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Abstract
We study the differential polynomial identities of the algebra under the derivation
action of the two dimensional metabelian Lie algebra, obtaining a generating set of the -
ideal they constitute. Then we determine the -structure of their proper multilinear spaces
and, for the minimal cases 2 3, their exact differential codimension sequence.
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codimensions Lie algebras Derivation action

Mathematics Subject Classification (2010) Primary 16R50 Secondary 16W25 17B60

1 Introduction

Differential polynomial identities constitute a natural and direct generalization of the notion
of polynomial identities of an algebra. They take into account the identical relations holding
for an algebra whose structure is enriched by the action of a Lie algebra of derivations,
and constitute a trending topic within the PI-Theory of associative algebras (see [3] and its
bibliography). Besides ordinary and differential polynomial identities, other similar notions
have been brought up: graded identities, trace identities, -identities, -identities all have
their own relevance, not just for their own intrinsic interest. In fact they are generally easier
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to discover, and each of these types of identities completely determines the ordinary ones,
at least in principle.

It must be said that in present days an effort towards a unifying approach among different
types of identities is being pursued. It took its steps from Berele’s influential paper [4],
and has its homeland in the settings of Hopf-algebra actions. For instance, in the specific
case of differential identities of an algebra under the derivations of a Lie algebra ,
the Hopf algebra involved is the universal enveloping algebra of . Even when no straight
Hopf-algebra action is possible, such as for instance for -identities, one can consider a
generalized Hopf-algebra action to keep on track ([4], Remark at page 878. See also [2],
Section 7). Of course this does not mean that differences cease to exist: as always happens,
general theories are built upon concrete situations, so differential identities, as well as other
types of identities, still maintain their characteristic features when dealing with specific
problems.

In the present paper we consider the smallest nonabelian Lie algebra, namely the
metabelian two-dimensional Lie algebra , acting on the algebra by derivations.
We give a faithful representation of as the Lie algebra generated by two suitable inner
derivations of , which turns out to be very convenient to computational tasks.
Our main result consists in providing a full list (Definition 3.4) of differential polynomials,
generating all differential polynomial identities of with respect to this -action
(Theorem 4.11). Then we pass to study the differential multilinear spaces related to
through their -structure. The key to these results is afforded by the use of proper poly-
nomials, a powerful tool re-discovered and developed mainly by Drensky, who pointed out
their extreme usefulness in several papers. More precisely, we determine the proper differ-
ential cocharacter sequence of recursively (Proposition 5.1 and Theorem 5.8) and
explicitly (Corollary 5.9).

The last section of our paper is devoted to work out the small cases 2 and 3.
In the former we regain the results of [11] as byproduct of our general description. On
the other hand, 2 is too small to depict the effective impact of the -action on the
differential polynomial identities in general cases. All its characteristic features are instead
already present when 3, so this case is worth studying to get a more concrete idea of
the general one.

2 Algebras with Derivations and Differential Polynomial Identities

Throughout the paper let denote a field. With the term -algebra we mean an asso-
ciative -algebra. If is an -algebra, let denote the full algebra of -linear
trasformations from to itself. A derivation on is any satisfying

1 2 1 2 1 2 for all 1 2 . We will adopt the exponential notation
for derivations throughout the paper. The set of all derivations on is a vector subspace of

, turned into a Lie algebra with respect the usual Lie product
between maps, and is denoted Der . Notice that, since we use a right action, linear maps
are composed from left to right. If is a Lie algebra over , it acts on as an algebra of
derivations if is a Lie module of . Actually, denoting L the universal enveloping alge-
bra of , this amounts to turn into a right L-module. We briefly recall that L is
uniquely determined, and the Poincarè–Birkhoff–Witt Theorem provides a natural embed-
ding of in L and an explicit basis of L starting from any linearly ordered basis B of ,
namely the set B of all semistandard products 1 2 (that is: 1 2 ) of
elements B.
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For a fixed Lie algebra , it is possible to define a free object for the class of -algebras
on which acts as an algebra of derivations ( -algebras, for short). Let us start with a
countable set of free indeterminates , and consider the tensor algebra of the vector space

L. It is a free algebra generated by the simple tensors for and B.
We will denote by and call it a letter; moreover, we may identify the indeterminate

with the letter 1 . We will denote by the set of free generators (letters) ,
and by the free algebra they generate. Since , the free algebra is a
subalgebra of . Actually, is free on the set in the class of -algebras, in the
sense that if is any -algebra, any map can be uniquely extended to an -
algebra homomorphism , that is an algebra homomorphism extending and
commuting with the derivation action of (and L). Thus is called the free -algebra
on . Each element of can be thought as a polynomial in the noncommutative letters

. If 1 we will say is a differential letter, while is an ordinary letter. When
1 , we say that the is the name of the letter . A polynomial
is called ordinary if just ordinary letters occur in , otherwise it is called

differential.
Now let be an -algebra. The following notions have been outlined in [4] in the gen-

eral settings of Hopf algebra actions, and employed in [11] in the more specific situation
of a derivation action. Let be the set constituted by the differential polynomials lay-
ing in the kernel of all -homomorphisms . Then is an ideal of

invariant under all the -endomorphisms of , called the -ideal of , and
its elements are called the -polynomial identities of . Notice that the ordinary -ideal
of , namely the set of all (ordinary) polynomials of vanishing under all alge-
bra homomorphisms from to , is contained in . If G is any subset of ,
the least -ideal of containing G is called the -ideal generated by G . One of
the main tasks in studying the differential polynomial identities of an algebra is to find a
generating set for .

