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The Rabi Hamiltonian, describing the interaction between a two-level atomic system and a single
cavity mode of the electromagnetic field, is one of the fundamental models in quantum optics.
The model becomes exactly solvable by considering an atom without permanent dipole moments,
whose excitation energy is quasi-resonant with the cavity photon energy, and by neglecting the non
resonant (counter-rotating) terms. In this case, after including the decay of either the atom or the
cavity mode to a continuum, one is able to derive the well-known phenomenology of quasi-resonant
transitions, including the fluorescence triplets. In this work we consider the most general Rabi model,
incorporating the effects of permanent atomic electric dipole moments, and, based on a perturbative
analysis, we compare the intensities of emission lines induced by rotating terms, counter-rotating
terms and parity-symmetry-breaking terms. The analysis reveals that the emission strength related
to the existence of permanent dipoles may surpass the one due to the counter-rotating interaction
terms, but is usually much weaker than the emission due to the main, resonant coupling. This ratio
can be modified in systems with a reduced dimensionality or by engineering the energy spectral
density of the continuum.

I. INTRODUCTION

The Rabi model is a fundamental tool in quantum
optics. It describes the coupling of a two-level
system and a bosonic field mode [1], extending beyond
the simpler Jaynes-Cummings interaction, in which
the creation of a photon is always accompanied by
annihilation of the atomic excitation and vice versa [2].
The Rabi model additionally accounts for the less
intuitive processes of pairwise creation or annihilation of
excitations in the atomic and photonic subsystems. The
probability of these processes grows with the light-matter
coupling constant and becomes significant in the so-
called ultrastrong coupling regime, in which the coupling
constant becomes comparable to the energy of the
system [3]. Numerous experimental realizations include
superconducting systems [4, 5], quantum wells [6, 7],
photonic waveguide arrays [8], molecular ensembles [9],
cold atoms [10], etc. In all these systems the extension
beyond the Jaynes-Cummings interaction may lead
to considerably different physics: in particular, to a
ground state with a nonvanishing number of excitations,
squeezing dynamic, and a significant modification of the
spectra [1, 11, 12]. Remarkably, analytical solutions of
the Rabi model have been developed only in the last
decade [11, 12].

The Rabi model describes light-matter interaction,
where the electromagnetic field induces transitions
between the eigenstates of a two-level atomic system.
A particular mechanism is related to a coupling of
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FIG. 1. Sketch of the system under study: a two-
level polar atomic system in a lossy cavity represented
by two semitransparent mirrors. The non-uniform charge
distribution is shown in green for a higher concentration of
positive charges and in orange for the negative charges. The
annihilation and creation operators of the electromagnetic
modes are denoted as a, a† for the cavity (blue), and r, r† for
the reservoir (red).

the electromagnetic radiation with a transition dipole
moment element induced between a pair of atomic
eigenstates. However, simple two-level systems may
display versatile physical features, beyond the traditional
Rabi model: a particular example is a coupling scenario
where the electromagnetic field introduces energy shifts
of the eigenstates rather than transitions between
them [13, 14]. A simple realization exploits atomic
systems with permanent dipole moments, such as polar
molecules or asymmetric quantum dots. Due to the
interplay of permanent and induced electric dipole
moments, polar systems are a playground where a richer
physics of light-matter interactions can be realized: polar
quantum systems have been proposed for THz radiation
sources [13] based on quantum dots [15] or molecular
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ensembles [16]. They can be exploited for squeezed
light generation [17, 18] and they support nonlinear
optical absorption [14]. Recently, the impact of spatial
asymmetry of a quantum system on its spontaneous
emission properties has been investigated [19].

The aforementioned works are among the plethora of
possibilities provided by asymmetric quantum systems
that simultaneously support light-matter interactions
through three types of terms. These include the
Jaynes-Cummings terms and the counter-rotating terms,
both involving transition dipole moments of the atomic
system. The third type of terms involves permanent
dipoles, i.e. nonvanishing expectation values of the
dipole moment operator in the atomic eigenstates.
For the numerous applications listed above it is
essential to identify conditions in terms of experimentally
tunable model parameters where different contributions
significantly influence the system’s optical response. The
aim of this work is to study the relative impact of
these three contributions, and demonstrate with simple
examples the possibility of performing density-of-states
engineering. Our analysis follows the methodology
introduced in Ref. [20], but extends it to include all the
three interaction mechanisms.

