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Abstract: This study shows the first Mediterranean high-resolution record of alkenone-derived
sea surface temperature (SST) in the marine sediments outcropping at the Ideale
section (IS) (southern Italy, central Mediterranean) from late marine isotope stage
(MIS) 20 - through early MIS 18 interval. The SST pattern evidences glacial-intergalcial
up to centennial-scale temperature variation, with lower values (~13°C) in late MIS 20
and substage 19b, and higher values (up to 21°C) in MIS 19c and MIS 19a
interstadials. The SST data are combined with the new calcareous plankton analysis
and the available, chronologically well-constrained carbon and oxygen isotope records
in the IS. The multi-proxy approach, location of the IS near the Italian coasts, its lower
circalittoral-upper bathyal depositional setting, and high sedimentation rate allow to
document long-and short-term paleoenvironmental modifications (sea level, rainfall,
inorganic/organic/fresh water input to the basin), as a response to regional and global
climate changes. The combined proxies reveal the occurrence of a terminal stadial in
late MIS 20 (here Med-H  TIX  ), and warm-cold episodes (here Med-BA  TIX  and
Med-YD  TIX  ) during Termination IX (TIX), which recall those that occurred through
the last termination (TI). During these periods and the following sapropelic layer
(insolation cycle 74, 784 ka) in the early MIS 19, higher frequency internal changes are
synchronously recorded by all proxies. The substage MIS 19c is warm but quite
unstable, with several episodes of paleoenvironmental changes, associated with
fluctuating tropical-subtropical water inflow through the Gibraltar Strait, variations of the
cyclonic regime in the Ionian basin, and the southward shift of westerly winds and
winter precipitation over southern Europe and Mediterranean basin. Three high-
amplitude millennial-scale oscillations in the patterns of SST and calcareous plankton
key species during MIS 19a are interpreted as linked to gobal changes in temperature
as well as in salinity and in periodical column water stratification and mixing.
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The main processes involved in the climate variability included changes in
oceanographic exchanges through the Gibraltar Strait during modulations of Atlantic
meridional overturning circulation and/or variations in atmospheric dynamics related to
the influence of westerly and polar winds acting in the paleo-Ionian basin. A strong
climate teleconnection between the North Atlantic and Mediterranean has been
documented, and a prominent role of atmospheric processes in the central
Mediterranean has been evidenced by comparing data sets at the IS with Italian and
extra-Mediterranean marine and terrestrial records.
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Abstract 16 

This study shows the first Mediterranean high-resolution record of alkenone-derived sea surface 17 

temperature (SST) in the marine sediments outcropping at the Ideale section (IS) (southern Italy, 18 

central Mediterranean) from late marine isotope stage (MIS) 20 - through early MIS 18 interval. 19 

The SST pattern evidences glacial-intergalcial up to centennial-scale temperature variation, with 20 

lower values (~13°C) in late MIS 20 and substage 19b, and higher values (up to 21°C) in MIS 19c 21 

and MIS 19a interstadials. The SST data are combined with the new calcareous plankton analysis 22 

and the available, chronologically well-constrained carbon and oxygen isotope records in the IS. 23 

The multi-proxy approach, location of the IS near the Italian coasts, its lower circalittoral-upper 24 

bathyal depositional setting, and high sedimentation rate allow to document long-and short-term 25 

paleoenvironmental modifications (sea level, rainfall, inorganic/organic/fresh water input to the 26 

basin), as a response to regional and global climate changes. The combined proxies reveal the 27 

occurrence of a terminal stadial in late MIS 20 (here Med-HTIX), and warm-cold episodes (here 28 

Med-BATIX and Med-YDTIX) during Termination IX (TIX), which recall those that occurred 29 

through the last termination (TI). During these periods and the following sapropelic layer 30 

(insolation cycle 74, 784 ka) in the early MIS 19, higher frequency internal changes are 31 
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synchronously recorded by all proxies. The substage MIS 19c is warm but quite unstable, with 32 

several episodes of paleoenvironmental changes, associated with fluctuating tropical-subtropical 33 

water inflow through the Gibraltar Strait, variations of the cyclonic regime in the Ionian basin, and 34 

the southward shift of westerly winds and winter precipitation over southern Europe and 35 

Mediterranean basin. Three high-amplitude millennial-scale oscillations in the patterns of SST and 36 

calcareous plankton key taxa during MIS 19a are interpreted as linked to gobal changes in 37 

temperature as well as in salinity and in periodical column water stratification and mixing.  38 

The main processes involved in the climate variability include changes in oceanographic exchanges 39 

through the Gibraltar Strait during modulations of Atlantic meridional overturning circulation 40 

and/or variations in atmospheric dynamics related to the influence of westerly and polar winds 41 

acting in the paleo-Ionian basin. A strong climate teleconnection between the North Atlantic and 42 

Mediterranean is discussed, and a prominent role of atmospheric processes in the central 43 

Mediterranean is evidenced by comparing data sets at the IS with Italian and extra-Mediterranean 44 

marine and terrestrial records 45 

 46 

Keywords: Lower-Middle Pleistocene, MIS 19, southern Italy, marine biomarkers, coccolithophores, planktonic 47 
foraminifera 48 

 49 

1. Introduction 50 

Marine Isotope Stage (MIS) 19 stage is generally considered an excellent analogue for the 51 

current interglacial, due to the same astronomical configuration of orbital parameters: low 52 

eccentricity and an obliquity maximum almost in phase with the northern Hemisphere precession 53 

minimum. For this reason, any high-resolution study of MIS 19 can bring invaluable pieces of 54 

information about the natural duration of the current interglacial and the inception of next glacial in 55 

absence of human impact. MIS 19 is characterized by an orbital/suborbital climate variability that is 56 

evidenced by the partition in substages a, b, and c in the 18O oscillations (Railsback et al., 2015), 57 
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associated to 19.3, 19.2, and 19.1 events (Bassinot et al., 1994). They may have relevant 58 

implications in climatostratigraphy (Miller and Wright, 2017), coherently with the wide use of 59 

oxygen isotope signature for Quaternary chronostratigraphic subdivision. Specifically, the Lower-60 

Middle Pleistocene chronostratigraphic boundary, close to the Matuyama-Brunhes paleomagnetic 61 

reversal, is associated worldwide to the MIS 19c/MIS 19b transition at ~773 ka (Head, 2019, and 62 

reference therein). Millennial-scale variations have been also highlighted within MIS 19 as a result 63 

of local and North Hemisphere oceanic-atmosphere dynamics. A distinct occurrence of the first 64 

climate deterioration marked by MIS 19b after the full interglacial, and climate oscillations in MIS 65 

19a, have been revealed by recent high-resolution proxies in several marine (Kleiven et al., 2011; 66 

Tzedakis et al., 2012; Emanuele et al., 2015; Ferretti et al., 2015; Sánchez Goñi et al., 2016; 67 

Nomade et al., 2019) and lacustrine sediments (Giaccio et al., 2015; Regattieri et al., 2019), and ice 68 

core (e.g. Pol et al., 2010).  69 

These climate episodes, occurring at a wide scale (Nomade et al., 2019), may have not been 70 

given coherent chronologies, possibly due to different age-model strategies and the fact that 71 

different proxies may have been used to identify them. This makes it difficult to correlate climate 72 

stages and events with accuracy and to interpret climate dynamics and temporal relationship (ie. 73 

lead/lag) between high and mid latitudes or between marine and terrestrial realms, thus preventing 74 

the comprehension of cause-effect connections and the climate propagation of changes at regional 75 

and global scale.  76 

The on land marine Ideale section (IS), as part of the Montalbano Jonico section (MJS, southern 77 

Italy) crossing MIS 37-MIS 16, offers the opportunity to improve the paleoclimate framework of 78 

MIS 19 due to its high sedimentation rate and environmental setting. It was deposited in lower 79 

circalittoral-upper bathyal, not far from a peninsular coastline, and thus registered even slight 80 

climatically induced modifications such as changes in sea level, precipitation, and inorganic/organic 81 

input from land. The water depth of the sediments is also suitable to provide numerous marine 82 
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proxy data, in the form of planktonic and benthic foraminifera, coccolithophores, and marine 83 

biomarkers. The IS has been extensively studied in recent years due to its potential to represent the 84 

Lower-Middle Pleistocene chronostratigraphic boundary (e.g. Ciaranfi et al., 2010; Maiorano et al., 85 

2010, 2016a; Bertini et al., 2015; Marino et al., 2015, 2016; Petrosino et al., 2015; Simon et al., 86 

2017; Nomade et al., 2019). Short-term climate episodes in the latest MIS 20 and Termination IX 87 

(TIX) have been referred to Heinrich-like (Ht), Bølling-Allerød-like (BAt), and Younger-Dryas like 88 

(YDt) based on multi-proxy investigation thus suggesting a climate variability comparable to that 89 

documented during the last deglaciation (Maiorano et al., 2016a). The latter authors suggested the 90 

need of higher resolution data set to support these evidences in a finer constrained time frame. The 91 

more recent, very high-resolution benthic (Cassidulina carinata, Melonis barleeanum) 18O and 92 

13C records (Nomade et al., 2019) have improved the chronology of the IS, detailing the pattern of 93 

MIS 19 substages and the three interstadial phases in MIS 19a (19a-1, 19a-2, and 19a-3), 94 

highlighting the centennial-scale timing of these climate oscillations and their worldwide 95 

correlability.  96 

In the present work we present new high-resolution alkenone-SST data acquired at the IS, which 97 

are the first recorded in the Mediterranean Sea for the time interval spanning MIS 20-MIS 18 and 98 

may improve the understanding of the climate evolution as recorded in marine environment. New 99 

quantitative calcareous plankton (coccolithophores and foraminifera) results, obtained on the same 100 

samples used for marine biomarkers and for the isotopic study of Nomade et al. (2019), are also 101 

presented, providing a paleoecological window into synchronous marine response to major 102 

environmental modifications. The combination of this new data set with the detailed benthic isotope 103 

records available at the IS provides useful insights into i) the marine surface/subsurface water 104 

conditions in the central Mediterranean during an important interglacial of mid-Pleistocene 105 

transition considered the best analogue of the current interglacial (Holocene), ii) the terminal stadial 106 

event in late MIS 20 and its oceanographic-atmospheric connection with North Atlantic climate,  107 
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iii) the high frequency climate variability across TIX, making it possible to better address its 108 

apparent similarity with the rapid variability that occurred during TI. The comparison of new data 109 

with selected high-resolution climate references from North Atlantic Ocean provides additional 110 

highlights on central Mediterranean response to local or global climate via atmospheric-111 

oceanographic processes. 112 

 113 

2. Oceanography 114 

Sediments of the MJS were deposited in the paleo Gulf of Taranto (Fig. 1D), in the north Ionian 115 