In order to describe a smaller set of differential polynomials is needed when
char. 0. In fact standard Vandermonde arguments and multilinearization process allow
reducing the description to listing the multilinear differential polynomials contains.
Recall that a polynomial is multilinear of degree if each name among 1
occurs exactly once in any monomial of , and no other name occurs. As in [11] we denote

span 1
1 B , the space of multilinear differential

polynomials of degree . Moreover, let 0 . Then is the least -ideal

of containing the set . In other words, is generated, as -ideal,
by the multilinear -polynomials it contains. Actually, each is more than a vector space:
the natural left -action for all turns into an -module, having

as a submodule. The factor module is therefore an
-module as well, and its module structure can be described through its -character, called

the -th -cocharacter of . Though it essentially describes the structure of the non
identity multilinear polynomials, the intere -structure of can be recovered by
complete reducibility. The associated number sequence dim , for , is
called the -codimension sequence of .

When dealing with unitary algebras, a further strong reduction is actually available.
For any 1 2 define the commutators of length 2 by 1 2 1 2 2 1
and, for 3, recursively define the commutators of length by 1 2

1 2 1 . The unitary subalgebra of generated by the commutators of
any length will be denoted , and we will call its elements -proper polynomials. The

189Differential Polynomial Identities of Upper Triangular Matrices Under...



relation between and can be clearly described through Lie algebras: let L be
the free Lie algebra generated by and let L L L be its derived ideal. Then
L is also a free Lie algebra, and L is spanned by modulo L . By Witt’s Theorem,

is the universal enveloping algebra of L , while is the universal enveloping alge-
bra of L . Furthermore, let us fix a linear order in such that the ordinary letters precede
the differential ones. Then the semistandard commutators 1 2 (that is such that
1 2 3 ) form a basis for L (see [1], Corollary of Proposition 8, (ii), p.
55), and can be completed to a basis for L by adding the elements of . The linear order-
ing on can be extended to a total order on this basis such that elements of precede
any commutator. Then the semistandard polynomials , where is a semistandard mono-
mial on and is a semistandard sequence of the L -basis, constitute a basis for
by the Poincarè-Birkhoff-Witt Theorem.

We actually need just polynomials which are proper with respect to ordinary letters,
that is elements of the subalgebra of generated by commutators and differential
letters. Thus we may consider the differential letters as commutators of length 1, similarly
to what has been made in [6], and consider normal semistandard commutators (nssc’s for
short) of length 1: a commutator 1 2 is normal if at most a single differential
letter occurs in it, and in this case it is 1. It has been proved in [6], Proposition 7, that the
nssc’s constitute an -basis for . It can be proved that is generated by the -
proper polynomials it contains. Even simpler, we just need multilinear proper polynomials.
In fact, let for all and let be the union of these sets. Then
is generated by .

Although proper polynomials could be dealt with in much greater generality (see [7],
section 4.3 for the basic definitions and results on proper polynomials; polynomials proper
with respect to a distinct set of letters were introduced in [8], Section 2), in this paper we
shall deal with multilinear polynomials only. As a consequence, the nssc’s we are going to
deal with are actually normal standard commutators (nsc for short), that is nssc’s such that
1 2 . Both in order to keep the paper as self-contained as possible and to
give a proof within our restricted assumptions, we prove

Lemma 2.1 is generated as -ideal by .

Proof Let be the -ideal generated by . Then . Since
generates , if then there must be polynomials such that
but , and we may choose one of minimal degree . It has to be a linear combination of
products where is a standard monomial on a subset of the ordinary letters 1
and is a product of commutators in the remaining letters, say

1

where none among the monomials involves the letter 1. Now let us consider the -
endomorphism of sending 1 in 1 and fixing all other indeterminates. Then

. By the way, just the polynomials may contribute to 1 2 :
indeed 1 participates in each , either occurring in a commutator of length 2 or as a
1-commutator, that is a single derived letter. In both cases, evaluates to zero. Therefore

is still multilinear in the remaining letters, belongs to and has
degree 1. Renaming the letters, we get an element in 1 . By minimality, it
must be in . Therefore , hence 1 , so mod .
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Since we may repeat the process on the minimal letter occurring among the , after finite
steps we get 0 mod , a contradiction.

3 A Spanning Set for L
n(Um)

In this paper we are interested in the only nonabelian 2-dimensional Lie algebra over .
It is also called the metabelian Lie algebra of dimension two, although this term may be
confusing. Indeed while in most cases the word metabelian means 2-solvable (see [1], p.
27, and [7], Remark 2.1.17, (iii) p. 22, but also, p. 117 for metabelian groups), sometimes it
is intended as 2-nilpotent (see [10], Definition 1.1).

It is well known (see for instance [12], p. 11) that if is a two-dimentional noncom-
mutative Lie algebra then there exists a basis of such that . Any linear
map such that is a Lie-homomorphism,
and induces a derivation action of on . Notice also that is injective as soon as

0. In this case we denote the algebra under the -action, to distin-
guish this structure from the natural algebra structure, which we will continue to denote by

. By [5], all derivations of are inner, so can be defined as soon as a cou-
ple of elements such that is chosen, where
is the inner derivation defined by . This amounts to turn into a right
L-module. Our real concern is, in fact, in the L-action on , in order to determine the
differential identities of .

