the form

up — Au— A (t,z) € (0,T) x Q,

.



arise for example in quantum mechanics (see, for example, [4], [19]), or in com-
bustion problems (see, for example, [6], [10], [20], [33]), and is known to generate
interesting phenomena. For example, in [4] and in [5] it was proved that, for
all values of A, global positive solutions exist if Ky < 2, whereas instantaneous
and complete blow-up occurs if Ky > 2. In the critical case, i.e. Ky = 2, the
value of the parameter A determines the behavior of the equation: if A < 1/4
(which is the optimal constant of the Hardy inequality, see [9]) global positive
solutions exist, while, if A > 1/4, instantaneous and complete blow-up occurs
(for other comments on this argument we refer to [44]). We recall that in [46],

Carleman estimates were established for (1.2) under the condition A < 1 On

1
the contrary, if A > T in [22] it was proved that null controllability fails.

We remark that the non degenerate problems studied in [4, 16, 22, 44, 45,
46] cover the multidimensional case, while here we treat the case N = 1, like
Vancostenoble [44], who studied the operator that couples a degenerate diffusion
coefficient with a singular potential. In particular, for K7 € [0,2) and Ky <
2 — K, the author established Carleman estimates for the operator

1

Up — (asKlux)w — )\x@u, (t,z) € Qr,

unifying the results of [15] and [46] in the purely degenerate operator and in the
purely singular one, respectively. This result was then extended in [23] and in
[24] to the operators

up — (a(T)ug)z — )\x%u, (t,z) € Qr, (1.3)
for a ~ 21 K, € [0,2) and Ko < 2 — K;. Here, as before, the function
a degenerates at the boundary of the space domain, and Dirichlet boundary
conditions are in force.

We remark the fact that all the papers cited so far, with the exception
of [22], consider a singular/degenerate operator with degeneracy or singularity
appearing at the boundary of the domain. For example, in (1.3) as a one can
also consider the double power function

a(x) =21 —2)*, =z € [0,1],

where k and & are positive constants. To the best of our knowledge, [8], [29] and
[30] are the first papers dealing with Carleman estimates (and, consequently,
null controllability) for operators (in divergence and in non divergence form
with Dirichlet or Neumann boundary conditions) with mere degeneracy at the
interior of the space domain (for related systems of degenerate equations we
refer to [7]). We also recall [28] and [27] for other type of control problems
associated to parabolic operators with interior degeneracy in divergence and
non divergence form, respectively.

We emphasize the fact that an interior degeneracy does not imply a simple
adaptation of previous results and of the techniques used for boundary degener-
acy. Indeed, imposing homogeneous Dirichlet boundary conditions, in the latter



case one knows a priori that any function in the reference functional space vani-
shes exactly at the degeneracy point. Now, since the degeneracy point is in the
interior of the spatial domain, such information is not valid anymore, and we
cannot take advantage of this fact.

For this reason, the present paper is devoted to study the operator defined
in (1.1), that couples a general degenerate diffusion coeflicient with a general
singular potential with degeneracy and singularity at the interior of the space
domain. In particular, under suitable conditions on all the parameters of the
operator, we establish Carleman estimates and, as a consequence, null controlla-
bility for the associated generalized heat problem. Clearly, this result generalizes
the one obtained in [29] or [30]: in fact, if A = O (that is, if we consider the
purely degenerate case), we recover the main contributions therein. See also
[25] for the problem in non divergence form for both Dirichlet and Neumann
boundary conditions.

We also remark the fact that, though we have in mind prototypes as power
functions for the degeneracy and the singularity, we don not limit our investi-
gation to these functions, which are analytic out of their zero. Indeed, in this
paper, pure powers singularities and degeneracies are considered only as a by—
product of our main results, which are valid for non smooth general coefficients.
This is quite a new view—point when dealing with Carleman estimates, since
in this framework it is natural to assume that all the coefficients in force are
quite regular. However, though this strategy has been successful for years, it
is clear that also more irregular coefficients can be considered and appear in a
natural way (for instance, see [34], [37]). Nevertheless, it will be clear from the
proof that Carleman estimates do hold without particular conditions also in the
non smooth setting, while for observability (and thus controllability) another
technical condition is needed; however, such a condition is trivially true for the
prototypes.

For this reason, for the first time to our best knowledge, in [30] non smooth
degenerate coeflicients were treated. Continuing in this direction, here we con-
sider operators which contain both degenerate and singular coefficients, as in
[23], [24] and [44], but with low regularity.

The classical approach to study singular operators in dimension 1 relies in
the validity of the Hardy—Poincaré inequality

1 2 1
/ %dxgzx/ (u')?dz, (1.4)
0o T 0

which is valid for every u € H'(0,1) with «(0) = 0. Similar inequalities are the
starting point to prove well-posedness of the associated problems in the Sobolev
spaces under consideration. In our situation, we prove an inequality related to
(1.4), but with a degeneracy coefficient in the gradient term; such an estimate
is valid in a suitable Hilbert space H we shall introduce below, and it states the
existence of C' > 0 such that for all u € H we have

1,2 1
/ —dr < C | a(u)’de.
O b

0



This inequality, which is related to another weighted Hardy-Poincaré inequality
(see Proposition 2.1), is the key step for the well-posedness of (1.5). Once this
is done, global Carleman estimates follow, provided that an ad hoc choice of the
weight functions is made (see Theorem 3.1).

The introduction of the space H (which may coincide with the usual Sobolev
space in some cases) is another feature of this paper, which is completely new
with respect to all the previous approaches: including the integrability of u?/b
in the definition of H has the advantage of obtaining immediately some useful
functional properties, that in general could be hard to show in the usual Sobolev
spaces. Indeed, solutions were already found in suitable function spaces for the
“critical” and “supercritical” cases (when A equals or exceeds the best constant
in the classical Hardy—Poincaré inequality) in [45]and [47] for purely singular
problems. However, as already done in the purely degenerate case ([1, 7, 8,
12, 13, 15, 23, 24, 26, 29, 30, 31]), a weighted Sobolev space must be used.
For this reason, we believe that it is natural to unify these approaches in the
singular/degenerate, as we do.

Now, let us consider the evolution problem

up — (auy), — Lu = h(t,z)x,(z), (t,z)€Qr,

b(z)
u(t,0) = u(t,1) = 0, te (0,7), (1.5)
u(0,x) = ugp(x), r € (0,1),

where ug € L?(0,1), the control h € L?(Qr) acts on a non empty interval
w C (0,1) and x,, denotes the characteristic function of w.

