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Abstract
In a previous study we developed a mean-field theory of dynamical transitions
for the totally-asymmetric simple-exclusion process with open boundaries and
Langmuir kinetics, in the so-called balanced regime, characterized by equal
binding and unbinding rates. Here we show that simply including the possibil-
ity of unbalanced rates gives rise to an unexpectedly richer dynamical phase
diagram. In particular, the current work predicts an unusual type of dynamical
transition, which exhibits certain similarities with first-order phase transitions
of equilibrium systems. We also point out that different types of dynamical
transition are accompanied by different structural changes in the (mean-field)
relaxation spectrum.

Keywords: TASEP, non-equilibrium steady states, dynamical transitions, mean-
field theory

1. Introduction

The totally-asymmetric simple-exclusion process (TASEP) is a paradigmatic model of stochas-
tic transport, with a variety of physical applications and mathematical connections, rang-
ing from molecular biophysics to vehicular traffic [1, 2], up to the Kardar–Parisi–Zhang
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universality and random-matrix theory [3, 4]. In its simplest form, the model is defined on
a one-dimensional lattice, whose nodes can be occupied by at most one particle, and where
each particle can hop to the adjacent node, provided the latter is empty. The model is called
totally asymmetric if hopping occurs exclusively in one direction. In the open TASEP, which
we consider here, particles are injected at one end of the lattice and extracted at the opposite
end, at given rates. This model is at the core of a lot of fundamental studies in non-equilibrium
statistical mechanics [1–3], because on the one hand it is simple enough that several properties
can be worked out exactly (the steady-state solution dates back to the 1990s [5–8]) and on the
other hand it exhibits non-trivial (non-equilibrium) steady states and a number of phase tran-
sitions among them, controlled by the injection and extraction rates (boundary-induced phase
transitions).

One possible generalization of the TASEP is the so-called TASEP with Langmuir kinetics
(TASEP-LK), in which particles can also bind to an empty node or unbind from an occupied
one. The latter model was first introduced in [9], with a specific application in econophysics,
but it is thought to be relevant even in very different contexts such as, for instance, that of intra-
cellular transport [10, 11]. The Langmuir kinetics does not allow for an exact solution of the
model, which has thus been studied by mean-field approximations, hydrodynamic equations
and numerical simulations [12–15], reaching a rather complete description of the physics
underlying the steady-state behavior.

As far as the ordinary TASEP is concerned (without Langmuir kinetics), a purely dynam-
ical phase transition has also been discovered by de Gier and Essler via exact meth-
ods [16–18]. Such a transition emerges as a singularity in the relaxation rate of the sys-
tem, without affecting any other steady-state property. The transition separates a ‘normal’
dynamical regime, where the relaxation rate depends on a given control parameter (the
injection/extraction rate, according to the region of the phase diagram) from a ‘saturated’
one, in which the relaxation rate reaches a maximum and remains constant thereafter.
Mostly relying on mean-field-like techniques, some recent works [19–21] provide evidence
that similar dynamical transitions should occur as well in different generalizations of the
TASEP, with Langmuir kinetics or with local particle interactions. For the pure TASEP,
the same kind of approximations [22] predict a dynamical transition line in good qualita-
tive agreement with the exact one, slightly improving previous approaches based either on
the domain-wall theory [23–25] or on the viscous Burgers equation [26]. It is also inter-
esting to note that, among the cited papers, [19, 22] explicitly trace a connection between
the onset of dynamical transitions and structural changes in the (mean-field) relaxation
spectrum.

In this paper we extend the mean-field theory for the TASEP-LK presented in [20],
in order to deal with so-called unbalanced Langmuir kinetics, that is with unequal bind-
ing and unbinding rates. Unexpectedly, we find out that so simple a generalization yields
a much richer dynamical phase diagram, including a novel type of dynamical transition,
that recalls, in different aspects, the usual first-order phase transitions for equilibrium sys-
tems. We also show that this type of transition is associated to a specific behavior of the
relaxation spectrum, which differs from the one accompanying the ‘ordinary’ dynamical
transition.

The paper is organized as follows. In section 2 we define the model and introduce the mean-
field theory. In section 3 we report some known features of the steady-state, namely phase
diagram and density profiles, that are of interest for the current work. Section 4 is the central
one, describing our original contributions. We recap our findings and draw some conclusions
in section 5. The technical details are reported in two appendices.
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2. The model and the mean-field theory

In this section we present the model and give a brief account of the mean field theory, which
has been previously reported in [20].