Sea. At this location important detrital sediment supply derives mainly from Apennines rivers 116 

(Goudeau et al., 2013). Sediments from the Po River and other Apennines rivers may also arrive in 117 

the eastern Gulf of Taranto through the Western Adriatic Current (WAC) (Fig. 1D). This low 118 

salinity (37.2 PSU along the southern Italian coast) nutrient-rich current flows southward in a 119 

narrow coastal band from the northern Adriatic Sea, and mixes with the more saline Ionian waters 120 

(up to 39.5 PSU in the central Ionian Sea) (Poulain, 2001; Bignami et al., 2007; Turchetto et al., 121 

2007; Grauel and Bernasconi, 2010). The WAC has higher influence in winter and spring (Poulain, 122 

2001) than in summer and is characterized by significant inter-annual variability (Milligan and 123 

Cattaneo, 2007). In the Gulf of Taranto the highly saline Levantine Intermediate Water (LIW), 124 

flowing from the central Ionian Sea, may be recorded at the water depth of 200-600 m (Savini and 125 

Corselli, 2010). The Northern Ionian Gyre (NIG) that has decadal scale cyclonic and anticyclonic 126 

phases (Civitarese et al., 2010) characterizes the central open ocean area of the Gulf of Taranto. The 127 

cyclonic phase is characterized by saltier Levantine/Cretan Intermediate Waters (LIW/CIW) that 128 

flow northward into the Adriatic, while anticyclonic phase records advection of less saline Ionian 129 

water diluted by Modified Atlantic Waters (MAW) (Civitarese et al., 2010). In the first case poor-130 

nutrient LIW/CIW waters enter the north Ionian Sea and south Adriatic Sea, while the influx of 131 

MAW during anticyclonic phase favours upwelling events and nutrients supply at the periphery of 132 
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the anticyclonic NIG along the souther Italian coasts before reaches the south Adriatic Sea 133 

(Civitarese et al., 2010). The alternating anticyclonic and cyclonic states are known as Adriatic-134 

Ionian bimodal oscillation system (Civitarese et al., 2010; Gačić et al., 2010) that may influence 135 

nutrient distribution and phytoplankton growth (Civitarese et al., 2010, Batistić et al., 2017).  136 

Modern annual mean SSTs in the Gulf of Taranto are about 19.7 °C (Pujol and Vergnaud-137 

Grazzini, 1995). During summer, they vary from 26°C to 15°C at the surface and at 50 m depth, 138 

respectively, and the water column is stratified (Zonneveld et al., 2008; Grauel and Bernasconi, 139 

2010). During winter, SSTs vary between 13°C and 15°C. These seasonal temperature changes can 140 

influence the upper 100 m of the water column (Socal et al., 1999; Locarnini et al., 2010).  141 

Today, the high latitude North Atlantic and Arctic climate perturbations rapidly spread to the 142 

northern hinterlands of the Mediterranean and are channelized in mountain valleys through intense 143 

northerly flows of cold and dry air masses (‘Mistral’, ‘Bora’, ‘Vardar’ winds) over the northwestern 144 

Mediterranean, the Adriatic and the Aegean basins (Mariolopoulos, 1961; Leaman and Scott, 1991; 145 

Poulos et al., 1997). These polar and continental winter airflows cause intense evaporation and 146 

cooling of the sea surface and terrestrial vegetation (e.g., Leaman and Schott, 1991; Saaroni et al., 147 

1996; Poulos et al., 1997; Maheras et al., 1999; Casford et al., 2003; Rohling et al., 2009).  148 

 149 

3. Geological setting and stratigraphy 150 

The IS, as part of the Montalbano Jonico succession (MJS), crops out in the south-western 151 

margin of the Bradanic Trough, at about 16 km inland from the Ionian Coast (40°17'29.52" N   152 

16°33'10.58"E) (Fig. 1). The Bradanic Trough (e.g. Casnedi, 1988), located between the Apennines 153 

Chain to the west and the Apulian foreland eastward (Fig. 1B), is a foredeep basin of the post-154 

Messinian Apennines. Its origin and evolution are associated with the eastward roll-back of the 155 

subduction hinge of the Apulia platform and the evolution of the external Apennines thrust front 156 

during the Plio-Pleistocene (e.g., Patacca and Scandone, 2007 and references therein). The foredeep 157 
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was characterized by high rates of subsidence until the Calabrian, after which it underwent a 158 

diachronous uplift starting from the Genzano-Banzi area during late Calabrian and proceeding 159 

southeastward to the actual Ionian coast by Holocene time. In the late Calabrian, the central sector 160 

of the Bradanic Trough emerged while the southern sector, where the study section is located, was 161 

still subsiding. The central foredeep sector reached its maximum deepening in the Early-Middle 162 

Pleistocene (e.g., Maiorano et al., 2016a). From the Middle Pleistocene, the sedimentation reveals a 163 

shoaling-upward trend due to the uplift of the area (uplift rate of 0.1–0.5 mm/years, e.g. Doglioni et 164 

al., 1996) that led to the emersion of the area since 0.6/0.7 Ma. Regionally, the gradual emersion of 165 

the area is testified by several continental and marine terraces, represented by transitional and 166 

continental deposits of ancient alluvial and costal plains developed between 0.7 Ma and the Late 167 

Pleistocene (e.g. Vezzani, 1967; Brückner H., 1980 a, b; Pescatore et al., 2009; Sauer et al., 2010, 168 

Boenzi et al., 2014).  169 

The MJS (Fig. 1C) belongs to the argille subapennine informal unit (Azzaroli et al., 1968), 170 

representing its middle-upper portion, Early to Middle Pleistocene in age (Ciaranfi et al., 2010). It 171 

consists of coarsening-upwards deposits ranging from silty clays to silty sands and includes nine 172 

tephra layers (V1–V9) (Fig. 1C). The tephra layers (V1-V9) were chemically and mineralogically 173 

characterized and correlated to analogous layers from south-central Italy lacustrine and marine 174 

successions, within a Lower-Middle Pleistocene Mediterranean tephrostratigraphic frame (Petrosino 175 

et al., 2015). The MJS, in its lower part, includes five dark horizons interpreted as sapropel layers 176 

(D'Alessandro et al., 2003; Stefanelli, 2004; Stefanelli et al., 2005; Maiorano et al., 2008) and 177 

correlated, from oldest to youngest, to insolation cycles i-112, i-104, i-102, i-90, and i-86, based on 178 

the Mediterranean sapropel stratigraphy of Lourens (2004) and Lourens et al. (2004). The 179 

calcareous nannofossil biostratigraphy indicates that the entire succession belongs to the small 180 

Gephyrocapsa and Pseudoemiliania lacunosa zones, based on the biostratigraphic scheme of Rio et 181 

al. (1990) (Fig. 1C). Several deepening-shallowing cycles, from bathyal to circalittoral 182 
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environments, have been recognized based on micro- and macro-invertebrate benthic assemblages 183 

(D’Alessandro et al., 2003; Stefanelli, 2003; Ciaranfi and D’Alessandro, 2005; Girone, 2005). 184 

Specifically, benthic paleocommunities from the lower part of succession (Interval A) indicated 185 

upper slope environments, with a maximum depth of ca. 500 m, while paleocommunities of upper 186 

portion (Interval B) pointed out to outer to inner shelf settings with short-term deepening towards 187 

upper slope.  188 

The IS, in Interval B, consists of clays and silty clays bracketed by two tephra layers, V3 and V4. 189 

The V3 and V4 layers were radiometrically dated and their 40Ar/39Ar ages are 801.2 ± 19.5 ka 190 

(Maiorano et al., 2010), 773.9 ± 1.3 ka (Petrosino et al., 2015), respectively. The V3 tephra is 191 

located within the MIS 20 interval (at 820 cm) and V4 is at the transition from MIS 19c to MIS 19b 192 

(at 3660 cm) (Fig. 1C). Due to its high stratigraphic value in constraining the MIS 19c/19b 193 

transition, coincident with the 10Be/9Be peak interpreted as the Earth magnetic field collapse during 194 

the Matuyama-Brunhes reversal (Simon et al., 2017), V4 has been re-dated at the LSCE laboratory 195 

(France). New dating provided a 40Ar/39Ar age of 774.1 ± 0.9 ka (Nomade et al., 2019), which is in 196 

good agreement with the Ar/Ar age estimate of Petrosino et al. (2015). The dark grey bands (Fig. 197 

1C) correspond to higher kaolinite and smectite content and increased chemical weathering on land 198 

(Maiorano et al., 2016a); the clay fraction increases significantly (20–31%, average 24%) from the 199 

onset of MIS 19 upwards, although several fluctuations have been observed through the interval 200 

encompassing MIS 19a towards MIS 18. In contrast, the light grey bands are related to increases of 201 

quartz and dolomite associated with enhanced supplies of the coarser detrital mineral components 202 

into the basin (Maiorano et al., 2016a). Dark and light intervals correspond to lower (interglacial, 203 

interstadials) and higher (glacial, stadials) benthic 18O values, respectively, suggesting the glacio-204 

eustatic/climate control on sedimentary features of the IS. However, the influx of fresh water of on 205 

land origin during wetter climate was not excluded during lighter 18O and darker sedimentation 206 

phases, in contrast to more arid climate during heavier 18O intervals (Bertini et al., 2015; Nomade 207 
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et al., 2019). The shallowing-deepening cycles through MIS 20-18 are also highlighted by marine 208 

micro- and macrobenthic assemblages (D'Alessandro et al., 2003; Stefanelli, 2003; Aiello et al., 209 