As usual, we say that problem (1.5) is null controllable if there exists h €
L?(Q7) such that u(T,z) = 0 for z € [0,1]. A common strategy to show that
(1.5) is null controllable is to prove Carleman estimates for any solution v of
the adjoint problem of (1.5)

v+ (avg) . + ﬁv =0, (t,z)eQr,
v(t,0) =v(t,1) =0, te(0,7),

o(T, ) = vr (),

and then deduce an observability inequality of the form

1 T
/ v?(0,2)dx < C’T/ /vQ(t,az)dxdt, (1.6)
0 0 w

where Cp > 0 is a universal constant. In the non degenerate case this has
been obtained by a well-established procedure using Carleman and Caccioppoli
inequalities. In our singular/degenerate non smooth situation, we need a new
suitable Caccioppoli inequality (see Proposition 4.2), as well as global Carleman
estimates in the non smooth non degenerate and non singular case (see Propo-
sition 4.3), which will be used far away from zy within a localization procedure



via cut—off functions. Once these tools are established, we are able to prove
an observability inequality like (1.6), and then controllability results for (1.5).
However, we cannot do that in all cases, since we have to exclude that both the
degeneracy and the singularity are strong, see condition (SSD) below.

Finally, we remark that our studies with non smooth coefficients are partic-
ularly useful. In fact, though null controllability results could be obtained also
in other ways, for example by a localization technique (at least when zg € w),
in [30] it is shown that with non smooth coefficients, even when A = 0, this is
not always the case. For this, our approach with observability inequalities is
very general and permits to cover more involved situations.

The paper is organized in the following way: in Section 2 we study the
well-posedness of problem (1.5), giving some general tools that we shall use
several times. In Section 3 we provide one of the main results of this paper,
i.e. Carleman estimates for the adjoint problem to (1.5). In Section 4 we apply
the previous Carleman estimates to prove an observability inequality, which,
together with a Caccioppoli type inequality, lets us derive new null control-
lability results for the associated singular/degenerate problem, also when the
degeneracy and the singularity points are inside the control region.

A final comment on the notation: by ¢ or C' we shall denote universal positive
constants, which are allowed to vary from line to line.

2 Well-posedness

The ways in which a and b degenerate at xg can be quite different, and for
this reason we distinguish four different types of degeneracy. In particular, we
consider the following cases:

Hypothesis 2.1. Doubly weakly degenerate case (WWD): there exists
zo € (0,1) such that a(zg) = b(zg) =0, a,b > 0on [0,1]\{zo}, a,b € WH1(0,1)
and there exists K1, K5 € (0,1) such that (z—z¢)a’ < Kya and (x—x0)b < Kob
a.e. in [0, 1].

Hypothesis 2.2. Weakly-strongly degenerate case (WSD): there exists
zo € (0,1) such that a(xg) = b(zo) =0, a,b >0 on [0,1]\ {zo}, a € WH1(0,1),
b€ W1>(0,1) and there exist K; € (0,1), K3 > 1 such that (z — 2¢)a’ < Kia
and (z — z0)b’ < Kb a.e. in [0, 1].

Hypothesis 2.3. Strongly-weakly degenerate case (SWD): there exists
zo € (0,1) such that a(zg) = b(xo) =0, a,b > 0 on [0,1]\ {zo}, a € WH>°(0,1),
b e Wh(0,1), and there exist K7 > 1, Ky € (0,1) such that (z — 2¢)a’ < Kia
and (z — zo)b’ < Kb a.e. in [0, 1].

Hypothesis 2.4. Doubly strongly degenerate case (SSD): there exists
zo € (0,1) such that a(zo) = b(xg) =0, a,b > 0on [0,1]\{xo}, a,b € W1>°(0,1)
and there exist Ky, Ky > 1 such that (z — z¢)a’ < Kja and (z — z)b' < Kb
a.e. in [0,1].



Typical examples for the previous degeneracies and singularities are a(z) =
|z — 2o|K1 and b(x) = |z — x| 2, with 0 < K1, Ky < 2.

Remark 1. The restriction K; < 2 is related to the controllability issue. In-
deed, it is clear from the proof of Theorem 2.1 that such a condition is useless,
for example, when A < 0. On the other hand, concerning controllability, we will
not consider the case K; > 2, since if a(z) = |z — x|%1, K; > 2 and X\ = 0, by
a standard change of variables (see [30]), problem (1.5) may be transformed in
a non degenerate heat equation on an unbounded domain, while the control re-
mains distributed in a bounded domain. This situation is now well-understood,
and the lack of null controllability was proved by Micu and Zuazua in [41].

We will use the following result several times; we state it for a, but an
analogous one holds for b replacing K; with Ko:

Lemma 2.1 (Lemma 2.1, [29]). Assume that there exists xo € (0,1) such that
a(xg) =0, a>0 on [0,1]\ {zo}, and either

e a € WH1(0,1) and there exist K1 € (0,1) such that (x — zo)a’ < Kya a.e.
in [0,1], or

e a € WH(0,1) and there exist Ky € [1,2) such that (x —x¢)a’ < Kia a.e.
in [0,1].

1. Then for all v > K1 the map

|z —ao]” . ‘ )
T — ——— is non increasing on the left of x = xq
a

and non decreasing on the right of x = xg,

— v
. T — Zo
so that lim g
Tr—xTo a

=0 for all v > K;.
1 1

2. If K1 <1, then — € L (0,1).
a

3. If K; € [1,2), then % € L'(0,1) and 2 ¢ L'(0,1).

For the well-posedness of the problem, we start introducing the following

weighted Hilbert spaces, which are suitable to study all situations, namely the
(WWD), (SSD), (WSD) and (SWD) cases:

HY(0,1) := {u € WH(0,1) : Vau' e L2(0, 1)}
and

HL,(0,1) = {u € HY(0,1) : % € L2(0, 1)},



endowed with the inner products

1 1
(u, ) H1(0,1) ::/ au’v’dm—i—/ uv dz,
0 0

1 1 1
<U, U>H1 (0,1) = / au'v'dr + / uv dr + / @d,r’
a,b 0 0 o b
respectively.

Note that, if u € H1(0,1), then au’ € L?(0,1), since |au’| < (I[na)f Va)yalu'|.
0,1

and

We recall the following weighted Hardy—Poincaré inequality, see [29, Propo-
sition 2.6]:

Proposition 2.1. Assume that p € C([0,1]), p > 0 on [0,1] \ {z0}, p(zo) =0
and there exists ¢ > 1 such that the function

T ﬂ is mon increasing on the left of x = x
|z — 2|4 (2.7)

and non decreasing on the right of x = xg.

Then, there exists a constant Cygp > 0 such that for any function w, locally
absolutely continuous on [0, o) U (g, 1] and satisfying

w(0) = w(1) = 0 with /O (@)W (2)|? dz < +o0,

the following inequality holds:
1 1
p(x) 2 / / 2
— de < C dx. 2.8
| i@ de < Cup [ pla’ @) ds (238)

Remark 2. Actually, such a proposition was proved in [29] also requiring ¢ < 2.
However, as it is clear from the proof, the result is true without such an upper
bound on ¢, that in [29] was used for other estimates.