From now on, we denote by the inner derivations of induced by 1 and
respectively, that is 1 and for all . Then and

satisfy the relations

2 2 0 0

hence . Therefore and generate a Lie subalgebra of the (Lie) algebra of -
endomorphisms of isomorphic to .

While the relation suffices to establish a Lie isomorphism between and the
Lie subalgebra of generated by the nonzero derivations and , the other
relations, namely 2 , 2 0 and (which, together with , implies
0) affect the concrete action of L over : it turns out that the relations 2 2

generate the kernel K of this action. Therefore the L-module structure of is equivalent
to the (right) module structure afforded by the factor algebra L K spanned by 1 and .

Example 3.1 Assign 23 and 33 . Again , defined
by and , is an injective Lie homomorphism, since . By the way,
while still holding 2 0, it is no longer true that 2 , 0 and hold. These
facts alter the computational behaviour of the L-action on because the generators of the
kernel change. The resulting L-module is equivalent to the previous one, that is the factor
algebra is isomorphic to the previous one, but the computations are more complex.

As a consequence of our choice, we get the following differential identities of :

2 2
.

Therefore the only nontrivial differential indeterminates involved in modulo
are just and . It holds
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Lemma 3.2 The polynomials 1 2 1 2 1 2 1 2 are in the -ideal generated by
2 2

and .

Proof Evaluating 1 2 one has

0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

modulo the listed identities. Replacing 1 by 1 one has 0
2

1 2 1 2 1 2, hence

1 2 0 as well.

Then just evaluate the polynomials 1 2
2
and 1 2

2
to get the remaining monomial

identities.

There are further basic -identities of , which can be easily checked:

• 1 2 , 1 2 ;
• 1 2 . A different writing of this polynomial is 1 2 1 2 ;
• 1 2 ;
• 1 1 ;
• 1 1 1 1 .

The last basic -identity of , involving a product of 1 commutators, is the following:

Lemma 3.3 1 1 2 2 1 1 1 1 .

Proof Denote for 1 1 and let be any substitution in
such that 1 2 0. Then its value belongs to span 1 1 2 . Hence just the

1 -entry of 1 contributes to 1 1 . By the way it is the same entry
as 1 , hence 1 2 1 1 2 1 0.

The polynomials listed so far constitute the candidate set of generators of . Let
us fix the notation:

Definition 3.4 Let I denote the set constituted by the following differential polynomials:
2 2

1 2 1 2 1 2 1 2 1 2 1 1

1 1 1 1 1 1 2 2 1 1 1 1

where all indeterminates belong to . Moreover, let denote the -ideal generated by I .

The -ideal is contained in , and we are going to prove that in fact the reverse
inclusion holds as well. As a first step, we are going to determine a set of polynomials
spanning modulo . The second step will be to prove their linear independence modulo

, in the next section.
As in [6] let us denote by B the subset of the basis of constituted by the products of
nssc’s, and let B , for all 1. Since the identity 1 1 ,

any product of normal standard commutators is in . Hence any element of can
be written, modulo , as a linear combinations of products of at most 1 nsc’s. Next let
us prove the following
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Lemma 3.5 Let be a nsc involving a -letter. Then 0 mod for all normal
commutators .

Proof If then 0 mod ; also, for any 1 and any 1
it holds 1 0 mod , since it follows from 1 2 under the
substitution 1 1 1 , 2 .

Now let 1 and use induction on : we just proved 0 mod
if 0, so consider 1 1 and let 1 1 . Assume

1 1 for all nsc’s . Then mod . Since
it holds 0 mod , and we are done.

The case 0 is completely analogous.

As a consequence, if involves a -letter and does not belong to then 1.
We can be more precise:

Lemma 3.6 Let 1 involve a -letter. Then 1 1 mod .

Proof The statement is trivially true for 1, and for 2 it follows from 1 2 .
So assume 3 and use induction: let 1 with . Notice that for
all 1 it holds 1 1 mod . Indeed, since is a
derivation and 1 1 1 it holds

1 1 1 1 1

1 1 mod

by the previous Lemma. Therefore the letters occurring in in positions 2 can be
permuted modulo . Then 1 1 . Now the conclusion follows from the
fact that mod .

There is a partial analogous of Lemma 3.5 holding for -letters:

Lemma 3.7 Let be a nsc involving an -letter. Then for all nsc’s it holds 0
mod .

Proof Just replace by in the proof of Lemma 3.5.

Instead, it is not true that 0. By the way, if B involves an -letter and is not
zero modulo , then 1 where 1 1 are ordinary standard commutators
and involves the only -letter in . Also, if 2 there is not an analogous of
Lemma 3.6 holding for -letters. Just the case of a product of 1 commutators provides
something similar:

Lemma 3.8 Let 1 1 1 involve an -letter. If is not zero
mod , and 1 are the indeterminates involved in 1 then
1 2 1 mod for some linear combination of ordinary
standard commutators in 1 .