2015), and pollen distality index (Bertini et al., 2015). In detail, paleodepths range from about 100 210 

m to 180-200 m (Aiello et al., 2015) which implies a water column mainly distributed in the photic 211 

zone. A maximum flooding in the mid MIS 19c (MF, Fig. 1C) followed by the maximum depth 212 

interval (MD, Fig. 1C) are documented by D'Alessandro et al. (2003) based on the benthic macro-213 

invertebrate communities.  214 

 215 

4.  Methods 216 

Alkenones and calcareous plankton assemblages were investigated in 170 and 167 samples, 217 

respectively, from the same levels analyzed for the high-resolution isotope curves of Nomade et al. 218 

(2019). The sample spacing is between 20 and 40 cm and corresponds to a temporal resolution of 219 

200 years in MIS 20, down to about 100 years during selected intervals (mainly Termination IX and 220 

MIS 19a), according to the age-model of Nomade et al. (2019). 221 

 222 

4.1 Biomarker analyses 223 

Lipid biomarker extractions were carried out on 5g freeze-dried, ground samples by accelerated 224 

solvent extraction (Dionex ASE-200) at Brown University. The complexity of interfering peaks in 225 

the region where C37 and C38 alkenones elute via gas chromatography (GC), organic extracts were 226 

purified by silica gel flash column chromatography prior to GC analysis. Gas chromatography was 227 

carried out on an Agilent (60 m, DB-1 column) with the following parameters: GC performance 228 

was monitored by running a lab standard extract at the beginning and end of each run, and running 229 

replicates (“bookends”) of IS extracts within the run to rule out chromatographic drift. In addition to 230 

the Uk’
37 index, we determined comparable C38 unsaturation indices for quality control; the signal 231 

noise of these determinations was less than for the Uk’
37 index, but they served a redundancy checks 232 
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that would have indicated the presence of outliers possibly indicating compounds interfering with 233 

alkenones in GC analysis. Reproducibility was ~ 0.01 Uk’
37 units and ~5 % relative error for 234 

C37total. Estimates of alkenone paleotemperature follow calibration of Müller et al. (1998). 235 

 236 

4.2 Microfossils 237 

Analyses for planktonic foraminifera were carried out on the residue >150 μm after the sediment 238 

was dried and washed on a 63 μm sieve. The residues were split until a representative aliquot, 239 

containing about 300 specimens, has been obtained. The species abundances were quantified as 240 

percentages on the total number of planktonic foraminifers. Sixteen species or species groups were 241 

distinguished: Globigerinoides ruber includes morphotype Globigerinoides ruber white, and 242 

Globigerinoides elongatus (sensu Aurahs et al., 2011); Trilobatus sacculifer includes Trilobatus 243 

trilobus, Trilobatus sacculifer and Trilobatus quadrilobatus (sensu Hemleben et al., 1989; André et 244 

al., 2013; Spezzaferri et al., 2015). The SPRUDTS group (sensu Rohling et al., 1993) 245 

(Globigerinella siphonifera, Hastigerina pelagica, Globoturborotalita rubescens, Orbulina 246 

universa, Beella digitata, Globoturborotalita tenella, and T. sacculifer) and G. ruber were grouped 247 

as warm water indicators (foram-wwt). The criteria adopted for the taxonomy of Neogloboquadrina 248 

spp. are from Darling et al. (2006): Neogloboquadrina incompta corresponds to neogroboquadrinids 249 

previously referred to N. pachyderma (dextral) and includes intergrades between N. pachyderma 250 

(dextral) and N. dutertrei; N. pachyderma includes the left coiling specimens. It is a polar-subpolar 251 

taxon in the Northern Hemisphere (Bé and Tolderlund, 1971; Hemleben et al., 1989; Johannessen et 252 

al., 1994; Simstich et al., 2003; Darling et al., 2006) and has been found rare (< 5%) in central and 253 

eastern Mediterranean Sea during Pleistocene (e.g. Thunell, 1978; Rohling and Gieskes, 1989; 254 

Rohling et al., 1993; Hayes et al., 1999, 2005; Sprovieri et al., 2003, 2012; Triantaphyllou et al., 255 

2009; Siani et al., 2010). Increases in the abundance of N. pachyderma has been used as a proxy of 256 

Atlantic cold (melt) water influx into Mediterranean (Hemleben et al., 1989; Pérez-Folgado et al., 257 
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2003; Sierro et al., 2005; Girone et al., 2013; Capotondi et al., 2016; Marino et al., 2018). N. 258 

incompta is a cold and eutrophic taxon, indicative of deep chlorophyll maximum at the base of the 259 

euphotic layer (Hemleben et al., 1989; Reynolds and Thunnel., 1989; Pujol and Vergnaud-Grazzini, 260 

1995; Rohling et al., 1995). G. bulloides, due to its opportunistic behavior, has been used as an 261 

indicator of high nutrient content, the species preferring eutrophic condition related to upwelling, 262 

strong seasonal mixing or river input (Tolderlund and Bé, 1971; Hemleben et al., 1989; Pujol and 263 

Vergnaud Grazzini, 1995; Rohling et al., 1997; Bàrcena et al., 2004; Geraga et al., 2005, 2008). G. 264 

inflata has been used a proxy of cool-temperate waters, deep pycnocline, and ventilated conditions 265 

(Hemleben et al., 1989; Pujol and Vergnaud-Grazzini, 1995; Rohling et al., 1995; Barcena et al., 266 

2004). 267 

Slides for coccolithophore analysis were prepared according to Flores and Sierro (1997) to 268 

estimate absolute coccolith abundances. Quantitative analyses were performed using a polarized 269 

light microscope at 1000× magnification and abundances were determined by counting at least 500 270 

coccoliths of all sizes, in a varying number of fields of view. Species abundances were expressed as 271 

percentage and as N (coccolith/gram of sediment). The warm-water taxa Umbilicosphaera sibogae 272 

s.l., Calciosolenia spp., Discosphaera tubifera, Rhabdospaera clavigera, Umbellosphaera spp., 273 

Oolithotus spp., Helicosphaera pavimentum were grouped together (nanno-wwt) according to their 274 

ecological preferences and their higher abundances during warmer and oligotrophic conditions 275 

(McIntyre and Bé, 1967; Winter et al., 1994; Ziveri et al., 2004; Baumann et al., 2004; Boeckel and 276 

Baumann, 2004; Saavedra-Pellitero et al., 2010; Palumbo et al., 2013; Maiorano et al., 2015; 277 

Marino et al., 2018). Coccolithus pelagicus ssp. pelagicus, a subartic taxon (Baumann et al., 2000; 278 

Geisen et al., 2002), was used as an indicator of cold meltwater influx in mid-latitude North 279 

Atlantic Ocean (Parente et al., 2004; Marino et al., 2011, 2014; Amore et al., 2012; Maiorano et al., 280 

2015), even in Mediterranean basin (Girone et al., 2013; Maiorano et al., 2016a; Marino et al., 281 

2018; Trotta et al., 2019). Increases of Florisphaera profunda that thrive in the lower photic zone 282 
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were considered indicative of deep nutricline (Molfino and McIntyre, 1990). The taxon may also 283 

inhabit surface water when turbidity and low light occur due to too high surface detrital input and 284 

low light intensity (Ahagon et al., 1993; Colmenero-Hidalgo et al., 2004; Maiorano et al., 2008, 285 

2016a; Girone et al., 2013). Taxonomy of gephyrocapsids follows the criteria of Maiorano et al. 286 

(2013). Helicosphaera carteri has been used as a proxy of enhanced detrital input, surface water 287 

turbidity and low salinity (Colmenero-Hidalgo et al., 2004), conditions associated to higher runoff 288 

and enhanced nutrients (Bonomo et al., 2018) or cold glacial phases and low sea level in 289 

Mediterranean Sea (Weaver and Pujol, 1988; Colmenero-Hidalgo et al., 2004; Maiorano et al., 290 

2013, 2015, 2016b; Marino et al., 2018). 291 

 292 

5. Results  293 

 At the IS, SST pattern records values between 12 and ~22°C (Fig. 2D). The lower SSTs 294 

characterizes the lower part of the studied section (MIS 20), substage MIS 19b and the stadial 295 

episodes in MIS 19a. On the other hand, higher temperatures are recorded in MIS 19c and 296 

interstadials 19a-1, 19a-2, and 19a-3 (Fig. 2D). Calcareous plankton key taxa used here for 297 

paleoenvironmental reconstruction show relevant fluctuations throught time. Total coccoliths (tot N, 298 

Fig. 2F) have abundance mainly lower than 20 coccoliths/g (x 10^7) in MIS 20 and during TIX, and 299 

lower than 30 coccoliths/g (x 10^7) from MIS 19b towards the end of the studied section, with 300 

slightly increases up to 40 coccoliths/g (x 10^7) during interstadials in MIS 19a. Total N has higher 301 

values, up to 100 coccoliths/g (x 10^7), during MIS 19c. Coccolithophore wwt (nanno wwt, Fig. 302 

2G), although low in abundance throughout the section, has fluctuating increases in MIS 19c and 303 

interstadial 19a-2, with abundance never higher than 0.5 coccoliths/g (x 10^7). F. profunda 304 

generally has abundance lower that 1 coccoliths/g (x 10^7) while it shows major fluctuating 305 

increase up to 3.2 coccoliths/g (x 10^7) in MIS 19c (Fig. 3D). Syracosphaera spp. are a minor 306 

component of coccolithophore assemblage (Fig. 3F), however they records a distinct abundance 307 
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peak of 0.5 coccoliths/g (x 10^7) in the lower MIS 19c. The percentage abundances of planktonic 308 

foraminifera wwt (Fig. 2H) vary between 5 and 80% and depict glacial-interglacial and stadial-309 

interstadial episodes with a few short-term minor increases during TIX. In particular, the relative 310 

abundances of T. trilobatus reach 3.5% in MIS 19c and MIS 19a-2 interstadial (Fig. 2H); G. ruber 311 

is a significant component reaching relative abundances up to 72% mainly starting from MIS 19c 312 

upwards (Fig. 3G). The polar-subpolar C. pelagicus ssp. pelagicus and N. pachyderma are more 313 

abundant, with vaules up to 22% and 5%, respectively, in MIS 20, during TIX and in MIS 19b as 314 

well as in colder phases of MIS 19a (Fig. 2 K-L). H. carteri shows a comparable pattern (Fig. 2M) 315 

with fluctuating relative abundances lower than 7.5%. N. incompta has discontinuous relative 316 

abundance, with peaks up to 17% in MIS 20 and TIX, in lower MIS 19c, and in short-term intervals 317 

of MIS 19a, while it is absent in the upper MIS 19c (Fig. 2I). G. bulloides is continuously present 318 

throughout the IS and shows variable abundances, which seem to increase in the upper portion of IS 319 

