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Abstract: We consider a multivariate model with independent marginals as a
benchmark for a generic multivariate model where the marginals are not indepen-
dent. The Penalised Complexity (PC) prior takes natural place in such a context,
as we can include in the simpler model an extra-component taking into account
for dependence. In this paper, the additional component is represented by the
parameter of the Gaussian copula density function. We show that the PC prior
for a generic copula parameter can be derived regardless of the parameters of the
marginal densities. Then, we propose a hierarchical PC prior for the Gaussian
copula model.
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1 Introduction

In many statistical models it is natural to have a nested structure. Consider
a model of a given complexity, one way to obtain a richer and more flexible
model is to include an extra-component so that the simpler model would be
nested in the more complex one. We may think, for instance, of a situation
where we want to model the joint distribution of several random variables
through a copula function. In the case of dependence among variables, the
joint density can be expressed as the product of the marginal distributions
times a copula function, on the contrary, the joint density boils down to
the only product of the marginals when the latter are independent. We
derive the PC prior for the correlation parameter of the Gaussian copula by
exploiting the following result on the Kullback-Leibler divergence (KLD).
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Notice that the KLD is used to measure the distance between the two
models. For a review of the principles behind the construction of a Penalised
Complexity prior, see Simpson et al. (2017).

2 Method

We consider as a base model a certain multivariate density where the
marginal densities are independent. Then, we could render this model more
flexible by allowing a copula function to account for dependence, on the
basis of the Sklar’s representation. The flexible model is

M1 = {fX;�(x;�),x 2 Rk,� 2 Rq
}, (1)

where, according to the Sklar’s theorem, the joint density can be written

fX;�(x;�) =
kY

j=1

fj(xj ; ✓j)c (F1(x1; ✓1), . . . , Fk(xk; ✓k); ), (2)

and � = {✓
1
, ✓

2
, . . . , ✓

k
, }.

Furthermore, let

M0 : X ⇠ f0(x;') = fX;'(x;') =
kY

j=1

fj(xj ; ✓j) (3)

be the base model, where f0 is the density of X in the case in which there
is independence among the marginals, namely, when the value of  returns
the independence copula. Here, ' = {✓

1
, ✓

2
, . . . , ✓

k
, =  0}. Then, the

theorem below follows

Theorem 1 (Invariance wrt marginals) Let X ⇠ fX(x1, . . . , xk) be a
random vector with density fX (we assume it is absolutely continuous with
respect to the Lebesgue measure). Furthermore, let Y be a random vector

with distribution fY(y1, . . . , yk) =
Q

k

j=1
fj(yj) where fj is the marginal

density of Xj and Yj, then

KLD(fXkfY) =

Z

[0,1]k

c(u1, . . . , uk; ) log c(u1, . . . , uk; )du1 . . . duk, (4)

where c(u1, . . . , uk) represents the copula function associated with the den-
sity of X and Uj ⇠ Unif (0, 1), j = 1, . . . , k.

The theorem above states that the distance between a generic multivariate
density and the one with independent marginals can be expressed as the
distance between the copula density function and the independence cop-
ula. This result allows us to derive the PC prior for the copula parameter
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regardless of the parameters of the marginals. Notice also that it applies
to any copula function and any dimension. Nevertheless, apart from the
case of equicorrelation, for multidimensional elliptical copulas we need to
define a multivariate PC prior. Suppose now to have only two marginal
distributions, on the basis of Theorem 1 we can write

KLD(fX;�kfX;') =

Z

U

Z

V
c(u, v; ⇢) log c(u, v; ⇢)dudv, (5)

where c is the density function of a bivariate Gaussian copula with param-
eter ⇢. Then, KLD(⇢) = � 1

2
log(1� ⇢2), and the prior is easily obtained

⇡PC(⇢) =
✓

2
exp

⇣
�✓

p
� log(1� ⇢2)

⌘
|⇢|

(1� ⇢2)
p
� log(1� ⇢2)

. (6)

