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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Characterization of heatwaves (HWs) 
and fire regime metrics in 37 ecoregions 

• No significant differences in terms of 
intensity, duration and periods of HWs 

• High spatial variability of the relation
ships between fire regime metrics and 
HWs 

• Hotspot areas found in ecoregions 
characterized by mixed forest 
ecosystems 

• The main HWs metrics guiding the 
coupling occurrence are the intensity 
and duration.  

A R T I C L E  I N F O   

Guest Editor: Jiaguo Qi  

Keywords: 
Heat waves 
Wildfires 
Ecoregions 
Euroasia 
Fire regime 
Risk mitigation 

A B S T R A C T   

Understanding the relationship between heat wave occurrence and wildfire spread represents a key priority in 
global change studies due to the significant threats posed on natural ecosystems and society. Previous studies 
have not explored the spatial and temporal mechanism underlying the relationship between heat waves and 
wildfires occurrence, especially over large geographical regions. This study seeks to investigate such a rela
tionship with a focus on 37 ecoregions within a Eurasia longitudinal gradient. The analysis is based on the 
wildfire dataset provided by the GlobFire Final Fire Event Detection and the meteorological dataset ERA5-land 
from Copernicus Climate service. In both cases we focused on the 2001–2019 timeframe. By means of a 12 km 
square grid, three wildfire metrics, i.e., density, seasonality, and severity of wildfires, were computed as proxy of 
fire regime. Heat waves were also characterized in terms of periods, duration, and intensity for the same period. 
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Statistical tests were performed to evaluate the different patterns of heat wave and wildfire occurrence in the 37 
ecoregions within the study area. By using Geographically Weighted Regression (GWR) we modeled the spatial 
varying relationships between heat wave characteristics and wildfire metrics. As expected, our results suggest 
that the 37 ecoregions identified within the Eurasia longitudinal gradient differ in terms of fire regimes. How
ever, the occurrence of heat waves did not show significant differences among ecoregions, but a more evident 
variability in terms of relationship between fire regime metrics and heat waves within the study area. The 
outcome of the GWR analysis allowed us to identify the spatial locations (i.e., hotspot areas) where the rela
tionship between heat waves and wildfires is positive and significant. Hence, in hotspots the presence of heat 
waves can be seen as a driver of wildfire occurrence in forest and steppe ecosystems. The findings from this study 
could contribute to a more comprehensive assessment of wildfire patterns in this geographical region, thus 
supporting cross-regional prevention strategies for disaster risk mitigation.   

1. Introduction 

The global issue of climate change is having tangible effects on the 
rate of occurrence and intensity of heat waves (HWs) (Meehl and 
Tebaldi, 2004; Della-Marta et al., 2007; Fischer and Knutti, 2015). The 
circulation and persistence of large and warm masses of air on specific 
regions is no longer an exception but rather a recurrent pattern which is 
leading to the greater likelihood of HW occurrence (Intergovernmental 
Panel On Climate Change, 2023). Consequently, as global temperatures 
rise due to the accumulation of greenhouse gases in the atmosphere, 
heat waves become more frequent, longer-lasting, and extreme (Dean 
and Green, 2018; Robinson et al., 2021; Xiao et al., 2022). This creates 
the background for exploring the coupling between HW occurrence and 
a wide range of associated (natural) risks/hazards. For example, HWs 
can worsen drought conditions by intensifying evaporation rates and 
drying out vegetation, making it more susceptible to wildfire ignition 
and spread. Dry and dead vegetation acts as fuel for wildfires favoring a 
more rapid and severe spread (Nolan et al., 2016; Rossa, 2017). 

Many countries across the globe have experienced the coupling 
occurrence of wildfires and HWs. During the HW of 2003, >25,000 fire 
events occurred in the Mediterranean countries of Southern Europe 
(Portugal, Spain, Italy and France) with severe consequences on wood
lands, grasslands, and agricultural areas (Fink et al., 2004). In Greece, 
three consecutive HWs and severe drought marked 2007 as the worst 
fire season of the past 50 years: from June to September, over 3000 
wildfires burned >270,000 ha of forest, olive groves and croplands 
(Balafoutis, 2007). In Russia, abnormal Northern Hemisphere HW of 
2010, considered as the worst drought in nearly 40 years, favored 
wildfires throughout the country causing the loss of at least 9 million ha 
of natural areas (Trenberth and Fasullo, 2012). In the summer of 2017 
southern Europe experienced extreme temperatures and unprecedented 
HWs. Wildfires were detected in Albania, Serbia, Bosnia, Macedonia, 
Croatia, Greece, and Italy, with several countries evacuating tourists 
from the affected regions. More than 60 people died from the Pedrógão 
Grande fire in Portugal that occurred earlier in June 2017 (Leone et al., 
2023). 