(Fig. 2J). G. inflata records higher abundances, up to 80%, in distinct periods of TIX and in the 320 

stadials of MIS 19a, whereas it is absent in MIS 19c and interstadial phases (Fig. 2N). O. universa 321 

shows abundance variations during the investigated interval, with more proninent peaks, up to 27%, 322 

in selected short-term intervals of TIX and in MIS 19a interstadials.  323 

 324 

6. Discussion 325 

Results are discussed starting from the lower portion of the studied record upwards focusing on 326 

environmental changes occurred in late MIS 20 and TIX (Fig. 2) to MIS 19 onset (Figs 2-3), and 327 

towards MIS 19b-19a, and MIS 18 beginning (Fig. 2). Comparisons with climate proxies from other 328 

extra-Mediterranean reference sections are presented in fiugre 4. 329 

 330 

6.1 Environmental changes through late MIS 20: the terminal stadial event Med-HTIX 331 
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The lower part of the studied section (800-794 ka) is characterized by fluctuating values of SST 332 

between ~ 16 and 20°C (Fig. 2D). Upward, between 794 and 788.5 ka, a terminal stadial (sensu 333 

Hodell et al., 2015), hereafter named Med-HTIX, may be recognized, primarily based on the SST 334 

decreases and the polar-subpolar N. pachyderma and C. pelagicus ssp. pelagicus increase (Fig. 2 K-335 

L). In more details, SSTs were at least 4-5°C cooler than pre-Med-HTIX (17-21°C) with fluctuating 336 

values mainly below 16°C, and minimum at 13°C. These values are compatible with Δ47-derived 337 

subsurface temperature of 12.1°C measured on benthic foraminifera at 794 ka (Peral et al., 2020). 338 

C. pelagicus ssp. pelagicus and N. pachyderma increase from percentages mainly below 3% and 339 

10%, to values up to 5% and 20%, respectively. The concomitant low abundances of planktonic 340 

foraminifera wwt (Fig. 2 G-H) are coherent with colder sea surface water conditions in the basin 341 

linked to Med-HTIX, lasting about 5 kyr at the IS. The pollen assemblages at the IS indicated a 342 

synchronous large expansion of open landscapes including prevalent (cold) dry steppes on land 343 

(Bertini et al., 2015).  344 

 345 

6.1.1. Possible oceanographic and atmospheric processes during terminal stadial Med-HTIX 346 

The decreasing trend of temperature in latest MIS 20 is accompanied by a similar pattern of 347 

benthic 13C (Fig. 2P) suggesting an increasing trend of water column stratification. On the other 348 

hand, the terminal stadial is not accompanied by higher 18O values, as it may be expected during a 349 

very cold phase. The 18OM. barleeanum records a lightening of 1‰ (Fig. 2C) that could reflect the 350 

influx of lighter fresh water at the site location, possibly lowering salinity down to the sea bottom 351 

and then affecting oxygen isotope composition in the Melonis barleeanum tests. This process was 352 

possible due to the shallow depth (~ 100m, Aiello et al., 2015) of depositional setting of IS at this 353 

time, during glacial low sea level (Fig. 2B).  354 

The occurrence of cold and fresher waters at the location of IS may reflect the arrival of melt 355 

waters coming from mountain glaciers of the close hinterland (Alpine and Apennines chains), as 356 
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during the last termination (Maselli et al., 2011). Alternatively, fresher water inflow into the Ionian 357 

Sea associated with North Atlantic ice melting may have occurred through the Gibraltar Strait, such 358 

a scenario being coherent to what has been observed in the western Mediterranean during recent 359 

glacial stadials correlated to Heinrich event in North Atlantic (e.g. Cacho et al., 1999; 2000; Sierro 360 

et al., 2005; Frigola et al., 2008; Martrat et al., 2014). In support of our interpretation at the IS are 361 

the data from the Balearic Sea (Quivelli, 2020); they indicate cold fresh water inflow from Atlantic 362 

or surrounding mountain glacier during the terminal stadial of MIS 20, based on the increases of 363 

polar-subpolar N. pachyderma and tetra-unsaturared alkenones (C37:4), and lower alkenone-derived 364 

SST, the last recording values between 8 and 11°C. Analogous evidences of Heinrich-type (Ht) 365 

events in the Alboran (Marino et al., 2018), Balearic (Girone et al., 2013; Maiorano et al., 2016b), 366 

and Ionian (Maiorano et al., 2013; Capotondi et al., 2016) basins, during the glacial MIS 12 and 367 

MIS 10, have been suggested based on calcareous plankton. Similarly, lighter planktonic 18O 368 

values and calcareous plankton assemblages suggested the arrival of Atlantic water in the central 369 

Mediterranean during main terminations of the last 70 ka (Sprovieri et al., 2012; Incarbona et al., 370 

2013).  371 

The arrival of melt waters in the Ionian basin during Med-HTIX has a close temporal relationship 372 

with the deposition of ice rafted debris (IRD) in the North Atlantic. Iceberg discharge and North 373 

Hemisphere ice sheet instability have been in fact documented by the IRD peaks and low 13Cbenthos 374 

values at the sites 980 (Wright and Flower, 2002) and 983 (Kleiven et al., 2011) (see Fig. 4 O-Q), 375 

signifying time of water column stratification and shutdown of Atlantic Meridional Overturning 376 

Circulation (AMOC) (Ganopolski and Rahmstotf, 2001). We suggest that the Med-HTIX in the late 377 

MIS 20 at the IS is coherent with the contemporaneous oceanographic and climate signals at the 378 

southwestern Iberian margin and northern Atlantic (Fig. 4). During late MIS 20 or TIX there is no 379 

evidence of ice rafted detritus (IRD) at the mid-latitude Iberian margin, a sensitive area that 380 

recorded IRD occurrence during colder episodes of the mid-Pleistocene glacials (Stein et al., 2009; 381 
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Voelker et al., 2010; Rodrigues et al., 2011). However, clear indications of low salinity and cold 382 

melt water inflow have been recently documented in that area, at the Site U1385, during late MIS 383 

20 (Rodrigues et al., 2017). Low alkenone-SST (between 12 and 9°C, Fig. 4N) and higher C37:4 384 

(Fig. 4M) occurred at this time (Rodrigues et al., 2017), and a peak of N. pachyderma was found, 385 

centered at about 790 ka (Martin-Garcia et al., 2018), as a signal of southward migration of Polar 386 

Front. This very cold period is nearly synchronous, within the uncertainty of the different age 387 

models, with the polar-subpolar C. pelagicus ssp. pelagicus and N. pachyderma increases and 388 

alkenone-SST decrease at the IS (Fig. 2D) during the Med-HTIX. At the same time, the minima in 389 

13Cbenthos (Fig. 4L) and in log Ca/Ti patterns at the Iberian margin U1385 core (Fig. 4K) (Hodell et 390 

al., 2013, 2015) point to North Atlantic low bottom water ventilation, due to reduced North Atlantic 391 

Deep Water formation (Raymo et al., 1990, 1997), and the occurrence of a cold stadial. Such 392 

oceanographic conditions have been interpreted as similar to those occurring during the 393 

conventional Heinrich events H1 and H2, and older ones (Hodell et al., 2015). These evidences 394 

imply a clear Mediterranean response to high latitude North Atlantic climate change through 395 

oceanographic connection during mid-Pleistocene stadials.  396 

The slightly warmer temperatures at the IS, compared to those recorded at the same time in the 397 

southwestern Iberian margin (Fig. 4N) and Balearic basin (8-11°C; Quivelli, 2020), may be a result 398 

of the west-east SST (and salinity) increase of MAW during its eastward route in the Mediterranean 399 

(Bélthoux, 1979; Malanotte-Rizzoli et al., 1999, 2014; von Grafenstein et al., 1999; Pinardi and 400 

Masetti, 2000). Similar temperature gradient from west (Alboran Sea, ~10-11°C, Cacho et al., 2001; 401 

Martrat et al., 2014) to east (Tyrrhenian Sea, 11-14°C, Paterne et al., 1999; eastern Mediterranean, 402 

14-16°C, Castaneda et al., 2010) was also recorded during H1. 403 

 404 

The cold climate frame reconstructed for the Med-HTIX based on our marine proxies may have 405 

been also controlled by Atlantic-Mediterranean connection via atmospheric processes. Although the 406 
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past atmosheric dynamic is difficult to be known, relatively more arid climate has been inferred at 407 

the IS during H-t in MIS 20 based on pollen assemblages (Bertini et al., 2015; Maiorano et al., 408 

2016a). This is in agreement with the general arid conditions associated to recent Heinrich events 409 

(Allen et al., 1999; Combourieu-Nebout et al., 2002; Sánchez Goñi et al., 2002; Naughton et al., 410 

2016). Reduction of evaporation and precipitation has been also proven to occur even in the eastern 411 

Mediterranean during the Heinrich events (Bartov et al., 2003; Kwiecien et al., 2009).  412 

Specifically, cold and dry Arctic air masses could have penetrated into the Ionian Sea during the 413 

winter season, similarly to what occurred during recent glacial cycles in the central and eastern 414 

Mediterranean region, and contributed, through enhanced north-westerly winds, to enhance winter 415 

deep water mixing and ventilation. Such winter deep water mixing and ventilation occured in the 416 