Moreover, we will also need other types of Hardy’s inequalities. Let us start
with the following crucial

Lemma 2.2. If K1 + Ko < 2 and Ko < 1, then there exists a constant C > 0
such that

1,2 1
/ dr < C'/ a(u')*dz (2.9)
o b 0
for every u € HL(0,1).

)2
Proof. We set p(x) = w, so that p satisfies (2.7) with ¢ =2 — K3 > 1
by Lemma 2.1. Thus, taken u € H!(0, 1), by Proposition 2.1, we get

/01 “Tjda: _ /01 (;o(yc))2u2d$ <Cup /Olp(.r)|u’(z)|2dgg.

r — X



Now, by Lemma 2.1,

@2 @20 )

2-K1-Ka (.
) (@) a(x) b(x) -

p(z) = (v — 1z

for some ¢ > 0, and the claim follows. O

Remark 3. A similar proof shows that, when K7 + 2K5 < 2 and Ko < 1/2,

then
1,2 1
/ b—Qdach/ a(u')*dz
0 0

Lemma 2.2 implies that H, (0,1) = H; ,(0,1) when K+ K, < 2and Ky < 1.
However, inequality (2.9) holds in other cases, see Proposition 2.2 below. In
order to prove such a proposition, we need a preliminary result:

for every u € H2(0,1).

Lemma 2.3. If Ky > 1, then u(xzg) = 0 for every u € H;}b((), 1).

Proof. Since u € Wy (0,1), there exists lim, ., u(z) = L € R. If L # 0, then

|u(z)| > 3 in a neighborhood of x¢, that is

u@)* _ L? ,
> L 1
y 2 FLO
by Lemma 2.1, and thus L = 0. O

We also need the following result, whose proof, with the aid of Lemma 2.3,
is a simple adaptation of the one given in [31, Lemma 3.2].

Lemma 2.4. If K5 > 1, then
H0,1) := {u € Hy(0,1) such that suppu C (0,1) \ {xo}}

is dense in H;b(O7 1).

In the spirit of [18, Lemma 5.3.1], now we are ready for the following
“classical” Hardy inequality in the space H‘;b(O7 1) for a(x) = |z — x0|* and
b(z) = |z — x0|?>~®. However, note that our inequality is more interesting than
the classical one, since we admit a singularity inside the interval:

Lemma 2.5. For every a € R the inequality

1— 2 1 2 1
(1=a) i de < | |z — xo|*(u')?dx
4 0 0

| — 2p)2

holds true for every u € H! (0,1).

|z—zo|®,|z—20 |2~



Proof. The case @ = 1 is trivial. So, take = (1—«)/2# 0and e € (0,1 —xo).
First case: 8 <0 (o> 1). In this case we have

/ " (o a0) (e

zo+e

/: (xfxo)a((x—xo)ﬂ((xfxo)*ﬁu)/+ﬁ(zfxo)*1u)2dx

(R

1 1
> g / (- xo)a_ngd:E + 26 (x — xo)a+6_1u((:£ — xo)_ﬁu)/dx
Tot+e To+e

1
= BQ/ (x — 20)* 2uldz + B((z — x0) Pu)? ' (sincea+ 8 —1=—p)

o+e ro+e

1
> 52/ (z — 20)* *udx.
x

ote

Letting € — 0T, we get that

1 1
/ (z — x0)*(u')?dx > 52/ (x — 0)**u’d. (2.10)
xo Zo

Second case: > 0. In this situation we have 2 — a > 1. Thus, in view of
Lemma 2.4 with Ky = 2 — a, we will prove (2.10) first if u € H}(0,1) and then,
by density, if u € Hﬁpfxo\a lo—ao|2— (0, 1). Thus, take u € HL(0,1); proceeding
as above, we get

/ " (o= a0) (e

o+e

1 1
> B2 / (z — 20)* 2u’dx + B((z— ro) " “u)?

o+te To+e

1
> ﬂ2/ (z — x0)* 2u?dx,

ote

since u(xzg + €) = 0 for e small enough.
Passing to the limit as ¢ — 0T, and using Lemma 2.4, we get that (2.10)
holds true for every u € H|| (0,1).

. %*IO\“,IOE*IoE*“ )
Operating in a symmetric way on the left of g, we get the conclusion. [

As a corollary of the previous result, we get the following improvement of
Lemma 2.2.

Proposition 2.2. If one among Hypotheses 2.1,2.2,2.3 holds with K1+ Ky < 2,
then (2.9) holds for every u € H(;b((), 1).

Proof. By Lemma 2.1 and Lemma 2.5 with a = 2 — K5, we immediately get

10



that for every u € Hib(O, 1),

1,2 1 2 1
/ —dx < c/ ——dz < c/ |z — z0)> 52 () dx
o b 0 |z —aolF 0
1 1
< c/ |z — 20|51 (u/)?dx < c/ a(u')?dx.
0 0

O

Remark 4. It is well known that when K7 = Ky = 1, an inequality of the
form (2.9) doesn’t hold (see [42]). Being such an inequality fundamental for the
observability inequality (see Lemma 4.2), it is no surprise if with our techniques
we cannot handle this case in Section 4.

The fundamental space in which we will work is clearly the one where the
Hardy—Poincaré-type inequality (2.9) holds: in view of Proposition, it is clear
that such a space is

H:=H,,(0,1)

Remark 5. Under the assumptions of Proposition 2.2, the standard norm ||-||3,
is equivalent to

1
a2 := / a(u')2dz

for all w € ‘H. Indeed, for all © € H, we have

1 L2 1
/ udr = / b—dx < c/ a(u')?dz,
0 o b 0

and this is enough to conclude.
Moreover, when A < 0, an equivalent norm is given by

1 19
[lul|2 ::/ a(u)?dx — )\/ Y de.
0 o b

This is particularly useful if Hypothesis 2.4 holds (see the proof of Theorem
2.1).

First, let us call C* the best constant of (2.9) in H. From now on, we make
the following assumptions on a, b and A:

Hypothesis 2.5. 1. One among Hypothesis 2.1, 2.2 or 2.3 holds true with
K1+ K5 <2, and we assume that

Ae (0, C}) , (2.11)

or

2. Hypotheses 2.1, 2.2, 2.3 or 2.4 hold with A < 0.

11



Observe that the assumption A # 0 is not restrictive, since the case A = 0
was already considered in [29] and in [30].
Using the previous lemmas one can prove the next inequality.