Proof The statement is clearly true (with 0) if 0, so assume that
1. The proof is somehow similar to the one of Lemma 3.6: let us set 0

1 2 and, say, 1 1 1 1 . We may permute the
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indeterminates occurring in positions 2 1 in the last commutator by the previ-
ous Lemma, and bring in second position so to get 0 1 mod .
Now we may employ the same trick used in Lemma 3.6 using the identity of Lemma
3.3 to get 0 1 0 1 mod . We can now re-order the
indeterminates 1 in modulo getting 1 . For the second
summand, we have to separate two cases: if 1 then 1 is already standard, so

1 . If instead 1 then 1 is not standard, but we may use
Jacobi identity and write 1 1 1 , then rearrange
the entries in positions 3 1 modulo to get 1 1 .

Definition 3.9 For any 1 let us denote by

• S 1 the subset of of all products 1 of ordinary standard commutators;
• S the set of all products 1 such that 1 1 are ordinary

standard commutators and involves an -letter in its first (possibly the only one)
position, if 2;

• S 1 the set of products 1 1 1 where 1 2 are ordinary
standard commutators, and if is the indeterminate with maximum name among those
involved in 1 then is placed in first position (that is: 1 1 and

max 1 );
• S 1 1 .

Moreover, working modulo , let us denote by the vector subspace of

spanned by S .

Gluing together the parts, let S 1
1 S 1 be the set of selected

ordinary polynomials, S 1 S the one of polynomials involving

an -letter and, finally, let S S 1 S S . Extending the
notations to the vectors subspaces they span modulo , we will denote the
vector subspace of spanned by S .

We can now summarize all the previous results stating

Theorem 3.10 S spans modulo .

Proof Any basis element 1 of is either zero or equivalent to a suitable linear
combination of elements in S modulo , so S spans modulo , by the
preceding results.

Hence it follows

Corollary 3.11 S spans .

Proof Since S spans modulo and , the same holds modulo
.

Remark 3.12 The size of the sets of polynomials selected so far depend upon the size
. For instance, passing from 1 to we must add further polynomials to the

sets S 1
1 and S 1 to get S 1 and S , while on the contrary

S 1 S 1 1 . The codimension sequences we are going
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to compute later in this paper will measure exactly how these sizes vary. There are however
a couple of points to notice right now: the first one is that the set S 1 constitutes a
basis for , that is for the ordinary algebra of upper triangular matrices without
any derivation (see [9]). For the second one, compare the sets S 1 and S . It
turns out that

• S 1 S 1
1 S 1

1 , since S 1
1 S 1 for all

2. To put it differently, just multilinear polynomials involving products of 1
nsc’s are missing in S 1

1 to get the whole S 1 ;
• S 1 S for all 3;

• S 2 1 S 2 . So, we have to add a complementary setS 2
to S 2 1 to get S 2 ;

• moreover, multilinear polynomials involving products of 1 nsc’s must be added to
S 1 in order to get S .

• Therefore S S 1 S 2 S 1 .
The first and easy examples occur when 3 and 2. For instance, in these

minimal settings, one has

– S2 1 2 2 1
– S2 1 3 2 1 1 2 .

To summarize, one has

S S 1 S 2 S 1 S 1 S .

4 The Linear Indipendence ofSn(Um) Modulo TL(Um)

In this section we are going to prove that the spanning set S is indeed linearly inde-
pendent modulo . To this aim, starting from a given linear combination of a subset
of S assumed to be in , we will exhibit a suitable substitution (that is: an -
homomorphisms from to defined on ) vanishing on all involved vectors but
one, so that it is linearly independent with the remaining ones and can be deleted, shortening
selectively the list until it is empty.

The easiest cancellation is the following:

Lemma 4.1 For any 1 the vector 1 1 is linearly independent with the
remaining vectors of S .

Proof Assume that β 1 1 , where runs in
S 1 S and β . Let be the substitution sending all the letters of in
11. Then 0. By the way, 0 for all , since 11 ker and the ordinary
commutators vanish under . Since 11 1 and 1 11 11 0 it follows β 0,
so 1 1 is linearly independent modulo with the remaining vectors of
S .

In other words, we just proved that

1 .
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Lemma 4.2 The set S 1
1 is a linearly independent subset of S and

1 1
1

1
1 .

Proof Recall that S 1
1 2 S 1 , and assume

S 1
1 S 1

1

β
S

0 mod .

Let the subalgebra of having null last -th column. Then 1 as -
algebras. Any evaluation vanishes on S because ker , as well as
any product of 1 commutators, hence 0 for all such substitution.
This means that is a (ordinary) polynomial identity for 1 . By the way, the
set S 1

1 gives rise to a basis for 1 , hence all ’s are zero.

So the problem is confined to prove the linear independence of the vectors of
S 1

1 S . As a first step, for any fixed 1 1 let us consider the sets

1 1 1 2 1 1

1 1 1 2 1 .

( , respectively) is simply the set of all compositions of the integer in parts
satisfying the inequalities 1 and the other ones 2 ( 2 for all ’s, respectively). Of
course, . Consider on the right lexicographic order, that is 1

1 if , . . . , 1 1 and for some 1 .

Definition 4.3 Let 1 S . The word 1 obtained taking
the first letter of will be called the main word of . The letter will be called the
main letter of . The other letters of will be called secondary letters of . The sequence

1 of the lengths of the commutators 1 will be called the structure
of .