The paper is organized as follows: a two-level atomic
system without inversion symmetry, coupled to a single-
mode electromagnetic field, is introduced in Section II.
Next, we apply a perturbative framework to find a
ladder of eigenstates and the correponding energies in
Section III. Transitions between these eigenstates upon
a coupling with an external lossy cavity are described in
Section IV, which ends the analytical part. Numerical
examples of systems with low to moderate light-matter
coupling strengths are given in Section V. In Appendix A,
we discuss the validity of the perturbative approach,
while details of calculations of the spectral distribution
of emitted photons are given in Appendix B.

II. HAMILTONIAN OF THE SYSTEM

Let us consider a two-level system with a ground and
excited state denoted respectively as |g〉, |e〉, separated
by the excitation energy ~ωa. The system is described
by the set of Pauli operators

σ− = |g〉〈e|, σ+ = |e〉〈g|, (1)
σz = |e〉〈e| − |g〉〈g|. (2)

This system interacts with a single electromagnetic cavity
mode, represented by the field operators a and a†,
satisfying the canonical commutation algebra

[a, a†] = 1, [a, a] = [a†, a†] = 0. (3)

The Hamiltonian H of the coupled system can be divided
in two parts

H = HJC + V, (4)

with the first term

HJC = ~ωca†a+
~ωa

2
σz + ~gR(σ+a+ a†σ−), (5)

known as the Jaynes-Cummings (JC) Hamiltonian [2],
that describes quasi-resonant transitions between the
atomic excitations and photons. Here, gR is the
coupling strength of the resonant JC term. The
results in the following analysis are independent of the
coupling mechanism and the specific expressions of the
coupling constants in terms of microscopic parameters.
In the case of an atom coupled to one mode of a
3D rectangular cavity, the coupling constant reads
gR = −deg · ε

√
~ωc/2ε0V, where deg = 〈e|d|g〉 represents

the off-diagonal matrix element of the electric dipole
operator d of the atom, ε is the polarization vector of
the cavity mode, ε0 the vacuum electric permittivity and
V the cavity volume.

The “perturbation” term V in Eq. (4) accounts for all
the terms that are not represented in the exactly solvable
Jaynes-Cummings Hamiltonian, namely the counter-
rotating (CR) transitions between atom and cavity
excitations and the terms proportional to the diagonal
matrix elements of the atomic dipole moment:

V = HCR +HAS, (6)

HCR = ~gR
(
σ+a

† + σ−a
)
, (7)

HAS = ~ [gS (σz + 1) + g′S (σz − 1)]
(
a+ a†

)
. (8)

with

gS = −dee · ε
√
~ωc/8ε0V (9)

g′S = −dgg · ε
√
~ωc/8ε0V (10)

proportional to the expectation values of the atomic
dipole moment on the excited and ground state,
respectively. In this article, we will focus for definiteness
on the case g′S = 0.

Note that the expectation value of a dipole
moment operator described only by off-diagonal elements
deg|e〉〈g| + d∗eg|g〉〈e| may be nonzero only in presence of
transitions between the eigenstates that may be induced
with the external electric field. Therefore, these elements
correspond to induced transition dipoles. On the other
hand, the diagonal element describes the permanent
dipole moment of the excited state. Notably, permanent
dipole moments are sustained by polar systems, i.e.
systems without inversion symmetry [13]. For this
reason we will refer to the last Hamiltonian term as
the “asymmetry term” or “diagonal term” and mark it
with the AS subscript. Finally, note that while the
Hamiltonian HJC preserves the number of excitations,
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HAS (HCR) describes a modification of this number by 1
(respectively 2).

III. PERTURBATIVE ANALYSIS

In the following analysis we will treat V as a
perturbation with respect to the Hamiltonian HJC.
The eigenvalues of HJC correspond to the 0th order
perturbation term

Es(0)
n = ~ωc

(
n− 1

2

)
+ s~

√
(ωc − ωa)

2

4
+ ng2

R (11)

for n = 0, 1, . . . and s = ±1, and the eigenstates are∣∣∣n(0)
s

〉
= Asn |g;n〉+Bsn |e, n− 1〉 , (12)

with

Asn =
E
s(0)
n − ~ωc (n− 1)− ~ωa/2√(

E
s(0)
n − ~ωc(n− 1)− ~ωa/2

)2

+ ~2g2
Rn

, (13)

Bsn =
~gr
√
n√(

E
s(0)
n − ~ωc(n− 1)− ~ωa/2

)2

+ ~2g2
Rn

. (14)

The pair
{∣∣∣n(0)

s

〉}
s=±

defines a two-dimensional

manifold EJC (n), which is the set of states with a fixed
number of excitations n (see Fig. 2). We denote it with
the JC subscript, since the notion of manifold will be
generalized in the perturbed picture.