Mediterranean during North Atlantic Heinrich stadials and shutdown of AMOC (Cacho et al., 1999, 417 

2000; Sierro et al., 2005; Frigola et al., 2008). The cold stadial phase during late MIS 20 in North 418 

Atlantic surface waters, as recorded by lower SST on the Iberian Margin (Fig. 4N) (Rodrigues et al., 419 

2017), likely (i) reduced the evaporation and moisture content in air masses advected towards the 420 

Mediterranean region, promoting a cold and drier period, and (ii) induced more efficient north 421 

winter winds, and lower surface water temperature in the Ionian basin. This may have favored the 422 

proliferation of cold calcareous plankton taxa in sea surface water, as discussed above, and the arid 423 

conditions on land documented by pollen data at the IS (Bertini et al., 2015; Maiorano et al., 424 

2016a). This seems in line with the higher aridity (Sánchez Goñi et al., 2016) recorded at the U1385 425 

(Fig. 4O). Similar atmospheric mechanisms linked to North Hemisphere ice-sheet dynamics have 426 

been suggested by Regattieri et al. (2019) to explain the high frequency climate changes displayed 427 

in the Sulmona lacustrine sediments in central Italy during MIS 19. Also, oceanic circulation and 428 

atmospheric processes related to ice-sheet dynamics in the North Atlantic have been pointed out by 429 

Nomade et al. (2019) as possible drivers of millennial-scale climate variation at the IS section 430 

during stadials and interstadials in MIS 19b-a.  431 



18 

 

Therefore, we believe that the Atlantic colder climate phase in late MIS 20 may have affected the 432 

Ionian basin climate by advection of subpolar low-salinity water through the Gibraltar Strait, and 433 

polar air outbreaks over the Mediterranean (e.g. Allen et al., 1999; Cacho et al., 1999, 2006; 434 

Rohling et al., 2002; Frigola et al., 2008; Rodrigo-Gámiz et al., 2011; Sprovieri et al., 2012). 435 

 436 

Centennial-scale variability and environmental instability are recorded by marine proxies within 437 

the Med-HTIX, specifically in the oscillating SST values, with differences of temperatures up to 4°C, 438 

and in the fluctuations of key calcareous plankton taxa (Fig. 2). In more detail, N. pachyderma 439 

shows two main abundance peaks (Figs. 2K, 4E) that are surprisingly nearly coeval with two 440 

prominent lows in the 13Cbenthos at the Site U1385 (low deep water ventilation, slowdown of 441 

AMOC) (Fig. 4L). There, also SST and C37:4 (Fig. 4 M-N) show a pattern with two phases of low 442 

and high values, respectively (colder and fresher/melting waters). A two-fold pattern is additionally 443 

visible in the sea level curve (Fig. 2B) which shows two minima (although in a slightly different 444 

timing due to independent age models), that would be coherent with times of higher Atlantic 445 

meltwater and polar taxa influx. On the contrary, in the middle of Med-HTIX, G. inflata (Fig. 2N) 446 

has fluctuating higher abundances, concurrent with fluctuating lower 18O, indicating time of quite 447 

restored MAW inflow and periodic declines in the Atlantic meltwater arrival at the Mediterranean, 448 

possibly related to a short phase of less prominent low sea level (Fig. 2B). These data further 449 

sustain an Atlantic-Mediterranean hydrological connection even at shorter temporal scale. This 450 

variability, within the Med-HTIX, is in line with abrupt changes recorded in Mediterranean Sea 451 

during climate phases correlated to Atlantic Heinrich events (Frigola et al., 2008; Martrat et al., 452 

2014; Bazzicalupo et al., 2018). The centennial-scale variability seems to be a regular climate 453 

pattern of Heinrich events, when investigated at very high-resolution, as sustained by the moisture 454 

spells within the cold and arid H1 event on the northwestern Iberian margin (Naughton et al., 2011, 455 

2016) and Iberian peninsula (Camuera et al., 2019), based on pollen signals. In the IS the multiple, 456 
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centennial-scale changes may also be associated to discontinuous meltwater influence from 457 

mountain glaciers of southern Apennines through rivers or from Alpine chain through WAC. In 458 

fact, meltwater pulses from Italian peninsula chains have been documented during last termination 459 

and specifically from Alpine glaciers in the Adriatic Sea (Maselli et al., 2011).  460 

 461 

6.2 Climate variability throughout Termination IX 462 

Following the Med-HTIX, the sea surface water interglacial warming, starting at about 785 ka, is 463 

preceded by an evident climate variability that is visible in the patterns of SST and selected 464 

calcareous plankton proxies (Fig. 2).  465 

 466 

6.2.1 Med-BATIX and Med-YDTIX events 467 

The decrease of C. pelagicus ssp. pelagicus (Fig. 2L) and N. pachyderma (Fig. 2 K) and the 468 

remarkable peaks of O. universa (up to 25%) (Fig. 2O), together with the prominent increase of 469 

Globorotalia inflata (up to 80%) (Fig. 2N), represent the first signal of the climate amelioration 470 

during sea level rise, and may be associated to a Bølling-Allerød-like event (hereafter Med-BATIX). 471 

Decrease of Cupressaceae and increase of dinocysts S. mirabilis/hyperacanthus, the latter known to 472 

benefit from sea surface temperature between 10 and 15 °C during winter and between 15 and 22 473 

°C during summer, confirm a climate amelioration (Maiorano et al., 2016a). This climate phase is 474 

now further supported by the alkenone-SST pattern, which records a distinct temperature increase 475 

of ca. 3°C, up to 17.6 °C, from 788.4 to 786.1 ka, resembling the Bølling-Allerød-4°C increase of 476 

the last termination in the western Mediterranean (Martrat et al., 2014). The SST profile during 477 

Med-BATIX marks a warming in the first phase followed by a cooling trend, and does not show 478 

distinct multiple oscillations like those occurred during the BA of last termination (NGRIP, 2004) 479 

that however recorded a similar general temperature decline. Nevertheless, looking in more detail at 480 

the planktonic foraminifera key taxa within the Med-BATIX, the opposite pattern between O. 481 
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universa and G. inflata may be observed, and could suggest that warm and freshening surface water 482 

conditions alternated in the region with period of normal salinity. O. universa in fact has a broad 483 

salinity tolerance and is most abundant in the vertically mixed layer and nutrient-rich areas of the 484 

low to mid-latitudes (Be, 1977; Fairbanks et al., 1982; Pujol and Vergnaud Grazzini 1995; Morard 485 

et al., 2009). This taxon, during TI, calcified in low salinity waters derived by year-round return of 486 

meltwater before and after the main climate deterioration at the H1 and YD events (Spero and 487 

Williams, 1990; Vetter et al., 2017). Therefore, we infer that the occurrence of O. universa at the IS 488 

in the early and late portions of Med-BATIX may be evidence of short-term climate amelioration that 489 

destabilized and melted the local ice caps of the Apennines/Alpes areas leading to increased river 490 

runoff, which caused lower sea surface salinity, increase of detrital input and nutrient into the basin, 491 

preventing enhanced proliferation of warm and oligotrophic taxa (Fig. 2 G-H). Only the 492 

opportunistic species such as O. universa could have found suitable environmental conditions to 493 

proliferate. On the contrary, G. inflata, thriving under normal salinity conditions, has higher 494 

abundance in the mid Med-BATIX, since this species undergoes vertical migrations from shallow to 495 

intermediate water depths with low vertical salinity gradients (Martinez et al., 2007). Therefore, its 496 

occurrence could attest the deepening of pycnocline and a short-term recovery of the Atlantic-497 

Mediterranean exchange during sea level rising (Fig. 2B), in agreement with increased influx of low 498 

latitude Atlantic waters during Bølling-Allerød (Sprovieri et al., 2003; Lirer et al., 2013). Because 499 

the low-resolution pollen data at the IS do not indicate changes toward wetter condition, it is 500 

difficult to understand if the arrival of the freshwater was also supplied by wetter climate on land, 501 

but this, although at speculative level, cannot be excluded. In fact, humid climate conditions during 502 

the BA at the TI characterized the central and eastern Mediterranean areas (e.g., Combourieu-503 

Nebout et al., 1998; Allen et al., 1999; Frisia et al., 2005; Giraudi et al., 2011; Goudeau et al., 2014) 504 

and western basin (Combourieu-Nebout et al., 2009; Bazzicalupo et al., 2018), during rapid sea 505 
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level rising after the H1 event and before the sapropel S1 formation (Roussakis et al., 2004; 506 

Kontiokis, 2016). Similarly, a sapropel occurs in the IS following TIX (see next section).  507 

Upwards, the following and gradual SST decrease of ca 2.5°C centered at 785.8 ka, together with 508 

short-term increases of the polar-subpolar N. pachyderma, C. pelagicus ssp. pelagicus, and of N. 509 

incompta (Fig. 2), sustain a very short-term cool spell, before interglacial warming inception, that is 510 

interpreted as a Younger Dryas-like event (hereafter Med-YDTIX), in agreement with Maiorano et 511 

al. (2016a). A slight but distinct increase of benthic 13C (Fig. 2P) during the Med-YDTIX marks a 512 

short-term restored sea bottom ventilation and deepening of mixed layer before the MIS 19c onset. 513 

Such environmental condition may have been driven by more efficient winter winds during an arid 514 

period, in agreement with the decreased precipitation/rainfall recorded in the central Italy during the 515 

coeval “YD” at TIX (Giaccio et al., 2015). Evidence of cold condition (abundance peak of C. 516 

pelagicus ssp. pelagicus) and enhanced onland erosion (higher reworked coccoliths and lithic 517 

elements) have been also recorded, based on coccolithophore assemblages, at the nearby Ionian 518 

core KC01B at the same time, following a short term warming referred to a Bølling-Allerød-type 519 

episode (Trotta et al., 2019). Similar sequence of warm and cold short term episodes just before the 520 

MIS 19c onset has bee recognized in Balearic basin based on calcareous plankton assemblages and 521 

alkenone-SST (Quivelli, 2020), thus attesting high-frequency climate changes through TIX at the 522 

scale of Mediterranean basin.   523 

The millennial climate variability across the MIS 20-MIS 19 deglaciation, that can be 524 

reconstructed in the IS, improves our understanding of climate evolution during terminations. Such 525 

high frequency changes seem to be a shared feature of most terminations over the last 800 ka 526 