So, for instance, the vector 2 1 4 7 5 3 6 S7 3 5 has
2 7 3 and structure 3 2 2 . Notice that S7 3 4 . Notice also that for any

S the structure belongs to .
Now we are going to delete all polynomials of S for 2 from the list,

one by one. To make the clearest possible computations, we need an abuse of notation. For
any 2 let be the map defined by . Its
image is the subalgebra of of all matrices whose rows 1, . . . , are zero. It is
immediate to notice that is not only an algebra isomorphism beween and , but it
commutes with the -action: for any one has and, similarly,

1 . In what follows, by -substitution sending we
mean the substitution sending to , abusing the notation merely in order to
simplify the computations.

Example 4.4 Let 3 1 2 4 5 and suppose we need to exhibit a nonzero eval-
uation of in the small 3 3-lower corner 3 of . We should write, for instance,
1 2 2 2, 3 1 2, 4 1 and 5 . We shall instead employ

the 3-substitution sending 1 2 22, 3 12, 4 23 and 5 33, that is
evaluate the polynomial inside 3 and just then going back inside 3 .
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Notice also that the embeddings provide a canonical ascending chain 2 3
, and hence the descending chain 2 3

of -ideals of .

Definition 4.5 Let 1 2 and let 1 S . We define to be
the 1-substitution sending the main letter of in 1 and the secondary letters of in

1 1.

Clearly, is designed to have 0, and indeed it holds 1 1 1,
so that it actually evalutates to 1. Besides, we have

Lemma 4.6 Let S for 2, and let be its associated 1-
substitution. Then

1. for any , for any S it holds 0;
2. if S and 0 then . Moreover, if then

.

Proof

1. Any product of more than commutators is an identity for 1, so 0.
2. Let 1 S and assume that 0. Just among the letters

1 are substituted by off-diagonal elements, and diagonal matrices commute.
So, by the pigeonhole principle, each must involve exactly one among the main
letters 1 of . Actually, since any non-identity permutation of the factors in
12 1 causes the product to vanish, the letter occurs in for all , and it must
occur in its first or second position, otherwise 0.

Now notice that if a secondary letter of occurs in for then 0:
exactly one among the entries of is 1, and if 1 1 occurs in it then
0 because 1 1 1 0. Therefore all the letters of are confined within ,
derived or not. Hence . Therefore if then . If
instead then and must involve the same letters. Since however
must be an -letter occurring in , it has to be placed in first position, so . If

1 the task is done, so assume 1 and let us compare 1 and 1.
As before, no secondary letter of 1 may appear in if 1, so 1

1 and, if the inequality is strict, this means . If instead 1

1 then 1 and 1 involve exactly the same letters, and 1 is placed in the
first or second position of 1. By the way, since the sets of letters occurring in 1
and 1 are the same, they have the same minimum, and this letter must be placed in
position 2 both in 1 and in 1. Hence 1 must be in the first position of 1,
hence 1 1.

These arguments apply to the remaining commutators of , so either or
. In the latter case the previous arguments show that then for all ,

hence .

Then we get a simple algorithm to delete all the vectors in S : for increasing ’s,
take any element in S of maximum structure 1 and consider the
associated -substitution . Then is the only element ofS not vanishing under

, hence it is linearly independent with all the vectors not yet cancelled. Then we may
delete from the list and repeat the process until no vector of S 2 remains. Then
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we have to stop: this procedure does not work with elements ofS 1
1 S 1 ,

essentially because 1 1 and the last main letter of a vector may be either
ordinary or differential without affecting the evaluation. Therefore so far we obtained

2

1

1
2

1

1
1 1 .

Definition 4.7 If 1 1 S 1 let be the substitution sending, for
each 1 2, the main letter of in 1 and all its secondary letters in 1 1,
and then sending the remaining letters of 1 in 1 .

Clearly 0, and we have

Lemma 4.8 If S 1 and 0 then . If the equality holds,
then .

Proof Let 1 1 S 1 satisfy 0. Then all the letters of
whose names occur in 1 are confined within 1. Indeed, if any of them occurs in some

with 1 then it may happen 0, but necessarily 1 0,
since for some and 1 , the only choice not annihilating the
product. In particular, 1 1 . If the equality holds then the names of the letters
of 1 and 1 form the same set, and since 1 0 the commutator 1 cannot
be ordinary. Thus an -letter must occur in it, and therefore this letter must be the one with
maximum name among them, so the same -letter of 1. Hence 1 1.

Now take a look at 0 1 2. It is a product of 2 ordinary commutators
in the remaining 1 letters, and just 2 of them have been specialized in non
diagonal elements 1. Then the same arguments employed in the proof of Lemma 4.6
apply, so either or 0 1 2.

As a consequence, we get

Proposition 4.9 The set S 1 is linearly independent modulo .

Proof Choose any -element S S 1
1 S 1 of maximal structure

1 1 and consider the associated substitution . By the previous Lemma
is the only element in S not vanishing under . Hence is linearly independent

with the remaining elements of S , and can be deleted. Replacing S by S , we
repeat the process until no -vector remains in S . Then S S 1

1 is part of a basis of
modulo , so it is linearly independent modulo too.

Summing up all the previous results, we get the main result

Theorem 4.10 The set S is an -basis of the vector space . Hence
.