Proposition 2.3. Assume Hypothesis 2.5. Then there exists A € (0,1] such
that for allu € H

1 1,2 1
/ a(u)?dx — )\/ —dz > A/ a(u')?dz.
0 o b 0

Proof. If A < 0, the result is obvious taking A = 1. Now, assume that A €

1
(O, C*) Then

1 12 1 1 1
/ a(u')*dx — )\/ Y dr > / a(u')?dx — )\C*/ a(u')?dx > A/ a(u')?dz.
0 o b 0 0 0

O
We recall the following definition:

Definition 2.1. Let ug € L?(0,1) and h € L?(Qr). A function u is said to be
a (weak) solution of (1.5) if

ue L*(0,T;H) NVH' ([0, T];H")
and it satisfies (1.5) in the sense of H*-valued distributions.

Note that, by [42, Lemma 11.4], any solution belongs to C([0,T]; L?(0, 1)).
Finally, we introduce the Hilbert space

HZ,(0,1) := {u € H(0,1) : au’ € HY(0,1) and Au € L2(0, 1)},

where )

Ay = (au’)/ + gu with D(A) = Hg’b(O, 1).
Remark 6. Observe that if u € D(A), then % and % € L*(0,1), so that
u€ H;,b(O, 1) and inequality (2.9) holds.

We also recall the following integration by parts with functions in the refer-
ence spaces:

Lemma 2.6 (Green formula, [31], Lemma 2.3). Assume one among the Hypo-
theses 2.1, 2.2, 2.3, 2.4. Then, for all (u,v) € nyb(O7 1) x H(0,1) the following
identity holds:

1 1
/ (au') vdx = —/ av'v'dz. (2.12)
0 0

12



Observe that in the non degenerate case, it is well known that the heat
operator with an inverse—square singular potential
U
Uy — Au— A—=0v
|z
gives rise to well-posed Cauchy-Dirichlet problems if and only if A is not larger
than the best Hardy inequality (see [5], [11], [47]). For this reason, it is not
strange that we require an analogous condition for problem (1.5), by invoking

Hypothesis 2.5; as a consequence, using the standard semigroup theory, we have
that (1.5) is well-posed:

Theorem 2.1. Assume Hypothesis 2.5. For every ug € L?(0,1) and h €
L?(Qr) there exists a unique solution of problem (1.5). In particular, the opera-
tor A: D(A) — L*(0,1) is non positive and self-adjoint in L*(0,1) and it gene-
rates an analytic contraction semigroup of angle w/2. Moreover, let ug € D(A);
then

h e Wh(0,T; L%(0,1)) = u € C(0,T; L*(0,1)) N C([0,T]; D(A)),
he L*(Qr) = ue H'(0,T; L*0,1)).

Proof. Observe that D(A) is dense in L?(0,1). The existence of the unique
solution follows in a standard way by a Faedo-Galerkin procedure, see, e.g.,
[42, Theorem 11.3], or [39, Theorem 3.4.1 and Remark 3.4.3]. Let us prove the
other facts.

A is non positive. By Proposition 2.3, Remark 5 and Lemma 2.6, for all
u € D(A) we have

1 )\ 1 1u2
—(Au,u)Lzm,l):—/ ((au/)' + bu) udx:/ a(u')*dx — )\/ ?dx > C|lull3,.
0 0 0

A is self-adjoint. Let 7' : L?(0,1) — L?(0,1) be the mapping defined
in the following usual way: to each h € L?(0,1) associate the weak solution

u="T(h) € H of
1 1
/ (au’v’ — /\%) de = / hv dz
0 b 0

for every v € H. Note that T is well defined by the Lax—Milgram Lemma via
Proposition 2.3, which also implies that T is continuous. Now, it is easy to see
that T is injective and symmetric. Thus it is self-adjoint. As a consequence,
A=T71:D(A) — L?0,1) is self-adjoint (for example, see [43, Proposition
A.8.2]).

A is m—dissipative. Being A non positive and self-adjoint, this is a
straightforward consequence of [17, Corollary 2.4.8]. Then (A4, D(A)) generates
a cosine family and an analytic contractive semigroup of angle g on L?(0,1)

(see, for instance, [3, Examples 3.14.16 and 3.7.5]).
The additional regularity is a consequence of [17, Lemma 4.1.5 and Propo-
sition 4.1.6] in the first case, and of [2, 6.2.2 and 6.2.4] in the second one. [
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3 Carleman estimates for singular/degenerate
problems

In this section we prove one of the main result of this paper, i.e. a new Carleman
estimate with boundary terms for solutions of the singular/degenerate problem

v + (avg), + ﬁv =h(t,x) =h, (t,x)€ Qr,

v(t,0) = v(t,1) =0, t e (0,7),
o(T,z) = vr(z),

(3.13)

which is the adjoint of problem (1.5).
On the degenerate function a we make the following assumption:

4
Hypothesis 3.1. Hypothesis 2.5 holds. Moreover, if K; > 3 then there exists
a constant 6 € (0, K] such that

(3.14)

. a(x) { is non increasing on the left of z = =z,
x

|z — zo|? is non decreasing on the right of z = zg.
. 3 L .
In addition, when K; > — the function in (3.14) is bounded below away from 0

and there exists a constant ¥ > 0 such that
ld/ ()| < S|z — 20|73 for a.e. x €0,1]. (3.15)
Moreover, if A < 0 we require that
(x — xo)b/ () >0 in [0,1]. (3.16)

Remark 7. If a(z) = |z — 2|51, then (3.14) is clearly satisfied with § = K.
Moreover, the additional requirements for the sub-case K; > 5 are technical

ones and are introduced in [30] to guarantee the convergence of some integrals
(see [30, Appendix]). Of course, the prototype a(x) = |z — x| satisfies again
such conditions with # = K. Finally, (3.16) is clearly satisfied by the prototype
b(z) = |x — zo|%2.