(Barker et al., 2019), especially during times of intermediate glacial ice volume, as it is the case of 527 

MIS 20, and transitions between glacial and interglacial state (Ruddiman et al., 2016).  528 

  529 

6.2.2 Comparison of TIX between Ionian and Atlantic records 530 
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On the whole, the new data set that we obtained through TIX (Med-BATIX and Med-YDTIX) at 531 

the IS reinforces the working hypothesis that there should be a strong similarity between TIX and 532 

TI recorded in the Mediterranean Sea (Capotondi et al., 1999; Sbaffi et al., 2001; Asioli et al., 2001; 533 

Di Stefano and Incarbona, 2004; Siani et al., 2010, 2013; Geraga et al., 2010; Rouis-Zargouni et al., 534 

2010; Castañeda et al., 2010; Kontakiotis, 2016; Bazzicalupo et al., 2018).  535 

Although analogy with Bølling-Allerød-type and Younger-Dryas-type episodes has not been 536 

inferred so far in oceanic waters out of the Mediterranean during TIX, and because we have 537 

associated such millennial variability at the IS with North Atlantic climate, we compared our results 538 

to selected high-resolution North Atlantic sedimentary records (Fig. 4). They evidence instability in 539 

surface and subsurface waters and in climate on land during the MIS 20-19 transition (Fig. 4 H-I, 540 

K-L, O, R-S, pink bands). Specifically, oscillations may be observed in the final decreasing trend of 541 

semi-desert Mediterranean Taxa at the core U1385 (Sánchez Goñi et al., 2016) (Fig. 4O) just before 542 

the very low values occurring during MIS 19c. During this unstable phase, the 13Cbenthos and log 543 

Ca/Ti curves indicate short-term climate variations at the Iberian margin in terms of Atlantic Ocean 544 

deep-water ventilation/stratification, temperature, and marine productivity, respectively. Vegetation 545 

(Fig. 4 H, O) similarly records distinct, although low amplitude fluctuations before the Tajo phase; 546 

moreover, a cold spell event occurring during deglaciation is discussed in Sánchez Goñi et al. 547 

(2016) (black arrow in Fig. 4H). These oscillations (pink band in Fig. 4) likely sign the equivalent 548 

climate variability at the IS through TIX, and therefore a common high frequency variability across 549 

TIX between Iberian margin and central Mediterranean records. Similar fluctuations are shown by 550 

the 18Oplankton and 13Cbenthos at the northern Atlantic Site 983 (pink band in Fig. 4 R-S), once more 551 

suggesting short-lived changes in temperature, salinity and deep-water ventilation, and in AMOC 552 

strength. This unstable phase has been interpreted as a result of no full recovery of ocean circulation 553 

(AMOC interglacial mode) and decrease of atmospheric CO2 (Ruddiman et al., 2016; Barker et al., 554 

2019). Therefore, a link between North Atlantic (AMOC instability) and central Mediterranean 555 
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climate during deglaciation MIS 20-MIS 19, similarly to MIS 20 terminal stadial phase, may be 556 

inferred. However, a full rigorous discussion on the relationships between the different climate 557 

proxies or on the timing and propagation of climate signals during TIX among the different areas 558 

needs additional investigations. In fact, the climate instability evidenced on the Iberian margin 559 

before the Tajo phase and specifically the cold spell in the Mediterranean Forest Pollen (arrow in 560 

Fig. 4H) could be correlated to the cold and dry “event 1” in the IS in the earliest MIS 19c as 561 

suggested by Asteraceae peak (Bertini et al., 2015; Marino et al., 2015; Maiorano et al., 2016a) and 562 

the reduction of Mediterranean Mesothermic Taxa (arrow in Fig. 4F). 563 

 564 

6.3 The Ionian Sea “ghost sapropel”-insolation cycle 74 565 

Following the Med-YDTIX event, in the lowermost climate optimum of MIS 19c (Fig. 2), the 566 

SST record reveals a quite sharp increase up to 16.5°C at 785 ka together with higher foram-wwt, 567 

very close to the mean summer insolation maximum (785.4 ka). While, total N (Fig. 2F) and nanno-568 

wwt (Fig. 2G) do increase just above, suggesting that favorable condition (stable and oligotrophic) 569 

for the calcareous phytoplankton did occur not before 784 ka, when temperatures were higher than 570 

18.5 °C (Fig. 2D). The correlation index between total N and alkenone-SST and between nanno-571 

wwt and alkenone-SST are quite positive, respectively +0.57 and + 0.45, and this may suggest that 572 

not only temperature but also specific trophic condition may have influenced coccolithophore 573 

productivity. The environmental conditions in the early MIS 19 at the IS have been associated 574 

(Maiorano et al., 2016a) with the occurrence of the shallow-water analogue of the “red interval” 575 

(“ghost sapropel”, oxidized sapropel, Emeis et al., 2000a), i-cycle 74 (784 ka, Lourens, 2004; 785 576 

ka, Konijnendijk et al., 2014). The very low values in 13CC.carinata also supported such interpretation 577 

(Nomade et. al., 2019) (Fig. 3I). Here, some additional elements, specifically the peculiar higher 578 

abundance peaks of selected taxa (Fig. 3 D-G), may help in revealing the double environmental 579 

signature of the ghost sapropel. During the low 13CC.carinata values, a general high G. ruber 580 
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abundance is recorded (Fig. 3G), indicative of warm oligotrophic and stratified surface waters (Bé 581 

and Hamlin, 1967; Bé, 1971; Bé and Tolderlund, 1971; Hemleben et al., 1989; Pujol and Vergnaud-582 

Grazzini, 1995). However, the taxon shows a distinct decrease at 783.5 ka signifying a short-lived 583 

environmental change. At the same time, on the contrary, F. profunda and Syracosphaera spp. (Fig. 584 

3D, F) show a prominent peak, perfectly concurrent with the 13CC.carinata minimum (Fig. 4I). 585 

Syracosphaera spp. is capable to tolerate less saline and turbid surface water (Weaver and Pujol, 586 

1988; Colmenero-Hidalgo et al., 2004; Maiorano et al., 2013, 2016a, 2016b), while F. profunda 587 

may thrive in low light surface waters when high turbidity and nutrient availability drive the taxon 588 

upwards (Ahagon et al., 1993; Colmenero-Hidalgo et al., 2004; Maiorano et al., 2008, 2016a; 589 

Girone et al., 2013). These combined patterns at 783.5 ka suggest enhanced runoff/organic matter 590 

input from surrounding hinterland, close to insolation maximum and North Africa monsoon 591 

strengthening, promoting enhanced low oxygen conditions and organic matter preservation at the 592 

sea floor. G. bulloides (Fig. 2 J), that records a contemporary prominent abundance peak at 783.5 ka 593 

and an opposite pattern with respect to 13CC.carinata during sapropel deposition, may have been 594 

favored in such condition as it is an opportunistic species that proliferates in eutrophic condition. 595 

Accordingly, low total coccolitophore abundance (Fig. 2F) is likely related to turbidity increase by 596 

river terrigenous input in the Montalbano Jonico basin also supported by coarser sediment at this 597 

time (Maiorano et al., 2016a), during insolation maximum. The enhanced detrital input is a common 598 

signature observed during sapropel layers in the MJS as indicated by the increase of Al and 599 

decrease of CaO in the older sapropels i-cycles 112, 102, and i-c 86 in the lower portion of the 600 

section (Fig. 1C) (Girone et al., 2013; Maiorano et al., 2008). Starting from the 13CC.carinata 601 

minimum and the decreasing trend of G. bulloides, stable and oligotrophic surface water conditions 602 

restored. The sharp increase of total coccolithophore assemblages and nanno-wwt (Fig. 2F) 603 

indicates warmer and more stable surface water conditions with respect to the first phase of 604 

sapropel. A very short-term peak of Braarudosphaera bigelowii (Fig. 3E), although with low 605 
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abundances, marks a low salinity spell at the end of sapropel, concurrent with increasing trend of 606 

13C (Fig. 3I), in agreement with data of Narciso et al. (2010) for the end of sapropel S5 during MIS 607 

5.5 in the Adriatic Sea.  608 

It is worth to note that recently an organic rich layer (ORL) has been recognized, for the first 609 

time, in the Balearic Sea at the TIX (Quivelli et al., 2020), supporting the basin scale event 610 

occurrence and the not in phase ORL and sapropel deposition in the western and eastern 611 

Mediterranean (Rogerson et al., 2008). 612 

 613 

6.4 Was MIS 19c a stable full interglacial? 614 

During MIS 19c, higher SST and calcareous plankton warm water taxa, and enhanced values of 615 

total coccolith production (> 60 and up to 100 coccoliths/g x 10^7) (Fig. 2D, F-H), starting from the 616 

post sapropelic layer, are evidence of climate amelioration and warmer oligotrophic sea surface 617 

waters. SST values, mainly between 18 and 21.9°C (Fig. 2D), are very similar to modern ones, and 618 

are similar to Holocene values in the region (Alkenone-SST, Emeis et al., 2000b) and in the western 619 

Mediterranean (Alkenone-SST, Cacho et al., 2001; Martrat et al., 2014). However, they are lower 620 

than in the easternmost Mediterranean (TEX86-SST, Castañeda et al., 2010) and Red Sea 621 

(Alkenone-SST, Arz et al., 2003) where Holocene SSTs are higher, as expected, ranging from about 622 

24 °C to 27-28 °C. A higher temperature value (25 °C) has been provided by Peral et al. (2020) at 623 

the IS based on G. ruber-Mg/Ca estimate in one sample from MIS 19, at the level just above the 624 

end of sapropel (~781.5 ka). Nevertheless, the authors discuss possible biases of the Mg/Ca method 625 

in the Mediterranean Sea. 626 

Two subtle phases may be distinguished at the IS during MIS 19c based on planktonic 627 

foraminifera. The first phase, starting about 2 ka after the end of sapropel up to 780 ka, was 628 

characterized by seasonal contrast with slightly lower winter temperatures, which were able to 629 

induce mixing and advection of nutrients to the surface waters, and the development of seasonal 630 
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DCM over warm, well stratified and oligotrophic waters in summer. This inference is based on the 631 

occurrence of N. incompta (Fig. 2I), and, although with very low abundances, of G. inflata (Fig. 632 