The TASEP dynamics is defined as usual. We have a one-dimensional lattice of N nodes,
where each node may be either empty or occupied by at most one particle, and each particle
hops to the rightward nearest-neighbour node (provided the latter is empty) with unit rate.
Moreover, particles are injected at the leftmost node (provided it is empty) with rate α, and
extracted from the rightmost node (provided it is occupied) with rate β. In the TASEP-LK,
independent binding and unbinding processes (Langmuir kinetics) also take place at each node.
In particular a particle can bind to an empty node with rate ωA ≡ ΩA/(N + 1) (attachment
rate) or unbind from an occupied node with rate ωD ≡ ΩD/(N + 1) (detachment rate), where
the ‘macroscopic’ rates ΩA and ΩD are independent of the system size. Let us recall that the
inverse-of-N scaling is the only physically interesting case [12], in that a competition can be
established between the injection/extraction processes and the Langmuir kinetics, even in the
limit of large N.

The theory can be summarized as follows. Let n = 1, . . . , N be node labels from left to
right and let pn(t) denote the occupation probability of node n at time t. In general, the time
evolution of occupation probabilities (which we shall also call local densities) must obey a set
of continuity equations. Taking into account injection and extraction processes, hopping and
Langmuir kinetics, such equations read6

ṗn(t) = Jn−1(t) − Jn(t) + ωA pn
′(t) − ωD pn(t) n = 1, . . . , N, (1)

where Jn(t) denotes (for n = 1, . . . , N − 1) the probability current from node n to n + 1, i.e.
(the hopping rate being unity by construction) the probability that node n is occupied and node
n + 1 is empty, whereas the injection and extraction currents are J0(t) = αp1

′(t) and JN(t) =
βpN(t). The mean-field approximation (meant to close the set of equations) amounts to neglect
correlations, that is to impose

Jn(t) ≡ pn(t) pn+1
′(t) n = 0, . . . , N. (2)

The latter equations also incorporate the injection and extraction currents, provided we fix the
boundary conditions

p0(t) ≡ α, (3a)

pN+1(t) ≡ β′. (3b)

Steady-state equations can then be obtained assuming that in (1) the time derivatives ṗn(t)
vanish, which yields

pn

(
pn+1

′ + ωD
)
= (pn−1 + ωA) pn

′ n = 1, . . . , N, (4)

where (as we shall do from now on) steady-state occupation probabilities are simply denoted
by dropping the time variable. These last equations can be easily solved numerically by
a fixed-point method [20]. In order to investigate the relaxation process, we linearize
(1)–(2) around the steady state, which naturally leads to a system of (first-order, linear)

6 We introduce the notation x′ ≡ 1 − x, extensively used in the following, so that pn
′(t) = 1 − pn(t).
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ordinary differential equations, characterized by a tridiagonal coefficient matrix (relaxation
matrix). Denoting by λ a generic eigenvalue of the relaxation matrix, and by v1, . . . , vN

the components of the corresponding eigenvector, the eigenvalue problem can be written as
[20]

anvn − pnvn+1 − pn
′vn−1 = λvn n = 1, . . . , N (5)

with

an ≡ pn+1
′ + pn−1 + ωA + ωD (6)

and with boundary conditions

v0 = vN+1 = 0. (7)

Throughout this paper, we shall mainly be interested in the smallest λ, i.e. the slowest relax-
ation rate, being the one relevant at long times. Let us remark the fact that, even though
the relaxation matrix is non-symmetric, its off-diagonal entries never change sign. The lat-
ter property, which we already exploited in [20], generally allows one to perform a similarity
transformation to a (still tridiagonal) symmetric matrix. Such a transformation can be defined
as

un ≡ vn

n−1∏
k=0

√
pk

pk+1
′ n = 0, . . . , N + 1, (8)

where it is understood that the product is 1 for n = 0. We then get

anun −
√

pn pn+1
′ un+1 −

√
pn−1 pn

′ un−1 = λun n = 1, . . . , N (9)

with the analogous boundary conditions

u0 = uN+1 = 0. (10)

3. Static phase diagram and density profiles

The static phase diagram of the TASEP-LK has been thoroughly investigated by Parmeggiani
et al [12, 15]. As for the pure TASEP, it turns out that the mean field approximation cor-
rectly reproduces the bulk behavior of the system, and thence the static phase diagram [15]. In
this section we report the main features of the latter, in order to put our results in the proper
framework.