To prove Carleman estimate, let us introduce the function ¢ := O, where

— T

O(t) := ﬁ and ¢(z):=¢ {/ﬂ: ya(y)ody - 02} ) (3.17)

where co > sup / Y 7( :jo dy and ¢; > 0 (for the observability inequality ¢; will
0,1 Jz, Y
be taken sufficiently large, see Lemma 4.1). Observe that ©(t) — +oo0 ast —
0F,T~, and clearly —cjco < < 0.
The main result of this section is the following

14



Theorem 3.1. Assume Hypothesis 3.1. Then, there exist two positive constants
C and sg, such that every solution v of (3.13) in

V= L*(0,T;H.,(0,1)) N H'(0,T;H) (3.18)

satisfies, for all s > sy,

2
/ (s@a(vm)2 + 53@3(50%)”2> eXdadt

a
T =1
<C / h2e**?dxdt + scl/ [a@e%“’(t’w) (x — xo)(vm)th} .
T 0

Remark 8. In [46] the authors prove a related Carleman inequality for the non
degenerate singular 1-D problem

A
vt—l—vmw—k%—i-xfﬁv:h (t,m)EQT,
o(t,0) = v(t,1) =0 te(0,7), (3.19)
(T, z) = vr(x) x € (0,1),

where 8 € [0,2). When u =0 and z¢ = 0, such an inequality reads as follows:

2 2 1
/ <s3@3x2v2 + f@% + 561;> eV dadt < f/ h2e®Y dxdt,
- 2 x 2 g2/3 2 Jor

(EQ

where U(x) = 5~ 1 < 0in [0,1]. Actually, it is proved for solutions v such
that

v(t,z) =0 for all (¢t,2) € (0,T) x (1 —n,1) for some 5 € (0,1). (3.20)

However, in [46, Remark 3.5] the authors say that Carleman estimates can be
proved also for all solutions of (3.19) not satisfying (3.20). We think that this
latter situation is much more interesting, since by the Carleman estimates, if
h =0, then v = 0 even if (3.20) does not hold.

The proof of Theorem 3.1 is quite long, and several intermediate lemmas
will be used. First, for s > 0, define the function

w(t,z) = eyt 1),

where v is any solution of (3.13) in V; observe that, since v € V and ¢ < 0,
then w € V and satisfies

(=) + (ol w)), + AL =k, (1) € 0,T) x (0,1),
w(t,0) = w(t, 1) =0, te(0,7), (3.21)
w(T,z) = w(0,z) =0, z € (0,1).

15



As usual, we re—write the previous problem as follows: setting

Lv :=v + (avz)z + )\% and Lgsw = e*?L(e”*%w),

then (3.21) becomes

Lsw = e*%?h,
W(t,O) = w(tv 1) =0, te (OvT)a
w(T,z) =w(0,2) =0, ze€(0,1).

Computing Lsw, one has

Low=Lfw+ L;w,

where w
L;"w = (awg), + )\3 — Sprw + SQGWiwv
and
L;U} = Wt — QSQSDIU}:E - S(QSOI)IU”
Of course,

2w L) < 2Lt L) + 1B + I vlen o
= ||L8w||%2(QT) = ”hesgoH%Z(QT)’

where (-,-) denotes the scalar product in L?(Qr). As usual, we will separate
the scalar product (LT w, L7 w) in distributed terms and boundary terms.

Lemma 3.1. The following identity holds:

(Lyw, Liw)

S

= 5/ gottw2dmdt—232/ aapxapmde;vdt
T T

+ s/ (20 Qe + ad' py) (wy ) dadt

(D.T.}
+33/ (20000 + ' 0p)a(py)?wdrdt
T
/
— S\ acpgb w?dxdt
Qr b
T =1 s ! 2 =T s? [ 2. 21t=T
+ [ lawswgzZide =5 [ wtedSde+ G [ lalenPut)Slar
0 0 0

T
—|—/ [—sgoz(awz)2 + s2appaw? — s3a2(gam)3w2 — s)\afz wﬂiiédt {B.T.}
0

T r—1 1 1 2 1 2 =T
+ o [—Sa(a(pw)wwww]wzodt_i 0 |:a(wz) _/\%w :|t:0dx.

(3.23)
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Proof. Computing (LTw, L w), one has that

(Lfw,Lyw) =1 + I+ I3+ Iy,

where
= / (awg )z — sprw + sza(gog;)Zw)wtdxdt,
Qr
= / (awy), — sprw + sza(cpm)zw) (—2sap,w, )dzdt,
Qr
/ (awg )z — sprw + sga(goi)Qw) (—s(apy)w)dzdt,
Qr
and

Iy =\ E(w,g — 28ap Wy — s(acpx)xw)dxdt.
Qr b

By several integrations by parts in space and in time (see [1, Lemma 3.4], [29,
Lemma 3.1] or [30, Lemma 3.1]), and observing that fQ a(apg) grwwydrdt =0
(by the very definition of ¢), we get

I +1;+ I3
s

= */ @ttw2dxdt—232/ a<p$<ptzw2dxdt
2 Jo, .

+ s/ (202 ppe + ad' 0,)(w, ) dadt
T

—|—s3/ 2004 + a0 )al(g )2 widrdt
T( ¢ Pa)a(es) (3.24)

T 1 2 1
+/ [awmwt]iiédt—f/ [w2g0t]§§0de+S—/ [a(p,)?w? =T at
0 2 /o 2 Jo

T
+/ [~ sa(aws)? + s*aprpew® — s%a*(pa) w?]7Zpdt
0
,1t=T

+ / - salag,) w,7mbdt - / 1 la(w.)?| _ dx.

t=0

17



Next, we compute I4:

1
I, =) (/ 2b( ) dxdt — 23/ %‘wamwdxdt
Qr .
Qr
1
=\ (/ ;b[wﬂigdx —s %@m(w2)zdxdt - s/ W;)mw%xdt)
0 Qr i
1 T B
= i 21t=T _ g 9 z=1
_)\</O Qb[w Jico dx S/O [baprL:Odt
+S/ (aggr) deCCdt — S/ be)wadl_dt>
' T x=1 ’
=A / i[ﬂﬂi%dm — 3/ {C“Px w2:| g — s/ apgb dadr )
o 2b ) b o o, =

(3.25)
Adding (3.24)-(3.25), (3.23) follows immediately. O

For the boundary terms in (3.23), we have:

Lemma 3.2. The boundary terms in (3.23) reduce to
r =1
—s/ [@(awz)Qz/)'] ::0 dt.
0 a=

Proof. As in [29] or [30], using the definition of ¢ and the boundary conditions
on w, one has that

T
/ [awywy)? Odt ;/ [w A de—i——/ <p12 2 dt
0

T
+/ [—spz(aws)? + s*apip,w? — s3a*(p,) w250 dt
0

_|_/0T[ sa(apy)zww, |5 =gdt — ;/01 [a(wz)ﬂ

t:de = S/T [©(aw,)*Y'] =t
0 z =0 """
(3.26)
Moreover, since w € V, w € C([O, T); 7-[); thus w(0, z), w(T, z) are well defined,
and using the boundary conditions of w, we get that

19 t=T
—w? dr = 0.
[ 5.