These extreme numbers have led to a growing interest in exploring 
the coupling occurrence of HWs and wildfires (Page et al., 2010; Fischer 
and Schär, 2010; Barbero et al., 2015; Fasullo et al., 2018; Vitolo et al., 
2019; Hopke, 2020; Ruffault et al., 2020; AghaKouchak et al., 2020; 
Barriopedro et al., 2023). For example, Rodrigues et al. (2020) analyzed 
fire-weather typologies promoting large fires in the Iberian Peninsula. 
The authors found four distinct fire-weather typologies linked to 
different spatial wildfire occurrence patterns suggesting as burnt areas 
in Spain are strongly associated with HWs. Parente et al. (2019) pro
vided a characterization of HWs in current and future climate scenarios 
in Portugal. They found a strong relationship between HWs and tem
poral and spatial distribution of extreme wildfires. Nojarov and Niko
lova (2022) built multiple linear regression models to assess the complex 
influence of HW characteristics on wildfires in Bulgaria. Their results 
demonstrated that HWs with longer and higher air temperatures favored 
conditions for the occurrence and development of wildfire, especially in 
summer. 

However, addressing the coupling occurrence of HWs and wildfires 
requires a comprehensive knowledge of the two phenomena that 
encompass both fire regimes and HW patterns in a larger spatial scale. 
Specifically, the interactions between both the phenomena may be non- 
linear and change spatially at a broader scale across different land
scapes. Assessments of fire regime and HW characteristics based on 
ecological regions (ecoregions) might be more appropriate (Chuvieco 
et al., 2008; Archibald et al., 2013; Hanes et al., 2019; Erni et al., 2020; 
Syphard et al., 2020; Pausas, 2022) as wildfires are strongly linked to 
vegetation (fuel) and climate conditions, two key factors for the defi
nition of ecoregions. 

The present study across multiple ecoregions within a Eurasia lon
gitudinal gradient encompasses Mediterranean countries of southern 
Europe and the near east (Fig. 1) with the aim to understand the 
coupling occurrence of HWs and wildfires events. Focusing on this 
Eurasia longitudinal gradient, our study intends to achieve three main 
objectives: (i) to characterize and analyze fire regime parameters and 
HW patterns and (ii) to assess the relationship between HWs and wild
fires (iii) to identify hotspots where a significant and positive relation
ship is found between HW and wildfire occurrence. 

Through this study we were able to examine the differences in the 
wildfire regime and HW patterns across 37 ecoregions including, for 
example, forest areas, grasslands, and steppes. Up to date, only a few 
studies have analyzed the coupling occurrence of HWs and wildfires at 
ecoregional scale, characterized by diverse environmental, biophysical 
and climate conditions (Fernandes et al., 2016; Ruffault et al., 2020). 
Addressing this issue across such a large geographical area, which is one 
of the most fire-affected regions across the globe (San-Miguel-Ayanz 
et al., 2020), could contribute to support cross-regional prevention 
strategies for fire disaster risk mitigation. 

2. Data 

2.1. Study area 

The study area includes 37 ecoregions within a Eurasia longitudinal 
gradient from Portugal to Turkey (Fig. 1) (Olson et al., 2001). The na
tions involved are Portugal, Spain, France, Luxembourg, Italy, Slovenia, 
Croatia, Bosnia and Herzegovina, Serbia, Montenegro, Albania, Kosovo, 
Greece, North Macedonia, Bulgaria, Cyprus, and Turkey. 

Ecoregions are defined as large ecologically homogeneous areas 
within which species and natural communities interact with the bio
physical features of the environment (Table 1). Ecoregions describe 
landscapes with similar potential for climate, physiography, oceanog
raphy, hydrography, vegetation, and fauna. Hence, they provide a 
geographic framework for interpreting ecological processes, disturbance 
regimes, the spatial distribution of vegetation, and dynamics of 
ecological systems (Loveland and Merchant, 2004). 

According to Olson et al. (2001), Ibss-df (see Table 1) is the largest 
ecoregion followed by Eamf and Webf, which account for an area >200 
* 103 km2. The last two ecoregions are Cmbmf and Sisw which cover an 
area that does not exceed 4000 km2. 
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2.2. Fire and HW data extraction 

The spatial domain for this analysis was a 1/8-degree lat/long grid 
(~12 km resolution) delimited by the geographical boundaries of the 
ecoregions (Westerling et al., 2011). The result was a set of 2154 grid 
cells within which wildfire and HW metrics were extracted and modeled 
at a time range from 2001 to 2019. 

Fire boundaries were extracted each year using the GlobFire Final 
Fire Event Detection Based on MODIS burnt area product Collection 6 
(MCD64A1) from the Google Earth Engine Platform (Gorelick et al., 
2017) (Fig. S1). The MCD64A1 Version 6 combines Terra and Aqua data 
to provide a monthly global per-pixel burnt area layer with a spatial 
resolution of 500 m; a quality assessment layer is also provided (for more 
details here http://modis-fire.umd.edu/files/MODIS_C6_BA_User_Guide 
_1.2.pdf). The GlobFire dataset provides further processing on the 
MODIS data, which defines each wildfire event by merging MODIS 
pixels in space and time and computing the burnt area of each event 
(Artés et al., 2019). We then calculated wildfire metrics related to 
density, seasonality and severity which were associated to the corre
sponding 12 km2 grid cells. We calculated the average burnt area per 
single fire event (i.e., Fire Size see Table 2) (Fernandes et al., 2016). Fire 
size was considered a density metric for its capacity to characterize the 
frequency and incidence of wildfire events in each landscape (Morgan 
et al., 2001; Taylor and Skinner, 2003; Moreno and Chuvieco, 2013; 
Jiménez-Ruano et al., 2017; Elia et al., 2022). A Fire Season index and 
the Main season fire (see Table 2) were estimated to account for the 
seasonality of events across the study area. The last wildfire metric is an 
index estimating the capacity of fire to heavily damage vegetation such 