In the perturbation Hamiltonian V , the counter-
rotating term HCR is described by the same coupling
constant gR as the interaction term of the unperturbed
Hamiltonian HJC. However, the transition rates due
to HCR are much smaller far from the ultrastrong
coupling regime gR � ω. Therefore, perturbation
theory is justified up to moderate coupling strengths
(see Appendix A for quantitative details). We
characterize the modified eigenstates of the time-
independent perturbation theory up to second order,
with the wavefunction expansion given by

|ns〉 =
∣∣∣n(0)
s

〉
+
∣∣∣n(1)
s

〉
+
∣∣∣n(2)
s

〉
. (15)

The first-order correction reads∣∣∣n(1)
s

〉
=
∑
m 6=n

∑
α=±

V αsmn
Esαnm

∣∣∣m(0)
α

〉
, (16)

where Esαnm = E
s(0)
n − Eα(0)

m and V αsmn =
〈
m

(0)
α |V |n(0)

s

〉
,

namely

V αsmn =~gR

(
√
n− 1BsnA

α
n−2δm,n−2

+
√
n+ 1AsnB

α
n+2δm,n+2

)
+2~gSBαmBsn

(√
n− 1δm,n−1 +

√
nδm,n+1

)
. (17)

The above equation shows that the perturbed eigenstates
include states with m = n ± 1 coupled by gS and states
with m = n ± 2 coupled by gR, which follows directly
from the HAS and HCR Hamiltonians. The inclusion of
the second-order correction leads to

|ns〉 =

(
1− 1

2

∑
k

∑
α=±

(
V sαnk
Esαnk

)2
)∣∣∣n(0)

s

〉
(18)

+
∑
k

∑
α=±

V αskn
Esαnk

+
∑
l

∑
β=±

V αβkl V
βs
ln

EsαnkE
sβ
nl

∣∣∣k(0)
α

〉
.

Based on the above result, we define the generalized (but
always two-dimensional) manifolds E (n) = {|ns〉}s=±.
According to second order perturbation, the eigenstate
|ns〉 includes contributions with different numbers
of excitations {n, n± 1, . . . , n± 4}, with the label n
referring to the central component, which yields by
far the leading contribution for weak enough coupling
strengths gR,S , for which the theory is applicable.

The correction V does not perturb the eigenvalues at
the first order, because V sσnn = 〈ns|V |nσ〉 = 0. At the
second order, the energy eigenvalues are Esn = E

s(0)
n +

E
s(1)
n + E

s(2)
n , with Es(1)

n = 0 and

Es(2)
n =

∑
k 6=n

∑
ι=±

(V ιskn)
2

Esιnk
. (19)

IV. OUTCOUPLING

In this section, we assume the cavity mirrors to be
semi-transparent, so that the cavity mode described by a
and a† may exchange photons with an external reservoir:

Hext = ~
√

Γ

2π

∫
dω
√
P(ω)

(
ar†(ω) + a†r(ω)

)
, (20)

where the operators r(ω) and r†(ω) are related to
orthogonal reservoir modes with energy ~ω, and P(ω) is
a form factor that takes into account both the density of
states and the energy dependence of the coupling, with
P(ωc) = 1 for convenience. The constants are fixed in
such a way that Γ coincides with the perturbative decay
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rate of a single cavity photon towards the continuum,

Γ1→0 =
2π

~2

∫
dω|〈0;ωR|Hext|1; 0R〉|2δ(ω − ωc) = Γ,

(21)
with |0R〉 standing for the reservoir vacuum, annihilated
by all the r operators, and |ωR〉 = r†(ω)|0R〉 being a
generic single-photon state with a given energy ω, while
the transition rate from the n-photon to the (n − 1)-
photon state of the cavity reads Γn→n−1 = nΓ.

Here, we will compute through the Fermi golden rule
the decay rate and final photon energy distribution of the
dressed atom-cavity states found in the previous section.
In the perturbative regime, the transition from an initial
state |ns〉 to a final state |n′s′〉, as defined in Eq. (18),
corresponds to the transition frequency

ωss
′

nn′ =
Esn − Es

′

n′

~
(22)

and is determined by the matrix elements

〈n′s′ ;ωR|Hext|ns; 0R〉 = ~
√

Γ

2π
P(ω) 〈n′s′ |a|ns〉, (23)

which are evaluated on-shell in the expression of the
specific decay rate towards channel n′s′

Γss
′

nn′ = Γ |〈n′s′ |a|ns〉|
2 P(ωss

′

nn′), (24)

that contribute to the total decay rate of the initial state:

Γn,s =
∑
n′,s′

Γss
′

nn′ = Γ
∑
n′,s′

|〈n′s′ |a|ns〉|
2 P(ωss

′

nn′). (25)

Notice that i) the above expressions are valid provided
that all the channels are characterized by different
transition energies, otherwise interference effects occur,
and ii) the form factor P must vanish for ω below the
threshold for photon emission. The specific and total
decay rates also appear in the frequency distribution of
the final photons, derived in Appendix B,

Sn,s(ω) =
∑
n′,s′

Sss
′

nn′(ω)

=
Γ

2π

∑
n′,s′

|〈n′s′ |a|ns〉|
2 P(ωss

′

nn′)

(ω − ωss′nn′ −∆n,s)2 + Γ2
n,s/4

, (26)

where Sss
′

nn′(ω) are specific spectral distributions, related
to a single decay channel. The spectral distribution is
characterized by the presence of Lorentzian peaks around
the transition frequencies, all shifted by

∆n,s =
Γ

2π

∑
n′,s′

|〈n′s′ |a|ns〉|
2

P

∫
dω

P(ω)

ω − ωss′nn′
, (27)

with P
∫

denoting principal value integration. The
specific decay rates also determine the weight of each
channel. Therefore, the relevance of one channel
compared to another one can crucially depend on the
transition energy, through the form factor:

Γss
′

nn′

Γss
′′

nn′′
=
|〈n′s′ |a|ns〉|

2

|〈n′′s′′ |a|ns〉|
2

P(ωss
′

nn′)

P(ωss
′′

nn′′)
. (28)

For example, the form factor can be characterized by
a power-law behavior for the transition frequencies,
P(ω) ∼ ωp, as it occurs for free-space photons:
in this case, lower-energy channels can be heavily
hindered in favor of the higher-energy ones, despite being
characterized by a larger matrix element of the operator a
in Eq. (28). On the other hand, the relevance of a channel
can be enhanced by engineering the continuum in order
to obtain a form factor peaked around the frequency
of interest: this can be done by coherently coupling
the cavity mode with a single mode of a second cavity,
broadened by losses towards free space.

We now evaluate the matrix element a, appearing in
Eqs. (23)–(28). At the 0-th order, we find directly from
Eq. (12)〈

n′
(0)
s′ |a|n(0)

s

〉
= cs

′s
n δn′,n−1

=
(√

nAsnA
s′

n−1 +
√
n− 1BsnB

s′

n−1

)
δn′,n−1. (29)

This equation shows that only transitions between two
“adjacent” manifolds EJC (n) and EJC (n− 1) are allowed
in the Jaynes-Cummings model, as expected. Our goal
is to analyze the emission probability via Eq. (26) when
the eigenstates are corrected by the perturbation term V
in Eq. (6) and the spectrum is defined in Eq. (11). In the
perturbed expression for 〈n′s′ |a|ns〉, obtained from the
eigenstates |ns〉 in Eq. (18), we consider all the correction
terms up to the second order in the coupling strengths
gR and gS . Using V ss

′

nn = 0, we find

|〈n′s′ |a|ns〉|
2

=

∣∣∣∣∣∑
α=±

(
V αsn′+1,n

Esαn,n′+1

cs
′α
n′+1 +

V αs
′

n+1,n′

Es
′α
n′,n+1

cαsn

)∣∣∣∣∣
2

+ δn′,n−1


1−

∑
k

∑
α=±

(V sαnk
Esαnk

)2

+

(
V s

′α
n′k

Es
′α
n′k

)2
 ∣∣∣cs′sn ∣∣∣2

+2cs
′s
n

∑
k

∑
α,β=±

(
V αβnk V

βs
kn

EsαnnE
sβ
nk

cs
′α
n +

V αs
′

k−1,n−1

Es
′α
n−1,k−1

V βskn
Esβnk

cαβk +
V αβn−1,kV

βs′

k,n−1

Es
′α
n−1,n−1E

s′β
n−1,k

cαsn

) , (30)
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where css
′

n is given in Eq. (29). Inclusion of the
perturbation Hamiltonian allows transitions to new
manifolds. Close inspection of the form of the
perturbation V in Eq. (17), combined with the above
expression for |〈n′s′ |a|ns〉|2, reveals that transitions
between E (n) → E (n′ = n) and E (n) → E (n′ = n− 2)
are due to the diagonal-coupling Hamiltonian HAS and
the transition between E (n)→ E (n− 3) are due to HCR.
The latter would also give rise to E (n) → E (n+ 1)
transitions, which are suppressed in the reservoir vacuum
state |0R〉. One might argue that closer manifolds
are favorite, as JC transitions involve only adjacent
manifolds, yielding a stronger contribution from the
diagonal coupling rather than the counter-rotating terms.
On the other hand, transitions at higher frequencies can
contribute with a higher intensity due to the larger form
factor P. Therefore, a quantitative comparison is needed
to evaluate the spectrum and properly characterize the
behavior in different regimes.