First of all, let us recall that, with respect to the pure TASEP (or the balanced TASEP-LK
as well), the particle-hole symmetry takes a more general form, namely7 ΩA ↔ ΩD, α ↔ β,
pn ↔ pN+1−n

′. As a consequence, the phase diagram is no longer symmetric under simple
exchange ofα and β, but anyway, fixingΩA andΩD, the analysis can be restricted to ΩA > ΩD,
as we shall assume from now on. Figure 1 displays a typical phase diagram for such a case.
One can still observe three phases characterizing the pure TASEP, as usual named high-density
(HD), low-density (LD) and maximal-current (MC) phase. These phases can be regarded as

7 The symmetry involving occupation probabilities applies more generally to occupation numbers.
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Figure 1. Static phase diagram in the α–β plane for ΩD = 0.1 and ΩA = 0.2. Phase
labels and different transition line types are explained in the text. Multiple labels denote
coexistence regions.

continuous evolutions of the respective pure-TASEP phases (obviously recovered for ΩA =
ΩD = 0), since they respectively retain their relevant features. In particular, in the HD (resp.
LD) phase the bulk behavior is completely determined by the extraction rate β (injection rateα)
alone, whereas α (resp. β) just plays a role in the formation of the boundary layer. Conversely,
the bulk behavior of the MC phase is absolutely unaffected by eitherα and β (so that in [15] it is
denoted as the Meissner phase), whereas both parameters determine only the boundary layers.
So far, the main difference with respect to the pure TASEP is the lack of uniformity in the bulk
density and current profiles, which is naturally induced by Langmuir kinetics. In particular, in
the MC phase this fact entails that the maximal current J = 1/4 is actually reached only at the
right boundary (at odds with the pure TASEP, in which the current value is spatially invariant).
Upon decreasing the extraction rate to β < 1/2, the MC phase evolves into the HD phase
through a continuous transition (denoted by a dashed line in figure 1), which is still quite similar
to that of the pure TASEP, even though here it can also extend toα < 1/2. The most remarkable
effect of Langmuir kinetics is however the onset of parameter regions where two of the pure
phases (namely LD/HD or LD/MC in the present case ΩA > ΩD) coexist, being separated by
a static domain wall, i.e. a domain wall remaining localized and stable in the steady state [12,
15]. Upon increasing the injection rate α, such domain wall moves toward the left boundary of
the system and, when it reaches the boundary, coexistence terminates and the system falls into
a pure HD or MC steady state, depending on the β value. In figure 1, the separation between the
LD/HD and the LD/MC coexistence regions is denoted by a dotted line, whereas the separation
between the coexistence regions and the pure HD and MC phase regions is denoted by a solid
line. On the other hand, upon decreasing α, the domain wall moves toward the right boundary
of the system and, when it reaches the boundary, the steady state falls into a pure LD phase.
Let us note that the separation between the LD/MC coexistence and the pure LD phase region,
denoted in figure 1 by a dash-dotted line, exhibits indeed a special feature, that is a domain-
wall amplitude vanishing exactly while reaching the (right) boundary of the system, i.e. where
coexistence terminates. It has also been observed that, moving along the LD phase boundary on
increasing β, the domain-wall amplitude vanishes continuously at β = 1/2, so that in [15] this
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Figure 2. Steady-state local density pn as a function of the node index n for a system size
N = 50 and the following parameter values: ΩD = 0.1, ΩA = 0.3, α = 0.65, β = 0.1
(top graph) and β = 0.3 (bottom graph). Symbols denote numerical results, whereas
solid and dashed lines denote respectively the full analytical expression and the bulk
term alone (see the text). A (horizontal) thin solid line denotes the equilibrium Langmuir
density (11).

point of the phase diagram has been likened to an equilibrium critical point. Let us finally recall
that the phase diagram that we have described corresponds to moderate values of the attachment
rate ΩA; increasing ΩA beyond a certain threshold leads to a disappearance of the pure LD
phase.