as Stand Replacing Fire. It is a metric of high fire severity based on the 
capacity of a fire to cause immediate long-term changes that affect soil 
chemistry, watersheds, wildlife, recreation, livestock and timber uses 
(Halofsky et al., 2018; Stevens et al., 2017). To calculate this metric the 
wildfire polygons were overlaid to forest cover losses (Hansen et al., 
2013) according to the period and scale of investigation and for each fire 
polygon we estimated the sum of the pixels that were marked as “loss” in 
the 3 years following the fire event. Results were then employed to 
calculate the “stand replacing fire ratio” by dividing it by the total fire 
polygon area (Elia et al., 2022; Spadoni et al., 2023). 

Heatwaves were defined as a period consisting of at least 6 consec
utive days with maximum temperatures greater than the 90th percentile 
(Fischer and Schär, 2010; Parente et al., 2018). Hourly data from the 
ERA5 land dataset provided by the Copernicus Climate Data Store (https 
://cds.climate.copernicus.eu/) at a 0.1-degree resolution (~9 km) were 
used to estimate the spatial occurrence of summer (from June to 
September) heatwaves. 

The Climate Data Operators software, provided by the Max Planck 
Institute for Meteorology, was used at pixel level to calculate the daily 
maximum temperatures and the 90th percentile for each Julian day 
within a 5-day window. Furthermore, we calculated different metrics to 
characterize the HWs such as duration (in days), intensity (degrees 
Celsius) and period (Number of HWs within the study period). HW in
tensity was calculated as the accumulated anomaly (i.e., maximum 
temperature minus the 90th percentile) for the last 6 days of the HW. 

Finally, these metrics were averaged for the study period (see 
Table 2) and associated to their corresponding 12 km grid cells using a 
weighted mean that considered the fraction covered by different cells 

Fig. 1. Map of the study area showing the 37 ecoregions within a Eurasia longitudinal gradient.  
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(Fig. S2). 

3. Methods 

All data from Table 2 (e.g., wildfire and HW metrics) were averaged 
yearly by cell. To test the significance of the differences among ecor
egions, we averaged cell values by ecoregion using boxplots (with 

medians and percentiles across the years) and a one-way ANOVA fol
lowed by Honestly Significant Difference (HSD) Tukey post hoc test. 

To assess the relationship between wildfires and HWs and identify 
hotspots of coupling occurrence, we performed a Geographically 
Weighted Regression (GWR), which is a statistical method used to model 
the varying spatial relationships between variables (Fotheringham et al., 
2003; Wang et al., 2005; Sá et al., 2011; Martínez-Fernández et al., 
2013; Oliveira et al., 2014; Rodrigues et al., 2018; Su et al., 2021). GWR 
is an extension of traditional global regression models that assume a 
single set of regression coefficients for the entire study area. In GWR, the 
regression coefficients are allowed to vary across space, capturing the 
local variations and spatial heterogeneity in the data. GWR provides a 
more detailed and localized understanding of the relationships 
compared to global regression models. The key concept in GWR is the 
use of spatially adaptive weighting. Each observation in the dataset is 
assigned a weight based on its proximity to other observations. The 
weights reflect the influence of nearby observations on the regression 
estimation at a particular location. This allows GWR to give more 
emphasis to nearby observations and less weight to distant ones, effec
tively accounting for the spatial autocorrelation present in many spatial 
datasets. 

For the whole period under investigation, we averaged the input data 
for each cell and performed a regression for each fire metrics (Y values) 
as a function of the HW variables (X values). Each regression was fitted 
based on the simple idea of estimating each (local) model using a subset 
of observations (e.g., neighboring cells) centered on a single center cell. 

Fotheringham et al. (1998, 2003) give a general form for the GWR 
model as: 

yi = βi0 +
∑m

k=1
βikxik + εi (1)  

where yi is the dependent variable at location i; xik is the kth independent 
variable at location i; m is the number of independent variables; βi0 is the 
intercept parameter at location i; βik is the local regression coefficient for 
the kth independent variable at location i; and εi is the random error at 
location i. 

To determine the best values for the number of neighbor parameters, 
the golden section search method was employed. This method de
termines the optimal number of neighbors minimizing the value of the 
Akaike Information Criterion (AICc). The local statistical significance of 
the coefficient estimates was assessed with the R2 values, which give 
indication of the model fit in each cell and mapped using GIS tools. Even 
if not one of our aims, by using R2 and AICc values, we provide a 
comparison with the performance of Ordinary Least Squares (OLS) to 
make our analysis more robust. The OLS assumes stationarity and esti
mates the coefficients for the overall model, while the GWR assumes that 
the relationships between variables vary in space by calculating 
regression coefficients at each individual location (Fotheringham et al., 
2003; Koutsias et al., 2010; Sá et al., 2011). 