T agom x=1
Now, consider the last boundary term s\ / [ wz] dt. Using the
0 =0

t=0

T / =1
definition of ¢, this term becomes s/\/ [@m;wz] dt. By definition of v,
0 =0

18



ary’

, w? is bounded in (0,7). Thus, by the boundary conditions

T / =1
s/\/ [@wwﬂ dt = 0.
0 b

=0

the function ©

on w, one has

Now, the crucial step is to prove the following estimate:

Lemma 3.3. Assume Hypothesis 3.1. Then there exist two positive constants

so and C such that for all s > so the distributed terms of (3.23) satisfy the
estimate

S

f/ @tthda:dt—252/ Py prpwdrdt
2 T T

+ s/ (202 ppe + ad' 0,)(w,)*dadt
T

T 1 ayp I
+ 83 / / 200z + ' pr)a( ) widzdt — s)\/ b; widxdt
o Jo Qr
C 3

)2
> —s Oa(w,)*dxdt + 0—53 @BMde:ﬂdt.
2 Jor 2 Qr a

Proof. Proceeding as in [29, Lemma 3.2] or in [30, Lemma 4.1], one can prove
that, for s large enough,

S

— / opw?drdt — 252/ APy Prpwdrdt
2 T T
+ s/ (202 Py + ad'v,)(w,)*dxdt

T

+ s° / (QGSOJCJC + a/@z)a(Qm)Z’del‘dt
T

3 )2
> gs Oa(w,)?dzdt + 0—83 @BMdeajdt,

Qr Qr a

where C is a positive constant. Let us remark that one can assume C' as large
as desired, provided that sy increases as well. Indeed, taken k > 0, from

3
Cs Ay +C3s3 Ay — kC%Al n k3C3%A2,

we can choose s, = ksg and C’ = kC large as needed.

20
Now, we estimate the term —s)\/ ac; w?dzdt. If X < 0, the thesis

T

follows immediately by the previous inequality and by (3.16). Otherwise, if
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A > 0, by definition of ¢ and the assumption on b, one has

/ 1/
—sA / LZLANE P P CLL
Qr b Qr b

_ I
Muﬂdmdt

w?dzdt

= —s\c; © 5
Qr b

> —SAclKg/ %dexdt.

Since w(t,-) € H for every ¢ € [0, 1], for w € V, by (2.9) we get

/ %wzdm‘dt <C* Oa(wy)*dxdt.
T Qr

Hence,
a%cb/ 2 * 2
—s/\/ Tw dxdt > —shc1 KoC Oa(w,)*dxdt,
Qr Qr
and we can assume, in view of what remarked above, that this last quantity is
greater than

—59 Oa(wy)*dxdt.
4 Jor

Summing up, the distributed terms of fQT LYwL;wdzdt can be estimated as

3 2
{D.T.} > %s Oa(w,)*dzdt + %83 @3ww2dﬂcdt,
Qr Qr

for s large enough and C' > 0. O

From Lemma 3.1, Lemma 3.2 and Lemma 3.3, we deduce immediately that
there exist two positive constants C' and sg, such that for all s > s,

/ LIwL;wdzdt > Cs / Oa(w,)*dxdt

T T
2 T
ros [ e @ TI pgear / [©a2w?y!) ) dt.
Qr a 0 =
(3.27)

Thus, a straightforward consequence of (3.22) and of (3.27) is the next result.
Lemma 3.4. Assume Hypothesis 3.1. Then, there exist two positive constants
C' and sqg, such that for all s > sq,

2
s Oa(wy)*dzdt + s* @3Mw2dﬂcdt

Q Q a
’ B B (3.28)
<C ( / h?e** (o) dzdt + s / [©a®(we)*y']_, dt.) :
T 0
Recalling the definition of w, we have v = e™*?w and v, = —sOy’e 5¥w +

e *?w,. Thus, substituting in (3.28), Theorem 3.1 follows.
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4 Observability results and application to null
controllability

In this section we shall apply the just established Carleman inequalities to ob-
servability and controllability issues. For this, we assume that the control set w
satisfies the following assumption:

Hypothesis 4.1. The subset w is such that

(i) it is an interval which contains the degeneracy point:
w=(a,B) C (0,1) is such that z¢ € w, (4.29)
or

(ii) it is an interval lying on one side of the degeneracy point:

w = (a, B) C (0,1) is such that z¢ & ©. (4.30)

On the coefficients a and b we essentially start with the assumptions made
so far, with the exception of Hypothesis 2.4, and we add another technical one.
We summarize all of them in the following:

Hypothesis 4.2.

e Assume one among Hypotheses 2.1, 2.2 or 2.3 with K; + K5 < 2 and
A< 1/C.

e If A <0, (3.16) holds.
e If Ky > 4/3, condition (3.14) holds, and if Ky > 3/2, (3.15) is satisfied.

o If Hypothesis 2.1 or 2.2 holds, there exist two functions g € L{2.([0,1] \

loc

{z0}), b € WL>([0,1] \ {x0}) and two strictly positive constants go, bho

loc

such that g(x) > go for a.e. x in [0,1] and

_2% (/f a(t)dt + bo) +Va(@)g(x) = b(z, B) (431)

for a.e.x, B € [0,1] with z < B < &g or g < x < B.

Remark 9. Since we require identity (4.31) far from g, once a is given, it is
easy to find g, b, go and b with the desired properties. For example, if a(z) :=
|z — x0]* a € (0,1), we can take g(z) = go = ho = 1 and h(z,B) = |z —
zo| 271 {%sign(w —z9)(B+1—2x)+ |z — ;1:0|}, for all x and B € [0,1], with
x < B<zgorzy <z < B. Clearly, g € L2 ([0, 1]\ {zo}) and § € W,2>([0, 1]\
{zo}; L7°(0,1)).
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Now, we associate to problem (1.5) the homogeneous adjoint problem

A
ve + (avz)z + @v =0, (t,z)€Qr,
v(t,0) =v(t,1) =0, te (0,7), (4.32)
o(T, z) = vr(z),
where T' > 0 is given and vr(z) € L%(0,1). By the Carleman estimate in

Theorem 3.1, we will deduce the following observability inequality for all the
degenerate cases:

Proposition 4.1. Assume Hypotheses 4.1 and 4.2. Then there exists a positive
constant Cr such that every solution v € C([0,T]; L?(0,1)) N L*(0,T;H) of
(4.32) satisfies

1 T
/ v*(0,z)dx < C’T/ /v2(t,x)dzdt. (4.33)
0 0 w

Using the observability inequality (4.33) and a standard technique (e.g., see
[38, Section 7.4]), one can prove the null controllability result for the linear
degenerate problem (1.5):

Theorem 4.1. Assume Hypotheses 4.1 and 4.2. Then, given ug € L*(0,1),
there exists h € L*(Qr) such that the solution u of (1.5) satisfies

w(T,z) =0 for every z € [0,1].
Moreover

1
/ h2dxdt < C/ ud(z)dz,
Qr 0

for some positive constant C.