The steady-state density profiles in the different phases have been described in [15] in full
detail. Here we briefly recall what happens in the HD phase, which we are mainly interested
in. Figure 2 displays the density profiles for two points in the HD phase. Note that such profiles
can be computed by two different methods, namely either solving numerically the finite-size
mean-field equations (4) (with the appropriate boundary conditions (3)) or by an analytical
expression, discussed in appendix A, which holds asymptotically for large N. By the way,
figure 2 clearly shows that the latter is quantitatively very accurate, even for quite small sys-
tem sizes, such as N = 50. The analytical expression is in principle quite similar to the one
obtained for the balanced case [20], in that it is made up of a sum of a bulk term plus a
boundary-layer term. In practice, the bulk term is the solution of the differential equation
arising in the continuum (hydrodynamic) limit [15], whereas the boundary-layer term is the
mean-field solution for an ‘effective’ pure TASEP, where ‘effective’ means that the uniform
current of the pure TASEP is replaced by a local current value [20]. As apparent from figure 2,
it turns out that the bulk profile is always all above or all below the equilibrium Langmuir
density

� =
ΩA

ΩA +ΩD
, (11)

depending on whether β′ (the right-boundary density) is respectively larger or smaller than �
(when β′ = � the profile is flat and coinciding with the Langmuir density). According to the
theory [15], the corresponding left-boundary density of the bulk profile (i.e. the intercept of
the dashed lines with the vertical axis n = 0), which we shall denote by ϑ, can be written as a
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function of β, ΩA and ΩD (not α) as

ϑ− �

�− 1
2

= W0

(
β′ − �

� − 1
2

exp
β′ − �− ΩA+ΩD

2

�− 1
2

)
, (12)

where W0 is a Lambert function (precisely, the so-called zero branch). More generally, the
Lambert function allows one to express the whole bulk profile [15], showing in particular that
the profile slope is always everywhere positive or everywhere negative, respectively in the two
aforementioned cases. Of course, boundary layers may locally reverse the density profile slope,
as one can actually observe in figure 2 in the bottom graph. Let us finally remark the fact that
the bulk profile is not only a mathematical concept, but it also has an important physical role.
Indeed it reflects the behavior of the current (which conversely is not affected by boundary
layers) and therefore it is relevant for phase transitions, including dynamical ones, as we shall
see in the next section.

4. The dynamical transitions

In this section we present the main original results of our work, dealing in particular with
the spectrum of the mean-field relaxation matrix and with the large-N asymptotic behav-
ior of its smallest eigenvalue (slowest relaxation rate). We concentrate on the HD phase
because, as previously mentioned, it is the one where more interesting effects can be observed.
The LD phase behavior will be briefly summarized at the end of this section. Let us recall,
however, that all the results still refer to a case ΩA > ΩD, here in particular ΩD = 0.1 and
ΩA = 0.3, and that the roles of HD and LD would be exchanged, if we took the oppo-
site assumption ΩA < ΩD. The latter case does not need to be investigated, because of
the particle-hole symmetry mentioned above. Let us also recall that, according to [15],
for ΩA > ΩD the HD phase corresponds to the parameter region defined by the following
inequalities

1
2
> β > 0, (13a)

α > ϑ′, (13b)

where ϑ depends on β (besides ΩA and ΩD) according to (12).

4.1. Spectrum of the relaxation matrix

Let us first describe the results that we have obtained by solving the eigenvalue problem (9)
numerically at finite N. As previously mentioned, it turns out that all eigenvalues are real,
as we deal with a real symmetric matrix, which has been proved to be similar to the mean-
field relaxation matrix. The most relevant novel feature with respect to the balanced case is
that the low-lying part of the spectrum turns out to behave in two qualitatively different man-
ners, depending on whether the extraction rate β is smaller or larger than �′, where � is the
equilibrium Langmuir density. As discussed in the previous section, these two regimes are
respectively associated to increasing or decreasing bulk density profiles, and therefore (see
appendix A) decreasing or increasing current profiles. Note in particular that the latter type of
behavior never occurs in the balanced case.