The following step included the identification of hotspots. For each 
HW and fire metric R2 was calculated using GWR. Subsequently, a 
threshold was established based on the 68th percentile of R2 value dis
tribution. Using the threshold above the 68th percentile as reference, 
fire metrics with a positive correlation with one or more HW metrics 
were identified and represented a hotspot. In statistics the 68th 
percentile, as well as the 95th and 99.7th, known as the empirical rule, is 
a shorthand used to remember the percentage of values that lie within an 
interval estimate in a normal distribution (Pukelsheim, 1994). 

Once a positive correlation between HWs and fire metrics was 
determined, a spatial representation of hotspots was generated, indi
cating the locations where the positive coupling occurrence between 
HWs and fire metrics occurs. This spatial representation highlights the 
areas where the relationship is significant and positive and can be 
considered of “first level” if only one HW parameter is significantly 
correlated with the response variable (i.e., 1-HW+), “second level” if 
two HWs parameters are positively correlated with the response variable 

Table 1 
Codes, names and relative extension (km2) of the observed ecoregions.  

Code Ecoregion Area (km2) 

AWTsmf Aegean and Western Turkey sclerophyllous and mixed 
forests  

133,539.6 

Acmf Alps conifer and mixed forests  82,468.1 
Acdmf Anatolian conifer and deciduous mixed forests  86,392.7 
Admf Apennine deciduous montane forests  16,147.2 
Bmf Balkan mixed forests  194,177.3 
Canmf Cantabrian mixed forests  96,265.2 
Caumf Caucasus mixed forests  21,458.6 
Cas Central Anatolian steppe  24,934.2 
Casw Central Anatolian steppe and woodlands  101,492.5 
Cmbmf Corsican montane broadleaf and mixed forests  3633.6 
CrMf Crete Mediterranean forests  8171.5 
CyMf Cyprus Mediterranean forests  9272.2 
DMmf Dinaric Mountains mixed forests  58,285.8 
E-Cbf Euxine-Colchic broadleaf forests  68,335.1 
Eadf Eastern Anatolian deciduous forests  81,627.5 
Eamf European Atlantic mixed forest  235,784.7 
Eams Eastern Anatolian montane steppe  83,544.4 
EMc-bf Eastern Mediterranean conifer-broadleaf forests  72,539.8 
Icf Iberian conifer forests  34,461.0 
Ibss-df Iberian sclerophyllous and semi-deciduous forests  297,955.7 
Idf Illyrian deciduous forests  40,638.3 
Itss-df Italian sclerophyllous and semi-deciduous forests  102,221.1 
NSSFMf Northeast Spain and Southern France Mediterranean 

forests  
90,850.4 

Nacdf Northern Anatolian conifer and deciduous forests  101,409.6 
Nimf Northwest Iberian montane forests  57,405.9 
Pmf Pannonian mixed forests  88,759.9 
PMmf Pindus Mountains mixed forests  39,583.6 
PBmf Po Basin mixed forests  42,460.7 
Pcmf Pyrenees conifer and mixed forests  25,930.1 
Rmmf Rodope montane mixed forests  31,688.5 
Sammf South Apennine mixed montane forests  13,094.8 
Sisw Southeast Iberian shrubs and woodlands  2867.9 
Samcdf Southern Anatolian montane conifer and deciduous 

forests  
67,775.7 

SIMsmf Southwest Iberian Mediterranean sclerophyllous and 
mixed forests  

71,118.4 

T-Asmf Tyrrhenian-Adriatic sclerophyllous and mixed forests  84,660.2 
Webf Western European broadleaf forests  209,205.8 
ZMfs Zagros Mountains forest steppe  18,779.4  

Table 2 
Wildfire regime and heat wave metrics with reference units and definitions.  

Parameters Unit Definition 

Wildfire 
Fire size ha Average burned area per single fire event 
Fire season index From 0 to 1 Index of fire seasonality, the closer the value 

is to 1, the more events are concentrated in a 
single season 

Main season fire – Seasons in which wildfires occur 
Stand replacing 

fire index 
From 0 to 1 Index estimating the capacity of fire to 

heavily damage vegetation  

Heat waves 
Heat waves 

duration 
Days Mean duration of each heatwave 

Heat waves 
intensity 

◦C Cumulated anomaly (i.e., maximum 
temperature minus the 90th percentile) for 
the last 6 days of the heatwave 

Heat waves 
period 

Heatwaves 
numbers 

Number of heatwaves within the study 
period  
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(i.e., 2-HW+), and “third level” if all the three HWs parameters are 
significantly and positively correlated with the fire response variable (i. 
e., 3-HW+). Overall, this process aims to explore the relationship be
tween HW and fire metrics at the local level by identifying those fire 
metrics which are positively affected by the occurrence of HWs and by 
visualizing the corresponding hotspots. We further estimated the per
centage of each level for the single hotspot detected within each 
ecoregion. 