2N). Similar condition immediately after the end of S1 has been documented in all records from 633 

eastern Mediterranean, Adriatic and Ionian basins during the Holocene (Rohling et al., 1997; 634 

Capotondi et al., 1999; de Rijk et al., 1999; Geraga et al., 2000; 2008). The second phase of MIS 635 

19c at the IS, from about 780 ka to the end of full interglacial, is characterized by the absence of N. 636 

incompta and G. inflata in relation to higher abundances of G. ruber (Fig. 3G), suggesting that 637 

during the late MIS 19c the prevailing environmental conditions in the Ionian basin were closer to 638 

those of the modern Levantine basin than to the modern western Mediterranean Sea. Such a frame 639 

may be associated to a more permanent cyclonic regime in the Ionian Sea (Fig. 1D) leading the 640 

northern internal border of the basin under the direct influence of poor-nutrient LIW (Civitarrese et 641 

al., 2010). This is consistent with the modern regional distribution of G. inflata that it is absent in 642 

the northern Ionian Sea (Mallo et al., 2017; Di Donato et al., 2019) but occurs in the southern basin 643 

following the path of Atlantic waters that, under cyclonic regime, does not arrive in the northern 644 

sector of the basin. The distribution of G. inflata, during MIS 19c seems similar to its pattern during 645 

Holocene in the northern Ionian Sea. There, during the last 6 kyr, starting from about 2 ka after the 646 

end of S1 deposition (like at the IS after sapropel i-cycle 74), G. inflata is absent, with the exception 647 

of short incursions during period of reversed circulation (Di Donato et al., 2019), which depends 648 

upon variations in the atmospheric forcing on cyclonic-anticyclonic oceanographic regime (Poulin 649 

et al., 2012). 650 

Higher frequency variable environmental conditions may be distinguished in the uppermost 651 

surface waters looking in more details at the patterns of the main climate proxies during MIS 19c. 652 

Specifically, six oscillations in about 11 kyr may be observed in total N and SST curves (Fig. 2D, 653 

F). These in-phase fluctuations, if smoothed-out by a 5-points running average, appear as three 654 

main warmer phases (violet arrows in Fig. 2D, F-G). The curve of Mediterranean Mesothermic taxa 655 
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at the IS (Fig. 2 E), although at low resolution, seems to record a similar pattern as well, almost in 656 

phase with the three higher alkenone-SST in MIS 19c, pointing to an in-phase high climate 657 

variability in both marine and continental settings, and then implying both oceanographic and 658 

atmospheric processes. The main increases of Mediterranean Mesothermic taxa at the IS (Fig. 2E) 659 

may be linked to southward westerly shift and higher winter precipitation in south Europe and 660 

Mediterranean basin (Wagner et al., 2019), perhaps in analogy to processes operating like the 661 

modern or recent North Atlantic Oscillation mode (Xoplaki et al., 2003; Moreno et al., 2002, 2004, 662 

2005; Hurrel et al., 2004; Roberts et al., 2008; Fletcher et al., 2009; Ulbrich et al., 2012). The main 663 

increases of nanno-wwt in sea surface water (Fig. 2G) would be the result of increased inflow of 664 

warm tropical-subtropical waters through the Gibraltar Strait toward central Mediterranean.  665 

Additional seasonal climate insights derive from the distribution pattern of foraminifer 666 

Trilobatus sacculifer (Fig. 2 H), a tropical-subtropical taxon (Bé, 1977; Vincent and Berger, 1981) 667 

that has a peculiar occurrence in MIS 19c, showing multiple oscillations and an opposite 668 

distribution with respect to G. ruber (Fig. 2S). This pattern could be related to low seasonality and 669 

milder winters (Bé and Hutson, 1977; Fraile et al., 2008; Hemleben et al., 1989; Vincent and Berger, 670 

1981), or to short term periods of relative less humid conditions; this in accordance with findings 671 

during the mid Pleistocene interglacial MIS 11 (Maiorano et al., 2016b; Marino et al., 2018) and 672 

Holocene in the Mediterranean and Red Sea basins (Piva et al., 2008; Edelman-Furstenberg et al., 673 

2009). The inferred periods of less humid conditions during the two major peaks of T. sacculifer are 674 

supported by the correlative phases of reduction of Mediterranean Mesothermic taxa, especially in 675 

the upper MIS 19c (Fig. 2).  676 

The unstable climate character of MIS 19c climate has been recorded in the high-resolution 677 

records from central Italy Sulmona sediments and at the U1385, and related to North Atlantic 678 

oceanic-atmospheric-climate processes (Sánchez Goñi et al., 2016; Regattieri et al., 2019). In 679 

particular, three main increases of the Mediterranean Forest Pollen during Tajo phase were detected 680 
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on the Iberian margin similarly to what occurs in the MIS 19c at the IS, whereas a decoupled 681 

response between terrestrial (pollen, Fig. 4 H, O) and marine (C37:4, alkenone-SST, Fig. 4 M-N) 682 

signals (the latter recording a certain stability throughout the entire full interglacial) was evidenced 683 

at Site U1385. This was explained as a direct and synchronous response of Iberian vegetation to 684 

northern Atlantic climate via atmospheric process (like at the IS), whereas sea surface temperatures 685 

remained almost stable at the location of core U1385 due to the effect of warm retaining of 686 

subtropical gyre (Repschläger et al., 2015), even during reduced Mediterranean Forest Pollen (Fig. 687 

4H) (Sánchez Goñi et al., 2016). It is possible that during MIS 19c the common feature of 688 

vegetation patterns, as recorded in IS and Iberian margin, was a shared response to atmospheric 689 

processes that in concert also influenced the marine proxies (SST, total N and coccolithophore wwt) 690 

in the Ionian Sea, contrary to what happened in the Atlantic waters west of Iberia.  691 

 692 

6.5 The stadial-interstadial phases in MIS 19b-a  693 

The first signal of climate deterioration at the end of full interglacial MIS 19c occurs at ~773-774 694 

ka when alkenone-SST displays a prominent drop of about 8-9oC with a minimum of 12.1°C at 695 

772.8 ka; this temperature drop is even stronger than in Med-HTIX. Warm water taxa decrease at the 696 

same time (Fig. 2 D, G-H), thus marking the first significant cooling and the substage MIS 19b, 697 

synchronous with the first enrichment of 18O values (Figs. 2, 4). MIS 19b is very distinctive in the 698 

IS, being very close to the Ar/Ar dated V4 and 10Be/9Be peak (interpreted as the Earth magnetic 699 

field collapse during the Matuyama-Brunhes reversal, Simon et al., 2017), and associated to the 700 

beginning of polar ice-sheet increase and instability (Maiorano et al., 2016a), synchronously with 701 

the first IRD occurrence after full interglacial MIS 19 in northern Atlantic (Kleiven et al., 2011). At 702 

this time, the Mediterranean Mesothermic taxa (Fig. 2E) decrease while the steppic and halophyte 703 

vegetation advance at the IS, highlighting cold and arid condition over the central Mediterranean 704 

hinterland (Bertini et al., 2015). A quite concurrent slight increase of semi-desert vegetation 705 
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centered at ~772.6 ka (Fig. 4O) and decrease of Mediterranean Forest Pollen (Fig. 4H) occur at the 706 

core U1385, suggestive of a cooling/arid episode on the southwestern Iberian. On the other hand, no 707 

coeval noticeable variation occurs in the alkenone records at the Site U1385 (Fig. 4M-N). Our data 708 

set at the IS seems to underline that at the time of MIS 19b the response of calcareous plankton 709 

(Fig. 2F-G, L) and alkenone-SST (Fig. 2 D) is clearly in phase with the vegetation response (Fig. 2 710 

E), and both are in phase with the pollen data at the Iberian margin (Fig. 4M, O). While at Site 711 

U1385 the subtropical gyre was responsible for the still presence of warm waters, a southward 712 

influx of cold and dry arctic air masses towards the IS location promoted efficient cooling of both 713 

marine and terrestrial environments, maybe more efficiently than during Med-HTIX. It is possible 714 

that continental cold and dry air flux by enhanced Siberia High (SH) pressure had a role in the 715 

central Mediterranean at this time. An equivalent pattern is seen in the Holocene record in the 716 

eastern Mediterranean, where intensified SH has been suggested for the cold and dry spell at 8.2 ka 717 

(Pross et al., 2009). Accordingly, rapid transmission of high latitude Arctic/North Atlantic 718 

perturbations to the northwestern and eastern Mediterranean has been documented in several studies 719 

for recent and past severe cold events (Leaman and Scott, 1991; Mariolopoulos, 1961; Poulos et al., 720 

1997; Rohling et al., 1998, 2002, 2009; Casford et al., 2001; Melki et al., 2009) and they would 721 

support our environmental reconstruction for MIS 19b.  722 

Above MIS 19b, the most prominent feature of climate evolution in the IS is the occurrence of 723 

multiple oscillations in all climate proxies (Figs 2, 4) that are related to the reestablishment of 724 

millennial-scale variability and, presumably, of the bipolar seesaw (Tzedakis et al., 2012). This 725 

climate trend toward the glacial stage 18 onset is very well recorded at the IS, as widely discussed 726 

in Nomade et al. (2019, to whom we refer) based on oxygen and carbon isotopes, and is now finely 727 

improved by our new data set (Fig. 2). The three distinct interstadial oscillations during MIS 19a 728 