V. RESULTS

In this section we analyze the transitions shown in
Fig. 2, with a special emphasis on the ones induced
by the perturbation Hamiltonian HAS and HCR. We
will investigate relative emission strengths of transitions
that origin from different Hamiltonian contributions as
functions of the coupling constants gR,S .

Figure 2 depicts the thirteen allowed transitions from a
given manifold E (n), connecting respectively manifolds
E (n) → E (n− 1) (JC interaction term, green arrows),
E (n) → E (n) and E (n) → E (n− 2) (AS Hamiltonian,
purple arrows), E (n) → E (n− 3) (CR contribution,
red arrows). The transition frequencies will naturally
depend on the coupling strength gR, as in the Jaynes-
Cummings theory, and weakly on gS through second
order perturbation [Eq. (19)]. The Jaynes-Cummings
energy structure is shown in Fig. 3 for manifolds n = 7
to n = 10, both in the resonant ωc = ωa and detuned
case ωc − ωa = 0.2ωc.

According to Eq. (26), the emission spectrum is
approximately made up of a set of Lorentzian peaks. In
Fig. 4 we separately plot the spectra for the initial states
|10+〉 (solid blue line) and |10−〉 (dashed orange line), for
the resonant case ωa = ωc and fixed coupling strengths
gR = gS = 0.01ωc. The spectra are plotted for two
different form factors, P ∝ ω2 [Fig. 4(a)] and P = const.
[Fig. 4(b)], corresponding respectively to three- and one-
dimensional reservoir geometries in the case of frequency-
independent coupling between cavity and environment.
The single low-energy peak around ω = 2

√
10gR =

0.063ωc corresponds to the |10+〉 → |10−〉 transition
induced by the inversion-symmetry breaking of the
two-level system and might unveil applications for
low-frequency-sources. Therefore, its tunability is an
important feature: the position of this peak depends
on gS , i.e. on the permanent dipole moment dee of the

FIG. 2. The first set of transitions (green) is allowed by
HJC, as expressed in Eq. (29). Five new transition lines
(violet) towards n′ = n and n′ = n − 2 are origin at HAS.
Transitions due to the counter-rotating Hamiltonian HCR

connect manifold E(n) to E(n − 3). The three thicker lines
are studied in more details in Fig. 5.

atom, and on the field strength in the cavity, related
to the number of photons. In the classical limit, this
provides an all-optical tuning possibility with the field
amplitude [13]. Additionally, tuning could be achieved
through orientation of the permanent dipole moment
of the two-level system with an external DC electric
field [16]. Around ω = ωc we recognize the Mollow
triplet that arises from the JC interaction. Similar
structures are repeated around ω = 2ωc and ω = 3ωc,
arising respectively from the AS and CR Hamiltonian
perturbations. Note that the positions of sidebands
of the Mollow-like triplet around 2ωc are related to
the diagonal dipole moment and will accordingly be
modified if gS is tuned. We emphasize that all the peaks,
including the Mollow-like sidebands, can be resolved
in the spectra. In particular, even though the low-
energy peak usually corresponds to the weakest transition
intensities, it appears on top of a correspondingly
suppressed background. As a consequence, the signal-
to-noise ratio is found comparable for all emission peaks.
Below we analyze the intensity ratio of different peaks
depending on the coupling strengths of the model.

We study three selected transitions, representative
for each Hamiltonian contribution, highlighted as thick
arrows in Fig. 2: for the Jaynes-Cummings term we
select the |10+〉 → |9+〉 transition; for the diagonal
coupling term the |10+〉 → |10−〉 transition; for the
counter-rotating term the |10+〉 → |7−〉 transition, that
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(a) resonant (b) detuned

FIG. 3. Energy spectrum in Eq. (11) versus gR/ωc with n = 7 ÷ 10, for (a) the resonant case ωa = ωc, and (b) far from
resonance (ωc − ωa) /ωc = 0.2. The black dots around gR = 0.16ωc in (a) or gR = 0.19ωc in (b) indicate the first energy
crossings according to the JC model. For coupling constants beyond these values the structure of the energy ladder from Fig. 2
is not preserved.