4. Results 

4.1. Fire regime parameters and heat wave patterns 

The one-way ANOVA followed by the Honestly Significant Difference 
(HSD) Tukey post hoc test allowed us to shed light on the potential 
significant differences between ecoregions in terms of wildfire regime 
and HW metrics (Figs. 2 and 3, respectively). The differences among 
ecoregions were significant (P < 0.05) for all the wildfire metrics, but 
surprisingly not significant for the HW metrics. 

Fire size did not present significant differences among ecoregions 
except for EMc-bf, Samcdf and SIMsmf. Thirty-four of 37 ecoregions 
reported similar values in terms of yearly average burnt area per single 
event according to the statistical test. As expected, we found main dif
ferences among the ecoregions for the Fire Season Index and the Stand 
Replacing Fire Index. In the case of fire seasonality, the gradient from 
east to west seemed to have an influence on the main season of fire. The 
majority of ecoregions (24) exhibited a concentration of the fire events 
in summer, while only one ecoregion (Pcmf) showed fire events in the 
winter, one in the spring (Cymf) and four in the fall season. Particular 
mention should be made regarding the 9 ecoregions with a double 
seasonality in fire occurrence, as for example Eams and SIMsmf. In terms 
of Stand replacing fire index, the analysis revealed more heterogeneity 
among ecoregions, with high values for Acdmf and the lowest values for 
Casw, PBmf e Rmmf. The index showed no values for the Caumf 
ecoregion. 

4.2. Relationship between HWs and wildfires 

To assess the relationship between wildfires and HWs we developed 
a Geographically Weighted Regression. The GWR showed a better per
formance compared to OLS across the entire study area and for all the 
three response variables (Table 3), with a significant improvement of R2 

and AICc values respectively. Our findings suggested that the highest 
average R2 is obtained for the Fire size dependent variable with a value 
of 0.38 (Table 3), while the highest values of R2 is obtained for the Stand 
replacing fire index (0.59) (Fig. 6a). The spatial distribution of R2 values 
exhibited a high heterogeneity across the study area for the Fire size and 
Fire season index (Figs. 4a and 5a). The ecoregions in central Europe 
(Balkans, Italy, Greece and Turkey) and the extreme borders of the study 
area (Portugal and Cyprus) showed the highest values of R2 reaching 
0.57 both for Fire size and Fire season index. The distribution of R2 for 
the Stand replacing fire index displayed a more clustered pattern, with 
the highest values found in the Iberian ecoregions and Aegean and 
western Turkey sclerophyllous forest (Fig. 6a). 

4.3. Identification of hotspots 

Figs. 4b, 5b and 6b show the distribution of hotspots across the study 
area according to the three response variables (i.e., wildfire metrics). 

Fire size hotspots areas were distributed homogeneously along the 
study area from west to east (Fig. 4b). The ecoregions mostly affected by 
third level hotspots (i.e., all the three HW parameters are significantly 
and positively correlated with the fire response variable, 3-HW+) were 
the PBmf and Acmf located in Italy (Fig. 4b), covering 94 % and 81 % of 
the entire hotspot surface, respectively. Ecoregions with >50 % of the 
hotspots characterized by 3-HW+ were: Webf and Canmf in the western 

part of Europe and Acdmf and Cas in Turkey (Fig. S3). Of 37 ecoregions 
only 15 included 3-HW+ hotspots, 16 were affected by first and second 
level hotspots, while the remaining 6 (i.e., Caumf, Cmbmf, CrMf, Icf, 
NSSFMf, Sisw) did not show any hotspot (Fig. 4b). 

Fire seasonal index hotspots were fewer compared to those of Fire 
size and located mainly in western Europe (Fig. 5b). Only Itss-df showed 
a hotspot with >50 % of its area affected by a third level relationship 
between the response variable (i.e., Fire season index) and the three HW 
metrics (Fig. S3). The percentage for six ecoregions (AWTsmf, Nimf, 
Eamf, DMmf, Ibss-df, and Webf) was >20 %. Of 37 ecoregions, only 9 
included third level hotspots, while 15 did not exhibit any hotspot. 

Stand replacing fire index hotspots were drastically fewer compared 
to the previous response variables (i.e., Fire size and Fire season index). 
Only 2 ecoregions showed 3-HW+ hotpots, mainly located in the Iberian 
Peninsula, particularly Ibss-df and Nimf, with 32 % and 27 % of their 
areas characterized by a full relationship between the response variable 
and the three HW metrics (Fig. S3). 

5. Discussion 

Future projections of climate change worldwide foresee an ever 
greater increase in intensity of HWs, along with an increasing proba
bility of their co-occurrence with other natural phenomena, such as 
wildfires (Ruffault et al., 2020; Grünig et al., 2023; Turco et al., 2023; 
Yuan et al., 2023). While it is broadly acknowledged that heat waves 
alter fire regime, uncertainties remain on the coupling occurrence of 
HWs and wildfires. 

While it is broadly acknowledged that HWs alter fire regimes, un
certainties remain with regard to the coupling occurrence of HWs and 
wildfires. In this study, we analyzed the metrics related to fire regime 
which are significantly and positively affected by HWs, and how the 
intensity, duration, and amount of HWs influence such metrics. We 
further identified potential hotspots at ecoregional scale in a time win
dow of approximately 20 years. 