4.1 Proof of Proposition 4.1

In this subsection we will prove, as a consequence of the Carleman estimate
proved in Section 3, the observability inequality (4.33). For this purpose, we
will give some preliminary results. As a first step, consider the adjoint problem

vy + Av =0, (t,z) € Qr,
v(t,0) =v(t,1) =0, te(0,7), (4.34)
o(T,x) = vp(x) € D(A?),

where

D(A?) = {u € D(A) : Au € D(A) }
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and Au := (aug), + )\%. Observe that D(A?) is densely defined in D(A) for

the graph norm (see, for example, [9, Lemma 7.2]) and hence in L?(0,1). As in
[12], [13], [26] or [29], define the following class of functions:

W= {v is a solution of (4.34)}.

Obviously (see, for example, [9, Theorem 7.5])
wc CH[0,T]; H;,(0,1)) CcV U,
where, V is defined in (3.18) and
U :=C([0,T]; L?(0,1)) N L?(0,T;H). (4.35)
We start with

Proposition 4.2 (Caccioppoli’s inequality). Assume Hypothesis 2.5. Let w'
and w be two open subintervals of (0,1) such that w’' CC w C (0,1) and zg € &'.
Let o(t,x) = O(t)Y(x), where © is defined in (3.17) and

Te C([O7 1]7 (—OO, O)) N Cl([oa 1] \ {170}, (—OO, O))

is such that B
T, < —1 1 4.
[T,| < 7 in [0,1]\ {xo} (4.36)

for some ¢ > 0. Then, there exist two positive constants C and sg such that
every solution v € W of the adjoint problem (4.34) satisfies

T T
/ /(Um)2e2wdmdt < C/ /vzdxdt, (4.37)
0 w’ 0 w

Of course, our prototype for T is the function 1) defined in (3.17), since

for all s > sg.

|z — o] <o

@l = e[ s e

by Lemma 2.1.

Proof. The proof follows the one of [29, Proposition 4.2], but it is different for
the presence of the singular term.
Let us consider a smooth function £ : [0,1] — R such that

0<¢(x) <1, forallzel0,1],
{(z) =1, rew,
&(x) =0, z€[0,1]\w.
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Since v solves (4.34), we have

T 1
d
0= / & / e vidy | dt = / 25€%pyc> P 4 262> P puydudt
0 dt 0 T

=2 E2spe® v dadt + 2 £2e2%%y (—)\9 - (avw)w) dzdt
Qr Qr b

2

= 2/ Espe®Pvidadt — 2\ erzs“o%dxdt + 2/ (£2e*%%0) yav, dxdt.

(4.38)

Qr
If A <0, then, differentiating the last term in (4.38), we get
2
2 £2e**%a(vy ) dadt = 2\ fzezs‘ov—d:cdt -2 252 v dadt
Qr Qr b Qr
— 2/ (£2e*5%) savv dadt
T

<=2 Espe?Pvidadt — 2/ (€2e*%) yavv,dxdt,
QT T

and then one can proceed as for the proof of [29, Proposition 4.2], obtaining the
claim.

Otherwise, if A > 0, fixed € > 0, by the Cauchy—Schwarz inequality, we have
for w = £e¥Pv

1
/ e 2500 dac < C*/ a(w,)?dz
0

1 1
<C. [ dleernn ot v [ @eta(w,) s
0 0

for some C. > 0. Moreover,
1
(669), 12 < Ol + 2(n o) < Ova (147

for some positive constant C. Indeed, €?*¢ < 1, while s?(p,)%€?*¥ can be
estimated with

c c
(1)< =
(—max T)? 2 ) < a
by (4.36), for some constants ¢ > 0. Thus
2\ / g2e2e dxdt <20C. [ a[(€e*?),]*vidadt
T b Qr

+2Xe §262wa( )2 dxdt (4.39)

T
< C/ /’UQdSCdt—l-Q)\E 262“‘%( ) dxdt,
Qr
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for a positive constant C' depending on €. Hence, differentiating the last term
in (4.38) and using (4.39), we get

2/ 2e*%a(v, ) dadt = 2) £%e 2500 dacdt -2 Espe®Pv dadt
T QT Qr
- 2/ (£2e%%%) pavv,dxdt

T
< C’/ /Udedt+2/\s/ £2e**%a(v, ) dadt
0 w Qr

-2 2spe® P’ dedt — 2/ (£2e25%) pavv dadt.
Qr T

Thus, applying again the Cauchy-Schwarz inequality, we get

T
(2—- 2)\5)/ £2e?*%a(v, ) dadt < C’/ / videdt — 2 | spre* v dudt
T 0 Jw

Qr
—2/ (£2e2%%) pavv,drdt
Qr

T T
< C/ /v2d;vdt—2/ /525@t625¢v2d9€dt+25/ / (\/5565*’7)1)2(1;56%
w 0 w
52 23@
+D/ /( JEv) dxdt
Eese
T
= C/ /de:vdt—2/ /523%623“’1}2dxdt+25/ / 2e25? (v, ) 2dadt
w 0 w

62 2s¢
+D/ / 2 28; av2dzdt

for some D, > 0. Hence,

T

2(1 757)\5)/ /52 259 (v, ) dadt < C/ / v2dxdt
52 2€¢

—2/ /f spre?Pv?dedt + D, / / £ 28@ aUdedt

Since zg € &', then
T
2(1 —e — Xe)inf a(x)/ / e**¢ (v, )2 dxdt
w’ 0 w’
T

2(1—e— )\6)/ / £2e**a (v, ) dadt

<2(1—e—Xe) / / 52625“% dxdt
52 25@
< C’/ / vidrdt — 2/ / E2spre**Pvidrdt + D, / / 2c7e avgdxdt
0 0 0
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Finally, we show that there exists a positive constant C' (still depending on
¢) such that

! UL,
—2/ /525<pt625“"v2dxdt—|—Dg/ /Tmﬂdwdt
0 w 0 w 5 e=s¥

T
< C/ /dede
0 w

so that the claim will follow. Indeed,

1

sp/*(— max T)1/47

|spee?*?| < c

10| < ¢©%/* and

spre®| < es(~T)OMde2e < S

(s(=7))
for some constants ¢ > 0 which may vary at every step.

2 2sp 2
On the other hand, M
5262590

can be estimated by
C (€% + 5°(92)*€**?) X,

and proceeding as before, we get the claim, choosing € small enough, namely
e<(1+N"L O

We shall also use the following

Lemma 4.1. Assume Hypotheses 4.1 and 4.2. Then there exist two positive
constants C and sg such that every solution v € W of (4.34) satisfies, for all
S Z S0,

32 T
/ (s@a(vgg)2 + 53@3@50)1)2) e dxdt < C/ / vidxdt.
T 0 w

Here © and ¢ are as in (3.17) with ¢y sufficiently large.