An equivalent, more comprehensive form for the results so far obtained is

Theorem 4.11 Let I be the set of differential polynomials of Definition 3.4. Then I
generates all the differential polynomial identities of . Moreover, the cosets of the
polynomials inS form an -basis of the factor space .
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5 Differential Cocharacter Sequence of Um

The set is not just a vector subspace of : as already mentioned in Section 2,
the natural action of the symmetric group defined by for all 1 ,

and 1 , turns into a left -module. In this section we are going
to describe its -structure.

Recall that a complete set of representatives for the isomorphism classes of irreducible
-modules is in a bijective correspondence with the set of partitions of . If is one of

them, we shall abuse the notation and use the same symbol to mean a (fixed) irreducible
-module in the isomorphism class indexed by . We shall denote 1 the

partition with parts 1 2 .
At first, let us study the -proper cocharacters of 2, that is the -structure of 2 .

Proposition 5.1 The structure of 2 is the following:

•
0 2 ;

•
1 2 2 1 ;

• for 2 it holds 2 1 1 2 .

Proof If 0 the only proper polynomial of degree 0 is 1 , so 0 2 . The case
1 is almost as trivial: 1 2 1 1 , and each summand is isomorphic to the 1-

module 1 . For 2 we know that S 1 2 S 1
1 2 S 1 2 S 1 2 forms

a basis for 2 . In fact for 1 , each 1 2 is a submodule of 2 , and
1
1 2 1 1 , 1 2 1 2 . Therefore 2 1 1 2
.

Notice that the first summand 1 1 of 2 is precisely the ordinary proper -th
cocharacter of 2 . The same holds for any 2 and, more generally, for all
and the spaces 1 , and are -submodules of .

Remark 5.2 Clearly the decompositions

•
0

•
1 2 1

hold for all 2. Then we pass to study the ’s for 2.

It is easy to see that

Lemma 5.3 For all 2 it holds .

Indeed is spanned by the only vector 1 1 and acts trivially on
it, modulo . Notice also that 1 .

Now, for the general 3, we may recursively describe 1 and by means
of 1

1 and 1 . The description of 1 is actually already known (see [9]):

Lemma 5.4 For all 2 it holds
1 1

1
1

1 1 1 1 1 1

.
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The explicit decomposition of 1 is then the following

Corollary 5.5 For all 2 it holds

1
1

1

1 1 1 1 1 .

The decomposition of deserves some care

Proposition 5.6 Let 3. Then for all 2 it holds

1

2

1 1 1 2 1 1

1

1 1 1 2 1 1 1

Proof Let us work modulo ; accordingly, we will simply write instead of
, and talk of linear independence, basis and so on without specifying modulo

. With obvious significance, consider the set partition

S S 3 S 2 S 1 .

As already remarked it holds S 3 S 3 1 , and we will denote
3 the vector space spanned by this set. In the same fashion define 2 and 1,

hence 3 2 1. While the whole vector space is an -module,
just the last summand is an -submodule of it, and we are going to determine its structure
first.

A finer partition of S 1 is indexed by the structures 1, that is by the
1 -tuples 1 1 such that 1 1, 2 for other , and 1 1 .

Then

S 1

1

S 1 .

Let us denote 1 span S 1 for any 1. Then it is easy
to see that 1 1 1 is a (inner) -module decomposition. More-
over, each 1 is cyclic, generated by any element of S 1 . Indeed, let

S 1 , namely 1 with structure , and let be the set of
names involved in . Recall that if 1 then the name of is the maximum of

1. Let us denote by the symmetric group on a set of symbols, and define

1 2 1 .

Then is isomorphic to the direct (external) product 1 1 , and is an
-module clearly isomorphic to 1 1 1 2 1 1 1 . Inducing in
, we get precisely 1 : each vector in S 1 is in it, and it is easy to find

out that dim S 1 , so they are the same module. Therefore

1

1

1 1 1 2 1 1 1 .
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Our next step is to consider the vector space 2. It is not an -submodule of ;
nevertheless, the cosets of its elements constitute a submodule of the factor -module

1. Denote it by 2, and let 1 2 S 2 be of struc-
ture 1 2 2. As before the coset generates an -module, whose
induced -module is the whole 2 , so we need its -module structure. Let us
distinguish two cases: 2 1 or 2 2.

If 2 1 then 1 1 1 3 1 1 1 , since 1 acts
trivially on the only -letter, and we are done. So assume 2 2 and let 2 .
The name of is no longer the greatest in 2, but we may consider the subgroup

2 of 2 , acting trivially on the last commutator of , so generates a

1 3 2 -module isomorphic to 1 1 1 3 1 1
1 2 1 . Then, inducing this module to , we get

1 1 1 3 1 1 1 2 1 2

1 1 1 3 1 1 2

1 1 1 3 1 1 2 1 1

Finally, let us investigate 3: as before, it is not an -submodule of nor

of 1. By the way, it induces an -submodule 3 of the factor mod-
ule 2 1 , with basis S 3 . As already noticed, actually
S 3 S 3 1 , and the -action on 3 modulo 2

1 is the same as the one on 3 1 modulo 2 1 .
Hence, by complete reducibility, we get

3 2 1

where 2 2 and 3 3. We may relate the -structure of
to the one of 1 inductively: indeed

2 2 1

2

1 1 1 2 1 1

while 3 3 1 , and in the end we get

1

2

1 1 1 2 1 1

1

1 1 1 2 1 1 1 .