High-pressure systems, like the so-called African subtropical anti
cyclone, have been expanding northward in recent decades, generating 
the occurrence of HWs (Ventura et al., 2023). As temperatures continue 
to warm up, changes in atmospheric circulation patterns can lead to 
increased drought and water shortage, maximum temperatures and 
warmer air (Nojarov and Nikolova, 2022). Russo et al. (2014) found that 
the percentage of global area affected by HWs has increased in recent 
decades. Lhotka and Kyselý (2022) discovered that the 83 % of the entire 
European continent has experienced severe heat waves in the past two 
decades (2002− 2021), setting a new record across most of Europe. 
Croitoru et al. (2016) provided evidence of a rise in HWs frequency in 
Romania, which was particularly severe in its western and central re
gions. Similarly, Unkašević and Tošić (2015) observed a growing trend 
in the frequency and duration of HWs in Serbia from 1949 to 2012. 

Although our analysis found no significant differences among ecor
egions in terms of intensity, duration and periods of HWs, the data 
revealed greater variability in terms of relationships between fire regime 
metrics and HWs within the study area. HWs provide the perfect 
weather conditions for wildfires to ignite and rapidly spread. Indeed, our 
analysis suggested a more evident variability of fire regime metrics 
within the study area. We found differences among ecoregions (see 
Fig. 2) as did other authors in their studies. For example, Pausas (2022) 
found that fire regime parameters varied across different environments 
within the western Palearctic. He observed distinctive fire regime 
characteristics for each biome, with a tendency for greater fire activity in 
warmer environments. Nolè et al. (2022) found that fire severity 
exhibited spatial differences and interannual variability across biogeo
graphic regions of Europe. Galizia et al. (2021) identified four large- 
scale pyroregions describing a meaningful segmentation of fire re
gimes across Europe. A large body of studies (Ascoli and Bovio, 2010; 
Moreno and Chuvieco, 2013; Curt et al., 2016; Chergui et al., 2018; 
Rodrigues et al., 2019) is also found at a lower scale highlighting the 
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Fig. 2. Box plots showing the distribution of values for each wildfire regime metrics (a) Fire size, (b) Fire season index, and (d) Stand replacing fire index. For each 
plot, an ecoregion was assigned to a specific group represented by a letter above each box, according to Honestly Significant Difference (HSD) Tukey post hoc test. 
Ecoregions indicated with the same letters were not significantly different (P < 0.05). Violin plots describe the distribution of fire events during different seasons; (c) 
Main fire season. 
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Fig. 3. Box plots showing the distribution of values for each HW metrics: (a) intensity, (b) period, (c) duration. For each plot, an ecoregion was assigned to a specific 
group represented by letters above each box, according to Honestly Significant Difference (HSD) Tukey post hoc test. Ecoregions indicated with the same letters were 
not significantly different (P < 0.05). 
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variability of fire regime metrics across landscapes of Mediterranean 
region. For example, Elia et al. (2022) reported that a significant vari
ability of wildfire regime metrics in Italy was largely explained by 
climate variables such as increasing temperatures and exposure to 
drought. Conedera et al. (2018) found a clear differentiation between 
the high fire density of the southern slope of the Alps and the lower 
proportion of burnt areas registered in the north. Moreno and Chuvieco 
(2016) suggested that environmental gradients shaped fire regimes 
across the Iberian Peninsula. A strong positive relationship between 
seasonal temperature fluctuations and fire is the one of the key links of 
wildfire density and seasonality. 

As stated above by the authors, the evidence is clear regarding the 
influence of climate variables on fire regimes as well as the relationship 

between HWs and wildfires, especially in the warmer areas of Medi
terranean countries (Brotons et al., 2013; Ruffault et al., 2018; Bowman 
et al., 2020; Sutanto et al., 2020). Our study revealed hotspots where the 
above-mentioned relationship is significant and reaches higher R2 

values. The areas in red (see Figs. 4a, 5a and 6a) represents the highest 
positive correlation between the three HW metrics and the metrics 
related to density, seasonality and fire severity, respectively. The anal
ysis revealed hotspots not only in the ecoregions of Turkey, Greece, 
Italy, France, and Iberian Peninsula but also in the Balkan area. These 
findings are consistent with other studies. For example, Unal et al. 
(2013) found coefficients of correlation between the number of days of 
HW and fires ranging from 0.4 to 0.6 in most of western Turkey. Koutsias 
et al. (2012) observed a significant correlation (0.66) between the 
average maximum temperature of HWs and wildfires, in vegetated 
landscapes of Greece. Nojarov and Nikolova (2022) explored the rela
tionship between the average duration of HWs and forest fires in 
Bulgaria. They modeled a positive and statistically significant relation
ship in four of the six areas studied explaining up to 60 % of the vari
ations of forest fires in Bulgaria. 

Our findings further highlight that hotspots 3-HW+ are found in 
ecoregions characterized by mixed forest ecosystems (Fig. S3). Alps 
conifer and mixed forests (Acmf), Anatolian conifer and deciduous 
mixed forests (Acdmf), Cantabrian mixed forests (Canmf), Caucasus 
mixed forests (Caumf), and Po Basin mixed forests (PBmf) ranked in the 
first five positions of the ecoregions mostly covered by 3-HW+ hotspots 
in terms of fire size response to HW metrics. Aegean and Western Turkey 

Table 3 
Comparison of R2 and AICc values between the OLS and GWR models.  