Using the following non degenerate classical Carleman estimate, one has
that the proof of the previous lemma is a simple adaptation of the proof of [30,
Lemma 5.1 and 5.2], to which we refer, also to explain why ¢; must be large.

Proposition 4.3 (Nondegenerate nonsingular Carleman estimate). Let
z be the solution of

{zt +(az)e + A7 =h € L*((0,T) x (4, B)), (4.40)

z(t,A) =z(t,B) =0, t € (0,T),

where b € C([A, B]) is such that b > by > 0 in [A, B] and a satisfies
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(a1) a € WHY(A,B), a > a9 > 0 in (A, B) and there exist two functions
g€ LY(A,B), h € WL (A, B) and two strictly positive constants go, ho
such that g(x) > go for a.e. x in [A, B] and

__d(x)
2+/a(x)

or

B
(/ g(t)dt + h()) ++va(z)g(z) =h(z) for a.e. z € [A, BJ;

(a2) a € WH(A,B) and a > ag > 0 in (A, B).

Then, for all A € R, there exist three positive constants C', r and sqg such
that for any s > sg

T B T B
/ / (50(2,)? + s70%22) 2 Pdzdt < C </ / h%e*®dxdt — (B. T)) )
0o Ja 0o Ja

(4.41)
where
T B e=B
sr/ [a3/2628@9 (/ g(T)dr + f)0> (zw)ﬂ dt, if (a1) holds,
(B. T,) = OT z T=A
sr/ [aerq)@eTC(vm)Q]zzj dt, if (az) holds.
0

Here the function ® is defined as ®(t,x) := O(t)p(x), where © is as in (3.17),

R L .
o) = —r [/A \/@/t g(s)dsdt—i—/A mdt] —¢, if (a1) holds,

ers®) ¢, if (az) holds,
(4.42)
and
D!
=0 —dt.
)= [
Here 0 = ||la’||L(a,B) and ¢ > 0 is chosen in the second case in such a way that
max p < 0.
[4.B]

Proof. Rewrite the equation of (4.40) as z; + (az;)s = h, where h := h — /\%.

Then, applying [30, Theorem 3.1], there exist two positive constants C' and
sg > 0, such that

T B T B
/ / (50(2,)? + s°0%2%) 2 Pdzxdt < C </ / h2e*®dxdt — (B.T.)) ,
0 A 0 A

(4.43)
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T B
for all s > so. Using the definition of h, the term / / e2**h2dzdt can be

estimated in the following way:

/ / h2e25® dadt < 2 / / h2e25® dudt + 202 / / e*Pdrdt. (4.44)

Applying the classical Poincaré inequality to w(t, ) := e*®2(t, x) and observing
that 0 < inf © < © < ¢©2, one has

2)\2// QSq)dxdt—?)?/ / 7dxdt<2b20// Wy ) dxdt

< C’/ / (520222 + (2,)%)e?* P dadt
0o Ja

T B T B 3
g/ / *@(Zx)2€2sq>d(£dt+/ / Z0322e** P dxdt,
0 A 2 0 A 2

for s large enough. Using this last inequality in (4.44), we have

T B _ T (B T B
/ / h2e®® dxdt < 2 / / eZ P h2dxdt + / / 20(zy)%e® P dadt
0o Ja 0 Ja 0o Ja 2

T B3
+/ / 20322252 dxdt.
o Ja 2
(4.45)

Using this inequality in (4.43), (4.41) follows immediately. O
In order to prove Proposition 4.1, the last result that we need is the following;:

Lemma 4.2. Assume Hypotheses 4.1 and 4.2. Then there exists a positive
constant Cp such that every solution v € W of (4.34) satisfies

1 T
/ v?(0,2)dx < C’T/ /vz(t,m)d:ﬂdt.
0 0 w

Proof. Multiplying the equation of (4.34) by v; and integrating by parts over
(0,1), one has

1
v
0=/ v + (avg)z + A— vdx:/
O(t (ava)s + A2 ) 01 0
1 1
:/0 v?dw—i—[avxvt]izé—/o VLV dx + th/

1 1
1d \d
2
— do — == A4 d
/Ovtxzdto()+2dt bx

1 (vf + (avg) v + /\%) dx



Thus, the function

1 1,2
t— / a(vy)?dx — )\/ —dz
0 o b

is non decreasing for all ¢ € [0, T]. In particular,

1 1 2(0,z) ! "t )
[y et 0.ayas = [5G < [t Pt e =2 15

(by Proposition 2.2)

1
<1+ |)\|C*)/ a(vy)2(t, 7)dz.
0
. o . T 3T _ ,
Integrating the previous inequality over YRk O being bounded therein, we
find

1 v2)%(0, z)dx — ' 22(0,2) x
| a@ 0.0 - [T 55

0
2 ot
< T(1+|)\|C*)/ / a(v,)?dxdt (4.46)
z 0
4

e
< CT/ / 50a(vy)?e? P dxdt.
T Jo

Hence, from the previous inequality and Lemma 4.1, if A <0

/01 a(v,)?(0,z)dx < /01 a(vy)?(0,2)dx — /\/01 UQb(&)x)dx < C/OT/wvgdxdt

for some positive constant C' > 0.
If A > 0, using again Lemma 4.1 and (4.46), one has

/ol a(v2)?(0, @)dx — A /01 UQb(&)x iz 0 /OT /w et o

Hence, by (2.9) and (4.47), we have

/01 a(v,)?(0,z)dx < )\/01 vl((()ﬂz)x) dx + C/OT/WUdedt

1 T
< /\C'*/ a(vx)Z(O,x)dx—FC'/ /Udedt.
0 0 Juw

Thus . T
(1- )\C*)/ a(v,)?(0, x)dx < C/ / v?dxdt,
0 0 w

for a positive constant C'. In every case, there exists C' > 0 such that

/] ' a(02)(0.2)dz < C A ! /w Vdad. (4.48)

(
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The Hardy- Poincaré inequality (see Proposition 2.1) and (4.48) imply that

/01 ((x_axo)Q)l/‘g v*(0,z)dx < /01 ﬁﬁ(&x)dw

1
< CHP/ p(v2)?(0, z)dz
0

1
< CCHP/ a(v,)?(0, z)dx
0

T
< C/ /1}2d$dt,
0 w

4
for a positive constant C. Here p(z) = (a(z)|z — zo|*)'/? if K1 > 3 while

|4/ 3 /3 otherwise, and ¢, C' are obtained by Lemma 2.1.

p(x) = |z — a9 I[%Eﬁ(a

s

Again by Lemma 2.1, we have

Hence ) .
Cg/ v(0,2)%dx < C/ /U2d£€dt
0 0 w

and the claim follows. O

Proof of Proposition 4.1. It follows by a density argument as for the proof of
[29, Proposition 4.1]. O
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