Remark 5.7 As already noticed, S 2 1 S 2 , so the former set has a

complement S 2 . Roughly speaking, this complement causes the extra-summand

2

1 1 1 2 1 1

to appear in the decomposition of , marking a difference with respect to 1 .

201Differential Polynomial Identities of Upper Triangular Matrices Under...



Sewing together the parts we get the decomposition of :

Theorem 5.8 Let 3. Then for all 2 it holds

1

2

1 1 1 2 1 1

1

1 1 1 1 1 1

1

1 1 1 2 1 1 1 .

The explicit decomposition of is the following:

Corollary 5.9 For all 2 it holds

2 2
2

1

1 1 1 1 1

1

1 1 1 1 1 1

1

1

1 1 1 1 1 1 .

6 Matrices of Small Size

In this section we will employ the previous results to study in some details the cases 2
and 3. We already obtained the structure of 2 in Proposition 5.1, so the proper
codimension sequence 2 dim 2 follows easily:

Corollary 6.1 For all the proper differential codimension sequence of 2 is
2 1.

The knowledge of the -structure of 2 provides the knowledge of the -structure
of 2 , getting back [11], Theorem 25:

Theorem 6.2 It holds 2 , where the partitions involved and the
corresponding multiplicities are the following:

• with multiplicity 2 1;
• , with 0 and multiplicity 3 1 ;
• 1 1 1 with multiplicity 1.
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Proof From the decomposition of 2 and convolution formula we get

2

0

2

0 2

1

2

2

1 1 2
1

.

The partitions involved in the first summation are (with 1) and
1 1 1 . By the Young-Pieri formula, the multiplicities for both are 1.

The Young-Pieri formula works with the second summand, as well. The partitions involved
in its decomposition are and (with 1), with multiplicities and

1 respectively. Hence the total multiplicities follow immediately.

Also the differential codimensions can be computed from the proper ones (see [11],
Theorem 19):

Corollary 6.3 For all it holds

2 2 1 2 .

Proof Since 2 0 2 , passing to the dimensions we get

2

0

1 2 1 2 .

We have so far considered a faithful derivation action of on 2 ; now we are going
to consider the unfaithful ones.

The trivial action has of course little to offer: it amounts to consider the ordinary alge-
bra 2 . Formally, its differential polynomial identities are generated by the differential
polynomials and together with the ordinary polynomial 1 1 2 2 . Thus the dif-
ferential cocharacters and codimensions of 2 differ just formally from the ordinary
ones.

The remaining unfaithful actions are therefore those having the commutator Lie-ideal
as kernel. So let 2 be the -algebra 2 under the derivation action

defined by 0 and 22 for all 2 . Then we get

Proposition 6.4 The differential polynomial identities

1 2 3 4
2

1 2 1 2 1 2 1 2

generate 2 . The proper cocharacter sequence is

0 2 1 2 1 and, for 2, 2 1 1 .

The proper differential codimension sequence is

0 2 1 and, for 1, 2 .
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As before, this describes completely the differential cocharacters and codimensions of

2

Theorem 6.5 The -structure of 2 is

0 2 1 2 1 and, for all 2, 2

where

• has multiplicity 1;
• , with 1, has multiplicity 2 1 ;
• 1 1 1 has multiplicity 1.

The codimension sequence of 2 is 2 2 1 1, for all 0.

Proof Since 0 2 , the description of and the
Pieri-Young rule provide the decomposition as in the proof of Theorem 6.2. Then, as in the
proof of Corollary 6.3, just compute

2 0 0 2
1

2 1
1

1 2 1.

Once again we get back the results of [11] (Theorem 5 and Theorem 12), but with a little
formal difference. Indeed, since , one can identify 2 with the algebra 2
endowed with a derivation action of the (commutative) Lie subalgebra of . Denoting
by 2 the ideal of the differential identities of 2 under the -derivation action,
the formal differences between 2 and 2 consist solely in the presence or not of
the polynomial among the generators. In [11] the -action has been considered, so
is missing.

To complete the picture in the case 2, in the same spirit we may consider the action
of the Lie subalgebra on 2 , and investigate the corresponding algebra 2 .
We continue to denote 2 the ideal of differential identities of 2 , to avoid mis-
understanding. The description of 2 is not given in [11], but can be easily recovered
and very similar to the one of 2 .

Proposition 6.6 The differential polynomial identities

1 2 3 4
2

1 2 1 2 1 2

generate 2 . The proper cocharacter sequence is

0 2 1 2 1 and, for 2, 2 1 1 .

The proper differential codimension sequence is

0 2 1 and, for 1, 2 .

Then, with exactly the same reasoning as for , we get
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Theorem 6.7 The -structure of 2 is

0 2 1 2 1 and, for all 2, 2

where

• has multiplicity 1;
• , with 1, has multiplicity 2 1 ;
• 1 1 1 has multiplicity 1.

The codimension sequence of 2 is 2 2 1 1, for all 0.

It is somehow confusing the similarity between 2 and 2 . They seem per-
fectly equivalent, from the point of view of their effects on the differential polynomial
identities. Actually, already for 3, they manifest concretely their neat differences. Let
us start in describing the -structure of the whole 3 :

Theorem 6.8 The -decomposition of 3 is the following:

•
0 3 ;

•
1 3 2 1 ;

•
2 3 2 1 1 2 2 ;

•
3 3 2 3 3 2 1 1 1 1

and, for 4,

3 2 1 1 1
2

2 1 2 5 2 1 1

1

3 1 1 1 1
0

1 2 2 2

0

1 1 1 1 1 .