Response 
variables 

OLS model GWR model 

R2 AICc R2 AICc Neighboring 
cells 

Fire size  0.006  277,698.19  0.38  267,901.94  37 
Fire season 

index  
0.008  26,409.34  0.31  19,334.01  31 

Stand replacing 
fire index  

0.006  4033.72  0.33  − 3793.6  31 

AICc: Akaike information criterion; OLS: ordinary least square; GWR: 
geographically weighted regression. 

Fig. 4. Relationship between fire size and heat waves (HWs) across the study area: (a) Distribution of geographically weighted regression local R2 values for the Fire 
size response variable; and (b) identification of hotspots based on the positive relationship between fire size and HW parameters at each level. 
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sclerophyllous and mixed forests (AWTsmf) and Dinaric Mountains 
mixed forests (DMmf) ranked in second position as the ecoregions 
mostly covered by 3-HW+ hotspots in terms of the Fire seasonal index in 
response to HW metrics. Although Oliveira et al. (2013) found that the 
forest-type land covers show intermediate values of fire selectivity, we 
believe that future work is needed to gain a deeper understanding of 
whether certain forest categories (i.e., mixed forest) are more suscepti
ble to the coupling occurrence of HWs and fires. For other ecoregions 
characterized by broadleaf, shrubland and steppe, except for Western 
European broadleaf forests (Webf), our analysis demonstrates that hot
spots are mostly represented by first and second level relationships. In 
these cases, the main HW metrics guiding the coupling occurrence are 
intensity and duration (Tables S1, S2, S3). Steppe and grasslands exhibit 
a higher susceptibility to wildfires because of their inherent flamma
bility traits, such as ignitability (Qu et al., 2016; Cromartie et al., 2020; 
Erdős et al., 2022). High HW intensity can increase the likelihood of fires 
in these regions, posing risks to both natural habitats and human com
munities. The combination of dry vegetation, high temperatures, low 
humidity, strong winds, and potential ignition sources during HWs 
creates a highly conducive environment for wildfire occurrence in 
steppe ecosystems (Dong et al., 2011; Twidwell et al., 2013; Schubert 
et al., 2014; Stavi, 2019). 

The diverse ecoregional characteristics, ignition patterns, and man
agement practices applied to different vegetation types, as well as fire
fighting strategies all represent factors that could contribute to a 
comprehensive understanding of how effectively HWs are responsible 
for these differences in fire regime metrics. However, our findings can be 
applied in landscape management models or decision support systems 
aimed at reducing the likelihood and severity of wildfires, even in real 
time when a HW occurs (Mermoz et al., 2005; Moreira et al., 2011, 
2020). 

In the near future, the mounting occurrence of more intense and 
prolonged HWs will probably induce Europe to plan proactive measures 
to mitigate the potential coupling occurrence of HWs and wildfires 
(Vanderplanken et al., 2021). The Mediterranean region, in particular, 
will face the dual challenge of escalating heat extremes and the coupled 
risk of forest fires as outlined by the European Environment Agency 
report (EEA, 2023) on climate change impacts. The data also reveals a 
substantial uptick in the occurrence of wildfires during years marked by 
extreme HW conditions. 

Despite the important results found in our study across such a large 
area, we recognize the existence of certain limitations. For example, we 
explored the coupling occurrence of HWs and fires on the basis of only a 
certain number of metrics. Fire metrics were employed because they are 

Fig. 5. Relationship between the Fire season index and HWs across the study area: (a) Distribution of geographically weighted regression local R2 values for the Fire 
season index response variable; and (b) identification of hotspots based on the positive relationship between the Fire season index and HW parameters at each level. 

E. Mario et al.                                                                                                                                                                                                                                   



Science of the Total Environment 912 (2024) 169269

10

frequently used in fire-related studies and describe key aspects of fire 
regimes (Boulanger et al., 2014; Jiménez-Ruano et al., 2020; Rodrigues 
et al., 2020). Future studies including other wildfire regime components 
(not available in our dataset) could provide additional knowledge for 
understanding the coupling occurrence of HWs and wildfires across the 
Eurasia region at large. 

We also adopted widely accepted threshold-based values, drawing 
on established methods and practices found in the scientific literature to 
compute the three specific HW metrics. This resulted in the 90th 
percentile employed for HW estimation. The choice of a higher or lower 
threshold can yield disparate outcomes. For instance, employing a 
different threshold value for HW estimation, such as the 95th percentile, 
as seen in studies by Guerreiro et al. (2018) and Di Napoli et al. (2019), 
would impact the occurrence of HWs. It is essential to note that elevated 
temperatures cannot be automatically qualified as HWs. In line with the 
typical approach in HW-related research, as established by (Perkins and 
Alexander, 2013), the percentiles used in our study to define a HW 
hazard are derived from climatology and tailored to each grid cell and 
day. This results in geographically and daily variable thresholds. 
Consequently, the 90th percentile for air temperature in northern 
Europe is lower than the corresponding percentile in southern Europe, 
which may potentially lead to HWs in northern Europe being associated 
with lower temperatures compared to southern Europe. 