FIG. 4. Emission spectra (arbitrary units) from the initial states |10+〉 (blue) and |10−〉 (orange), with form factors scaling
like ωp, with (a) p = 2, and (b) and p = 0. Plots are normalized to the maximum of S.

corresponds to the highest frequency. In Fig. 5(a), we
plot the squared matrix elements |〈n′s′ |a|ns〉|2, which
entirely determine the relative weight of the different
decay channels in the case of a constant form factor [see
Eq. (28)]. They are plotted separately for each considered
transition. As anticipated, the contribution due to
the Jaynes-Cummings interaction dominates, overcoming
the other terms by several orders of magnitude for
the investigated range of coupling strengths gR. As
expected, the JC contribution has a relatively weak
dependence on gR, which induces small corrections to
the zeroth-order result. The purple (red) lines in Fig. 5
represent the contributions determined by the AS (CR)
Hamiltonian. Results obtained for the different values
gS = gR, gR/10, gR/100 are presented. This confirms
the intuition suggested at the end of the previous section,
that for equal coupling strengths gS = gR the term
induced by the diagonal coupling overcomes the counter-

rotating contribution. Both terms share the same linear
scaling with their respective coupling strengths gS or gR,
so, as we decrease gS , the squared transition amplitude
|〈ns′ |a|ns〉|2 is gradually suppressed.

This simple linear scaling is slightly modified in
the detuned case, in which the slopes change around
gR ' (ωc − ωa)/2

√
n. An example for a strong detuning

ωa = 0.8ωc is shown in Fig. 5(d). We find that in
this case the contribution of both perturbative terms
is suppressed with respect to the resonant contribution.
However, for relatively small coupling strengths (gR <
4× 10−3 ωc) the terms corresponding to the asymmetric
contribution still dominate over those due to the counter-
rotating Hamiltonian, even for small gS = 0.01gR.

For a wide range of coupling strengths, the squared
transition amplitudes induced by the perturbation
related to the asymmetry dominate over those originating
from the counter-rotating term. However, if the



7

T
ra
ns
it
io
n 
ra
te

(a) P = const., resonant (b) P ∝ ω2, resonant (c) Lorentzian P, resonant

T
ra
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n 
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te

(d) P = const., detuned (e) P ∝ ω2, detuned (f) Lorentzian P, detuned

FIG. 5. Transition rates determined by a form factor P = const. [panels (a) and (d)], P ∝ ω2 [panels (b) and (e)], and
Lorentzian, centered at the frequency ωext = E+−

nn /~, with a quality factor γext = 10−4ωext [panels (c) and (f)]. Results are
referred to the resonant ωc = ωa [panels (a), (b) and (c)] and detuned case (ωc − ωa) /ωc = 0.2 [panels (d), (e) and (f)]. Plots
are in arbitrary units, as only ratios between different rates are relevant for our analysis. In panels (a) and (d), the plotted
quantities correspond, up to a constant, to the squared matrix elements |〈n′s′ |a|ns〉|2. Colors indicate different transition
mechanisms: the Jaynes-Cummings transition |10+〉 → |9+〉 is shown in green, the counter-rotating term |10+〉 → |7−〉 in red,
and the transition driven by the diagonal coupling |10+〉 → |10−〉 in violet, for 3 values of the diagonal coupling strength,
gS = gR, gR/10, gR/100.

outcoupling Hamiltonian Hext involves a form factor
scaling as ωp, the weight of a decay channel is
proportional to the p-th power of the transition
frequency. Therefore, in a 3D continuum geometry, in
which the density of states scales as ω2, the relevance
of low-energy transitions tends to be suppressed. We
show this case in both the resonant and off-resonant case
in Fig. 5(b) and (e). In the off-resonant case, we note
that for equal coupling strengths gS = gR the terms
originating from the diagonal-coupling still dominate
over the counter-rotating ones, despite the latter being
by far energetically favored.

The different behavior of transition rates in the cases
of constant P [Fig. 5(a) and (d)] and P ∝ ω2 [Fig. 5(b)
and (e)] suggests the possibility of tailoring the output by
engineering the coupling to the continuum and its density
of states. To further highlight this point, we couple the
atom-cavity system to a single-mode cavity, assuming
that the form factor P is a Lorentzian function, centered
at the low-energy transition frequency ~ωext = E+−

nn

and characterized by a full-width at half-maximum
γext = 10−4ωc. A cavity with similar parameters can
be realized in photonic crystals [21] that provide 1D
or 2D photonic environments, in whispering-gallery-
mode resonators [22] or, with smaller quality factors,
using meta-materials [23]. Here, the cavity is tailored

to emphasize the strength of the low-energy transition
|n+〉 → |n−〉 at the cost of suppressing other transitions.
Indeed, as demonstrated in Fig. 5(c) and (f), this is
successful in both the resonant and detuned case.