Proof Actually, a proof is not needed, since the general result given in Theorem 5.8. Nev-
ertheless, a guideline for the concrete decomposition of 3 may be of help. The cases

3 are straightforward, so assume 4. We know the decomposition

2 2 1 1 .

The set 1 has cardinality 1, since just is a weak 1-composition of . So the summand
indexed by 1 in Theorem 5.8 is simply 1 1 .

Then the set 2 consists of all pairs 1 2 such that 1 2 2, so it is empty if 3.
If 4 there are exactly 3 such compositions, and each of them gives rise to the
module 1 1 1 2 1 1 . Let 2 be the sum of these -modules. Then,
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the Littlewood-Richardson rule provides the decomposition

2
2

1

3 2 1 1
1

2 1 1 1 1

0

1 2 2 2
0

1 1 1 1 1 .

Finally, the set 2 consists of all pairs 1 2 such that 1 2 , 1 2 and 2 1.
It is empty if 3, but if 3 it consists of 2 pairs, each of them giving rise to the

-module 1 1 1 2 . If 2 denotes the sum of all such -modules, the
Pieri-Young formula provides the decomposition

2 1 1 1
2

1

2 2 1 1
1

1 1 1 1 .

Now the -structure of 3 follows simply summing the multeplicities of the involved
irreducible -modules.

Remark 6.9 It may be useful to distinguish among the irreducible components of 1
3 ,

3 and 3 , at least when 4. We have

1
3 1 1

2

1

3 2 1 1
1

2 1 1 1 1

0

1 2 2 2
0

1 1 1 1 1

3

3 1 1
2

1

2 2 1 1
1

1 1 1 1 .

This makes evident the different impact of and on differential polynomial identities
of in the general cases, that is for 2 (see the proof of Proposition 5.1). Taking
1

3 3 as the pillar of the comparison, the -structures of 3 and

3 are greatly different:

3 3

3 3 1 1
2

1

2 2 1 1
1

1 1 1 1
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To put it differently, the -module 3 is almost the whole 3 , just an occurrence
of the single one-dimensional module is missing. On the other extreme, 3 is
little more than 3 : just an extra occurence of the one-dimensional module is
added.

Corollary 6.10 The proper differential codimension sequence of 3 is

0 3 1 1 3 2 2 3 4 3 3 9

and, for 4, 3 3 2 2 3 .

Proof It is awkward to compute 3 from the -structure of 3 presented above
when 4. A more convenient way is to use the decomposition into induced tensor
products provided by Theorem 5.8. We already know that 2 1; moreover
since 1 the composite module relative to 1 consists of the single irreducible
module 1 1 of dimension 1.

Next, each summand 1 1 1 2 1 1 associated to 1 2 2 has
dimension 1 1 2 1

1
, so their direct sum has dimension

2

2

1 1 1 4 2 2 2 1 .

Finally, considering the last composite module corresponding to the set 2, each of

its summands 1 1 1 2 has dimension 1 1
1
, hence the direct sum

corresponding to 2 has dimension

1

2

1 2 2 1 1 .

Then 3 dim 3 is simply the sum of these dimensions.

We must remark that just 0 3 does not match the general formula.
In principle, the explicit decomposition of 3 follows from the Pieri-Young formula

and the decomposition of 3 , that is

3

0

3 .

By the way, its explicit description is little interesting while quite complex. It is more useful
to measure the complexity of 3 through its codimension sequence:

Corollary 6.11 The differential codimension sequence of 3 is the following:

0 3 1 and, for 1, 3 4 3 2 3 2 1 1

Proof It follows from 3 0 3 by straightforward computations, and
just the first term 0 3 needs to be directly set to 1, while is exactly the one provided
by the general formula in Corollary 6.10.

For the sake of completeness, we record
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Corollary 6.12 The codimension sequences 3 and 3 are the following:

for 0 0 3 0 3 0 3 1

for 1 3 3 2 2 7 9 1 2
1

6
2 3 3 2 6

3 4 3 2 3 2 2 1 2

Proof Concrete calculations are needed, but they can be minimized computing at first the
basic (ordinary) codimension 3 . Setting 3 , one easily has

0 1 1 0 2 1 3 2

and then, for 4, it holds
2

2

1 1 1 4 2 2 2 1 .

This general formula does not match the lower numbers for 0 1 2 3. More
precisely, it evaluates to zero for 1 2 3. Therefore one can compute directly

0 1 1 1 2 2 3 6

and then, for 4, one has

0
0

1
1

2
2

3
3

4

1
1

2

1 2

3
4

22 2 5 2 2 2 2 2

3 2

2
2 2 14 18 2 2

1

6
2 3 3 2 12 .

Now just note that

0 2 1 0 and, for all 1, 3 1

because just the single one-dimensional module joins the decomposition of 3
to get the decomposition of 3 , so

3
1

2 1

is the -th differential codimension of 3 . Similar arguments work for 3 : now the
starting point is 3 , and just notice that 0 3 0 3 while for 1 from

3 3 1 (since just the one-dimensional module is missing to get 3

from the decomposition of 3 ) it follows

3 3

1

3 2 1 .
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