6. Conclusion 

Heatwave occurrence potentially triggers significant influence on 
wildfire regimes. This study aimed to explore the relationship between 
HWs and wildfires encompassing 37 ecoregions within a Eurasia longi
tudinal gradient. Our findings displayed no significant differences 
among ecoregions in terms of HW intensity, duration and periods, but at 
the same time showed a greater variability of the relationship between 
fire regime metrics and HWs within the study area. Our GWR model 
locally exhibited good performance in the local prediction of such a 
relationship, reaching values of R2 near to the 0.6. 

Hotspots were identified largely for an area stretching from west to 
east Europe. For the wildfire metrics related to density and seasonality, 
the identified hotspots are distributed along the entire gradient covering 
mostly ecoregions characterized by mixed forest ecosystems. This result 
can be considered as room of improvement for the near future at aim to 
deeply understand why, within this forest typology, there such a strong 
relationship between HWs and wildfire occurrence is. Future studies 
should be addressing this topic. Mention needs to be done for the hotspot 
locations derived by the Stand Replacing Fire index, which are markedly 
different by the other two fire metrics. The analysis found only four 
hotspots, the most important of which are in the Iberian Peninsula. This 
is one of the most wildfire prone area across the globe, which 

Fig. 6. Relationship between the Stand replacing fire index and HWs across the study area: (a) Distribution of geographically weighted regression local R2 values for 
the Stand replacing fire index response variable; and (b) identification of hotspots based on the positive relationship between Stand replacing fire index and HW 
parameters at each level. 
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experienced in the past dramatic and fatal events such as Pedrógão 
Grande (2017). In that occasion an intense HW occurred before the fires, 
with many areas of Portugal seeing temperatures >40 ◦C (104 ◦F). In this 
regard, our analysis suggested that the main HW metrics guiding the 
relationship between HWs and wildfires are the intensity and duration. 

In conclusion, this work is one of the first study that aims to provide a 
valuable cross-ecoregional insight for the coupling occurrence of two 
different natural risk. It presents a consolidate approach for the identi
fication of hotspots and the evaluation of hazard patterns that can be 
useful to determine relationships among natural hazards. The results of 
this study offer valuable insights for shaping strategies aimed at 
adapting to and mitigating the impacts of heatwaves, particularly con
cerning human health and wildfires. 

Furthermore, it’s important to note that global and regional climate 
models effectively simulate warm air masses, which means that we can 
confidently predict the occurrence of HWs in space and time. These 
valuable data can be harnessed to establish warning systems for 
vulnerable populations exposed to wildfire risk. Moreover, it can facil
itate communication regarding risks and prevention measures, in line 
with the IPCC (Intergovernmental Panel On Climate Change, 2023) 
recommendations. This information is particularly relevant for in
stitutions responsible for forest and fire management, enabling them to 
plan activities, allocate resources, and prepare for firefighting efforts 
during periods and in areas affected by heatwaves. 
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Jiménez-Ruano, A., Rodrigues Mimbrero, M., de la Riva Fernández, J., 2017. Exploring 
spatial–temporal dynamics of fire regime features in mainland Spain. Nat. Hazards 
Earth Syst. Sci. 17, 1697–1711. https://doi.org/10.5194/nhess-17-1697-2017. 
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X., Armesto, J., Bond, W., González, M.E., Curt, T., Koutsias, N., McCaw, L., Price, O., 
Pausas, J.G., Rigolot, E., Stephens, S., Tavsanoglu, C., Vallejo, V.R., Wilgen, B.W.V., 
Xanthopoulos, G., Fernandes, P.M., 2020. Wildfire management in Mediterranean- 
type regions: paradigm change needed. Environ. Res. Lett. 15, 011001 https://doi. 
org/10.1088/1748-9326/ab541e. 

Moreno, M.V., Chuvieco, E., 2013. Characterising fire regimes in Spain from fire 
statistics. Int. J. Wildland Fire 22, 296–305. https://doi.org/10.1071/WF12061. 

Moreno, M.V., Chuvieco, E., 2016. Fire regime characteristics along environmental 
gradients in Spain. Forests 7, 262. https://doi.org/10.3390/f7110262. 

Morgan, P., Hardy, C.C., Swetnam, T.W., Rollins, M.G., Long, D.G., 2001. Mapping fire 
regimes across time and space: understanding coarse and fine-scale fire patterns. Int. 
J. Wildland Fire 10, 329–342. https://doi.org/10.1071/wf01032. 

Nojarov, P., Nikolova, M., 2022. Heat waves and forest fires in Bulgaria. Nat. Hazards 
114, 1879–1899. https://doi.org/10.1007/s11069-022-05451-3. 

Nolan, R.H., Boer, M.M., Resco de Dios, V., Caccamo, G., Bradstock, R.A., 2016. Large- 
scale, dynamic transformations in fuel moisture drive wildfire activity across 
southeastern Australia. Geophys. Res. Lett. 43, 4229–4238. https://doi.org/ 
10.1002/2016GL068614. 
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