The latter prior is proper, clearly symmetric as it depends on ⇢ only through
the square and the absolute value, and has any odd moment equal to zero.
Simpson et al. (2017) proposed to use a probability statement on a tail
event to select the parameter ✓. This latter plays a key role as it regulates
the shrinkage of the prior towards the base model, so a wrong choice of this
parameter may be misleading, especially in Bayesian hypothesis testing.
From an objective point of view, we calculate the intrinsic prior for the rate
parameter ✓ and then we specify the hyperparameter of such an intrinsic
prior distribution by maximizing the variance of the hierarchical PC prior
for ⇢ where the intrinsic prior is put on ✓. The procedure to derive the
intrinsic prior is borrowed from Pérez and Berger (2002) as it coincides
with the expected-posterior prior.
We use ⇡N (✓) = 1

✓
as an improper starting distribution, then the intrinsic

prior is given by

⇡I(✓) =

Z
1

�1

⇡(✓|⇢`)f(⇢`|H0)d⇢`, (7)

where f(⇢`|✓0) is the PC prior in (6) calculated in ✓0, say the null hypoth-

esis, and ⇡(✓|⇢`) = ⇡
N
(✓)f(⇢`|✓)
mN (⇢`)

, where in turn ⇢` represents the training

sample. If there is no subset of ⇢` for which 0 < mN (⇢`) < 1, then ⇢`
is called minimal training sample. Berger and Pericchi (1996) showed that
often it will simply be a sample of size max(dim(✓)). So, we need just an ob-
servation to convert the improper starting distribution into a proper prior.
Therefore

⇡I(✓) =
✓0

(✓ + ✓0)2
(8)

will be proper. We set the hyperparameter ✓0 in an objective manner. In
particular, we numerically maximize the variance with respect to ✓0, i.e.

max
✓0

Z
1

�1

Z 1

0

⇢2⇡PC(⇢|✓)⇡I(✓|✓0)d✓d⇢. (9)

The maximizer is ✓0 = 0.491525 as it renders the prior as flat as possible.
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3 Simulation study and real data

We check out the frequentist performance of our hierarchical PC prior via
a simulation study. For each true ⇢⇤ (�0.95,�0.5, 0, 0.05, 0.5, 0.95, 0.999)
and for each fixed sample size (n = 5, 30, 100, 1000) we have generated
200 independent samples from the Gaussian copula and for each of them
we have calculated the posterior mean, the 95% credible interval and the
Bayes factor. We use the Je↵reys’ prior as competitor for inference, while
for Bayesian hypothesis test we use the Arc-sine prior, since it is proper.
As one can expect, for ⇢ = 0, our hierarchical PC prior is superior to the
Je↵reys’ prior in terms of MSE; this is because of the little spike at the
base model induced by the hierarchical approach. However, for intermediate
correlations, there seems to be a bias-variance trade-o↵; the Je↵reys’ prior
looks less biased but less e�cient, whilst the PC prior seems to be more
biased but more e�cient. To compare overall values of ⇢⇤, we also compute
an overall MSE, and the latter is basically in favour of our prior.
We use Bayes factor to select among models. Theorem 1 allows us to write

B01 =
c⇢(u, v; ⇢)|⇢=0R

c⇢(u, v; ⇢)⇡PC(⇢|✓0 = 0.491525)d⇢
. (10)

We compute the frequency of times that B01  0.5. It turns out to be
basically smaller for the PC prior compared to the Arc-sine prior when the
true model is the base model, whilst it is larger when the true ⇢ deviates
far away from the independence model, especially for small sample sizes.
Finally, we analyze the danube data set which contains ranks of base flow
observations for two stations situated at Scharding (Austria) on the Inn
river and at Nagymaros (Hungary) on the Danube. The data have been
pre-processed to remove any time trend. Specifically, a linear time series
model with 12 seasonal components is fitted. Then residuals are extracted.
The correlation between time series is computed over the residuals, other-
wise we would carry back correlation within the series. The results of the
Bayesian test are in line with the ones of the frequentist test, providing
strong evidence for ⇢ 6= 0.
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