(19a-1, 19a-2, and 19a-3) at the IS are evidenced by the impressive parallel fluctuating 729 

increase/decrease of alkenone-SST pattern as well as of warm and cold water taxa indicators (Figs. 730 
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2-4). In addition, total coccolith production increased during warmer and oligotrophic interstadial 731 

phases; these were characterized by lower deepwater ventilation (lower 13C, Fig. 2T), even if not 732 

as pronounced as during sapropel deposition in MIS 19c (Fig. 2). The inceptions of these 733 

interstadials were characterized not only by sudden warming but also by abrupt changes in the 734 

surface hydrological regime in the basin. This paleoenvironmental reconstruction is based on the 735 

sharp increases of O. universa at the beginning of the interstadials 19a-1 and 19a-2, when the SST 736 

did not reach maximum values, the 13C was lower than in the second half of interstadials, and the 737 

stadial-interstadial 18O lightening shifts are very sharp. We believe that abrupt climate 738 

amelioration at the onset of interstadials would have destabilized local mountain glaciers resulting 739 

in the return of local meltwater input into the basin. This frame reflects superimposed local process 740 

on global climate signals and definitively sustains the local freshwater discharge hypothesized by 741 

Nomade et al. (2019) to explain the very rapid (<200 years) and high amplitude stadial-interstadials 742 

oscillations described by the 18O record during MIS 19a. Wetter climate conditions on land, as 743 

suggested by pollen assemblages at the IS (Fig. 2E), contributed to increase the freshening 744 

conditions of sea surface waters leading to the reduction of bottom water ventilation (low benthic 745 

13C), in agreement with the higher precipitation over the Italian peninsula documented by both the 746 

Pianico-Sellere and Sulmona paleolake records (Moscariello et al., 2000; Rossi, 2003; Giaccio et 747 

al., 2015; Nomade et al., 2019). Such a pattern points to a marked corrispondence between 748 

terrestrial and marine records and then between atmospheric and oceanographic processes during 749 

MIS 19a in the central Mediterranean.  750 

Among the interstadials, 19a-2 appears as the warmest, in agreement with higher SST and the 751 

occurrence of tropical T. sacculifer (Fig. 2 H), suggesting the establishment of surface water 752 

condition similar to the MIS 19c climate optimum. Low eccentricity combined with weak insolation 753 

maximum and obliquity minimum (Fig. 2A) could have favored the establishment of the year-round 754 
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condition of low seasonal contrast. In the final part of MIS 19a, the shallowing trend of the 755 

Montalbano basin has been reconstructed (Ciaranfi et al., 2010, and references therein), 756 

simultaneous with a global sea level lowering trend (Fig. 2B). The lower depths during stadials of 757 

MIS 19a were characterized by increased turbidity in surface water, as evidenced by higher H. 758 

carteri abundances (Fig. 2M) that, like during glacial MIS 20, increase in relation to times of lower 759 

sea level, which enhances erosion on land and inorganic input influx into the basin. Associated to 760 

these events may be the supply of nutrients to the sea. The general increasing trend of the 761 

opportunistic G. bulloides in the upper section (Fig. 2J) is in fact evidence of enhanced nutrient 762 

availability likely of on land origin. A cooling trend toward the top of the study section up to the 763 

MIS 18 glacial onset at 757 ka (Nomade et al., 2019) co-occurs, and is sustained by the heavier 764 

values of 18O together with the increased occurrence of cold water taxa C. pelagicus ssp. pelagicus 765 

and N. pachyderma and decreasing trend of wwt and total N (Fig. 2).  766 

 767 

7. Conclusions 768 

The high-resolution data set obtained at the Ideale section based on alkenone-SST and calcareous 769 

plankton analyses, combined with the available high-resolution 18O and 13C records, evidence 770 

orbital-suborbital climate oscillations which delineate a detailed climatostratigraphic frame through 771 

late MIS 20 to early MIS 18. This is a crucial time interval of the mid-Pleistocene transition that 772 

includes the Lower-Middle Pleistocene chronostratgraphic boundary close to the Matuyama-773 

Brunhes paleomagnetic reversal associated to MIS 19c/MIS 19b.  774 

The alkenone-SST, that is the first record in the Mediterranean Sea in this time interval, 775 

distinctly records the climate pattern across MIS 20-18 and makes it possible to identify substages 776 

and shorter-term climate variations. The oscillations of SST and calcareous plankton key taxa 777 

confirm that there exists a strong analogy between TIX and last deglaciation, and sustain the 778 

identification of Heinrich-type, BA-type and YD-type events during TIX, here named Med-HTIX, 779 
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Med-BATIX, and Med-YDTIX, respectively. The recognition of these episodes improves our 780 

knowledge on the climate evolution during terminations of last 800 kyr. Multiple very short-term 781 

SST fluctuations characterized the Med-HTIX event confirming the regular climate pattern of 782 

Heinrich events when studied at very high-resolution. The Med-BATIX is marked by higher SST at 783 

the beginning followed by a long cooling trend towards the Med-YDTIX episode. The 784 

paleoenvironmental conditions during the sapropelic layer occurring at the beginning of interglacial 785 

19, during insolation maximum (i-c 74), are characterized by centennial-scale internal variability, 786 

synchronously displayed by the multiple proxies.  787 

Unstable conditions in MIS 19c have been discovered, with three main phases of increased SST, 788 

calcareous plankton warm water taxa. Higher frequency variability has been revealed by the 789 

uppermost surface water proxies and corresponds to multiple pulses of tropical-subtropical water 790 

inflow into the basin and variable hydrological cyclonic regime in the Ionian Sea. The distinct 791 

climate fluctuations in MIS 19b-a interval are the result of global climate changes being correlatable 792 

worldwide, but they are emphasized by the location of the IS close to Italian hinterland, suited to 793 

record local changes in freshwater/detrital/nutrient inputs, influencing the calcareous plankton taxa, 794 

making them powerful proxies for detailed environmental reconstruction.  795 

Comparison of our results with selected mid- and high-latitude North Atlantic marine and 796 

terrestrial climate proxies, pinpoints to the occurrence of similar climate oscillations, in spite of the 797 

different age models among sites and the influence of different control factors in diverse 798 

oceanographic settings. Data suggest that the North Atlantic and polar climate dynamics strongly 799 

affected the climate evolution at the IS location and that atmospheric processes, other than 800 

oceanographic, may have had a prominent role on marine and terrestrial environments in central 801 

Mediterranean. The clarification of timing and areal propagation of climate signals through 802 

oceanographic and/or atmospheric connection requires additional high-resolution multi-proxy 803 

studies from different regions in well-constrained chronological frameworks. 804 
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 1460 
Figure captions 1461 

 1462 
Fig. 1. A: location of the study area. B: Simplified regional geological setting of southern Italy. The 1463 
location of the Montalbano Jonico section is indicated by the red star. Legend of the geological map 1464 

in figure B: a) Cretaceous units of the Apulian Foreland; b) Calcareous units of the Plio-Pleistocene 1465 

Apennines Foreland; c) Siliciclastic units of the Plio-Pleistocene Apennines Foreland; d) Lower 1466 
Pleistocene regressive conglomerates of the Bradanic Trough; e) Middle-Upper Pleistocene marine 1467 
terraced deposits of the Bradanic Trough; f) Triassic-Neogene units of the Apennines Chain; g) 1468 
Quaternary volcanic units. C: lithological features of Montalbano Jonico composite section 1469 

(Intervals A and B), with details on paleontological and oxygen isotope data at the Ideale section 1470 
(Ciaranfi et al., 2010; Maiorano et al., 2010; Nomade et al., 2019). MD: maximum depth; MF: 1471 
maximum flooding. The end of temporary disappearance of Gephyrocapsa omega is also shown on 1472 
the Ideale section. D: main sea surface and subsurface water currents in the Ionian Sea, according to 1473 
Gacic et al. (2010), redrawn (see text for details). MAW: modified Atlantic water; LIW/CIW: 1474 

Levantine/Cretan intermediate waters; WAC: western Adriatic water. 1475 

 1476 
Fig. 2. Quantitative abundance patterns of selected calcareous plankton taxa (F-O) and alkenone-1477 

SST (D), and benthic oxygen (C) and carbon (P) isotope records at the Ideale section. Modern 1478 
annual SST (19.6°C) is shown on alkenone-SST record according to Pujol and Vergnaud-Grazzini 1479 
(1995). A: mean summer insolation, obliquity and eccentricity (65° N) from Laskar et al. (2004). B: 1480 
sea level curve; 19a1-19a3 are interstadial phases (yellow bars) during 19a according to Nomade et 1481 

al. (2018). Stage boundaries and climate optimum are marked according to Nomade et al. (2019). 1482 
Light blue bands on proxy records are stadial phases.Violet arrows indicate the main phases of 1483 
ameliorated climate condition.  1484 

https://doi.org/10.1038/s41586-019-1529-0
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 1485 

Fig. 3. Quantitative abundance patterns of selected calcareous plankton taxa (D-G) and alkenone-1486 
SST (C), and benthic oxygen (B) and carbon (I) isotope records at the Ideale section. Star symbol in 1487 
the sapropel interval is the acme occurrence of dinocyst Polysphaeridium zoharyi (Bertini et al., 1488 

2015; Maiorano et al., 2016a), that has been associated to Mediterranean sapropel formation 1489 
(Giunta et al., 2006; Sangiorgi et al., 2006); diamond symbol in the sapropel interval is the increase 1490 
episode of benthic foraminifera infauna/epifauna ratio (Stefanelli, 2003) as signal of stressed 1491 
condition at the sea bottom (Marino et al., 2015). A: sea level curve. H: mean summer insolation 1492 
(65° N) from Laskar et al. (2004). 1493 

 1494 
Fig. 4. Quantitative abundance patterns of selected taxa (E, G), pollen (F), benthic oxygen (B), 1495 
alkenone-SST (C) and carbon (D) isotope records at the Ideale section. A: mean summer insolation 1496 
(65° N) from Laskar et al. (2004); climate proxies from Iberian margin core U1385 (H-O), North 1497 
Atlantic cores 980 (P-Q), 983 (R-S) are represented each in its original age model. Pink bands 1498 

indicate intervals of climatic instability (see text). Light blue bands on proxy records are stadial 1499 

phases. Stage boundaries and climate optimum/Tajo phase are marked according to Nomade et al. 1500 

(2019) at the Ideale section, and according to Hodell et al. (2015) and Sánchez Goñi et al. (2016) at 1501 
the Iberian margin. 1502 
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