For the above analysis we have selected only one
exemplary transition of the Jaynes-Cummings, diagonal-
coupling and counter-rotating groups, corresponding to
arrows with different colors in Fig. 2. In Fig. 6, we show
the total transition rates in each group, considering the
initial state |ns〉 = |10+〉. The green lines correspond
to the total rate of the Jaynes-Cummings transitions
ΓJC

10,+ = Γ++
10,9 + Γ+−

10,9, the purple lines to the diagonal
coupling ΓAS

10,+ = Γ++
10,8 + Γ+−

10,8 + Γ+−
10,10, and the red

lines to the counter-rotating contribution ΓCR
10,+ = Γ++

10,7 +

Γ+−
10,7. We find that, as expected, the higher-energy

contributions from the asymmetric Hamiltonian HAS

around 2ωc are strong enough to overcome the ones
induced by the counter-rotating terms. This can be
also seen from Fig. 6(c), in which we resolve different
contributions induced by HAS in the decay from the
state |10+〉. The difference between the two perturbative
contributions becomes even smaller in the detuned case,
in which all perturbative terms are suppressed, as can be
seen from panels (b) and (d) in Fig. 6.
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(a) 1D, resonant (b) 1D, detuned

(c) resonant (d) detuned

FIG. 6. Total transition rates for each Hamiltonian contribution, for a fixed initial state |10+〉: rate of the Jaynes-Cummings
transitions ΓJC

10,+ = Γ++
10,9 + Γ+−

10,9 (green), diagonal coupling mechanism ΓAS
10,+ = Γ++

10,8 + Γ+−
10,8 + Γ+−

10,10 (violet), and the counter-
rotating transitions ΓCR

10,+ = Γ++
10,7 + Γ+−

10,7 (red) (a) on resonance, and (b) for the detuned case. Individual contributions to
the diagonal coupling are resolved in panels (c) and (d) for the resonant and the detuned case, respectively, where the solid
line represents the low-energy transition rate Γ+−

10,10, while the dashed (Γ++
10,8) and dotted (Γ+−

10,8) lines correspond to transitions
around 2ωc.

VI. CONCLUSIONS

We have applied second-order perturbation theory to
investigate the emission properties of a two-level system
coupled to a single-mode electromagnetic field, including
interaction channels based on the Jaynes-Cummings,
counter-rotating and asymmetry-related contributions.
In the electric-dipole interaction mechanism, the first
two interactions arise from the coupling of the field
mode with the induced transition dipole moment, while
the latter requires a permanent dipole characterizing
the system’s eigenstates. Light-matter coupling with
permanent dipoles gives birth to additional emission
peaks. We have demonstrated that even though at some
frequencies the asymmetry-related contribution is weak
in relative terms, the signal-to-noise ratio is comparable
for all emission peaks. Moreover, the relative strengths
of the emission peaks can be modified with a suitable

photonic environment, as we have discussed for 1D
systems and for a Lorentzian cavity. In the latter
example we have shown that for cavity parameters that
lie well within the range of experimental capabilities, the
asymmetry-related emission channel may even become
dominant.
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Appendix A: Validity of the perturbative approach

In this Appendix we discuss the range of coupling
strengths for which the perturbative approach used in the
main text is justified. The condition for the analysis to be
consistent is that the perturbation series converge both
for the perturbed energies and states. This is not the case
around energy crossings, where some of the series terms
in the perturbed eigenstate given by Eq. (18) diverge. On
the other hand, sufficiently away from energy crossing the
state norm is approximately preserved. To identify the
applicability range of the approach, we therefore verify
the normalization of states.

For the cases investigated in the main manuscript,
the first energy crossing among the investigated states
appears for those corresponding to the highest manifold.
In Fig. 7, we plot the norm of state |10+〉 as a
function of gS = gR. A clear divergence appears for
coupling strengths approaching 0.14ωc, which results
from a crossing involving higher manifolds, in this case
up to E (14). The vertical line in the figure indicates the
limit for the coupling strengths considered in the main
text.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.5

1.0

1.5

2.0

2.5

gR/ωc

〈n
s
|n
s
〉

gS=gR

FIG. 7. Norm of state |10+〉, as obtained from Eq. (18).
For coupling strengths exceeding gR ' 0.1ωc the norm
deviates from 1, which is an indication of the breakdown of
perturbation theory.

Appendix B: Spectral distribution of emitted
photons

In order to derive Eqs. (24)-(26), let us consider an
initial state |ψ0〉, evolving under the Hamiltonian H =
H0 +Hint, where Hint is meant as a perturbation of the
“free” Hamiltonian H0. While

H0|ψ0〉 = E0|ψ0〉, (B1)

the presence of the interaction Hamiltonian Hint makes
the initial state unstable, inducing decay towards
generalized eigenstates |q〉 of H0 (where q is generally
a multi-index of N quantum numbers, some of which can
be discrete, such as spin or polarization), satisfying

H0|q〉 = E(q)|q〉. (B2)

The probability associated to a specific q at an arbitrary
time t can be computed by projecting |q〉 on the evolved
state |ψ(t)〉 = exp(−iHt)|ψ〉 of the system, determined
by the corresponding matrix element of the resolvent
(z −H)−1 through a Fourier-Laplace transform:

A(q, t) = 〈q|e−iHt/~|ψ0〉 =
i

2π

∫
B
dz e−izt/~〈q| 1

z −H
|ψ0〉,

(B3)
where B = (−∞ + iη,+∞ + iη) is an arbitrary line,
parallel to the real axis, with η > 0. Therefore,
in order to characterize the matrix element of the
resolvent, it is sufficient to determine the amplitude
and probability associated to the distribution of decay
products. In particular, we are interested in the
asymptotic distribution

P∞(q) = lim
t→∞

∣∣∣〈q|e−iHt/~|ψ0〉
∣∣∣2 . (B4)

For Im(z) 6= 0, the resolvent satisfies the equation

1

z −H
=

1

z −H0
+

1

z −H0
Hint

1

z −H
, (B5)

that can be used, along with the assumption
〈ψ0|Hint|ψ0〉, to determine an approximate form of the
matrix element appearing in the right-hand side of (B3),

〈q| 1

z −H
|ψ0〉 '

1

z − E(q)
〈q|Hint|ψ0〉〈ψ0|

1

z −H
|ψ0〉,

(B6)
where the corrections are O(H2

int) and proportional to the
matrix elements 〈q|Hint|q′〉. An error of the same order
on A(q, t) is entailed by applying the Weisskopf-Wigner
approximation to the initial state propagator,

〈ψ0|
1

z −H
|ψ0〉 '

1

z − (E0 + ~∆− i~Γ/2)
, (B7)



10

with

∆ =
1

~
P

∫
dNq

|〈q|Hint|ψ0〉|2

E0 − E(q)
, (B8)

Γ =
2π

~

∫
dNq |〈q|Hint|ψ0〉|2 δ(E0 − E(q)), (B9)

which yields an expression of the transition amplitude in
terms of a solvable integral

A(q, t) ' i

2π

∫
B
dz

〈q|Hint|ψ0〉e−izt/~

(z − E(q))(z − (E0 + ~∆− i~Γ/2))
,

(B10)
leading to the asymptotic distribution

P∞(q) ' |〈q|Hint|0〉|2

(E(q)− E0 − ~∆)2 + ~2 Γ2

4

. (B11)

Suppose now that the final states |q〉 can be collected in
different decay channels, namely orthogonal subspaces
Dj of final products, identified by quantum numbers
belonging to specific domains Dj . The energy

distribution associated to the decay channel n reads

P (j)
∞ (E) =

∫
Dj

dNq δ(E − E(q))P∞(q)

' 1

2π

~Γj

(E − E0 − ~∆)2 + ~2 Γ2

4

, (B12)

with

Γj =
2π

~

∫
Dj

dNq |〈q|Hint|ψ0〉|2 δ(E0 − E(q)), (B13)

the channel decay rate. Computation of the total
probability for the system to decay in channel n yields
the classical result

p(j) =

∫
dEP (j)

∞ (E) ' Γj
Γ
. (B14)

If the decay channels are represented by states |j〉 ⊗ |ω〉
in which a photon of frequency ω is emitted by a bound
system in the transition from an initial state |i〉 of energy
~ωi towards a specific final state |j〉 of energy ~ωj , the
spectral distribution of final states can be conveniently
represented in terms of the photon frequency,

S(j)(ω) = ~P (j)
∞ (~(ωj + ω))

' 1

2π

Γj

(ω − (ωi − ωj + ∆))2 + Γ2

4

, (B15)

which corresponds to the quantity in Eq. (26).
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