For β < �′ the situation, as a function of the injection rate α, is that displayed in figure 3. We
can see that the eigenvalues are arranged in a nearly ‘flat band’, i.e. they are all rather weakly
dependent on α, with the exception of the smallest eigenvalue. This one exhibits indeed a
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Figure 3. Thin lines represent the smallest 12 eigenvalues of the relaxation matrix,
computed numerically for N = 300 and β = 0.1, as a function of α. Eigenvalues of
increasing magnitude are alternately displayed by solid and dotted lines. The thick solid
line represents the N →∞ limit of the smallest eigenvalue, i.e. the function defined by
(15), which in this case coincides with (23) (see the text).

Figure 4. Thin lines represent the smallest 20 eigenvalues of the relaxation matrix,
computed numerically for N = 300 and β = 0.3, as a function of α. Eigenvalues of
increasing magnitude are alternately displayed by solid and dotted lines. The thick solid
line represents the N →∞ limit of the smallest eigenvalue, i.e. the function defined by
(15). The thick dashed line represents (23).

clearly increasing trend upon increasing α up to a certain critical region, beyond which it sat-
urates, almost becoming constant. In this case the mean-field spectrum is qualitatively similar
to that observed in the balanced case [20] and in the pure TASEP [22] as well. In analogy with
such cases, we expect that the infinite-size limit of the smallest eigenvalue becomes actually
constant beyond a critical α value, the latter being precisely characterized by a discontinuity
in the second derivative.

Figure 4 displays the typical scenario for β > �′. At first glance, this case could be roughly
described by saying that the isolated eigenvalue (being also the smallest one in the low-α
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region) does not ‘join the band’ smoothly, but rather it ‘enters the band’, giving rise to a number
of degeneracies or level crossings. Nevertheless, by examining the results on an appropriately
small scale, one realizes that in fact there is no degeneracy at all (at finite N), that is, the
seeming crossings are in fact all avoided crossings. As a consequence, the smallest eigen-
value undergoes in fact an abrupt slope change as a function of α, whereas a number of higher
eigenvalues exhibit two subsequent slope changes. As we shall see below, in the N →∞ limit
the abrupt slope change of the smallest eigenvalue becomes an actual discontinuity of the first
derivative.

4.2. Analytical results

Let us now present the analytical results. Note that in this section we only discuss the final
results and their physical meaning, whereas all technical details of the derivation are reported
in appendix B. Let us denote by λmin

(N) the slowest relaxation rate for a system of size N (from
now on we indicate the size dependence by a superscript), and let us define the infinite-size
limit

λmin
(∞) ≡ lim

N→∞
λmin

(N). (14)

The central result is that the latter quantity can be written as

λmin
(∞) = 1 − 2 max

{
x∗
√
ϑϑ′,

√
ββ′

}
, (15)

where ϑ = ϑ(β,ΩA,ΩD) is the left-boundary value of the bulk density, determined by (12),
and x∗ = x∗(α,ϑ) is determined by the behavior of a real function f(x;α,ϑ) of the real variable
x � 1 and of the model parameters α, β, ΩA and ΩD (the last three contained in ϑ). In full
analogy with the balanced case [20], the f function can be defined as

f (x) ≡
∞∑

n=1

sn+1 − sn−1√
ϑϑ′ vn(x)ζ(x)n, (16)

where

ζ(x) ≡ x −
√

x2 − 1, (17)

while the sequences sn and vn(x) (depending on the model parameters) are defined by recursion,
respectively as

s0 ≡ α , sn+1 ≡ 1 − ϑϑ′

sn
n = 0, 1, 2, . . . , (18)

and

v0(x) ≡ 0 , v1(x) ≡ 1, (19)

vn+1(x) ≡
(

2x − sn+1 − sn−1√
ϑϑ′

)
vn(x) − vn−1(x) n = 1, 2, . . . .

The series in (16) turns out to converge very quickly, which makes it amenable to numeri-
cal evaluation with extremely high precision, and at a negligible computational cost. Without
entering the details, let us note that the model parameters β, ΩA and ΩD get into the theory
only through the quantities ββ ′ and ϑϑ′, representing respectively the right- and left-boundary

9
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currents in the infinite-size limit (see appendix A). The sequence sn represents the mean-field
density profile for a pure TASEP with current ϑϑ′ (still in the infinite-size limit), and indeed
the recursion equation (18) coincides with the one reported in the early work by Derrida et al
[5]. This is related to the fact (mentioned in the previous section and explained in appendix A)
that in the TASEP-LK the boundary layer behaves just like in the pure TASEP, yet with a local
current value. Let us also observe that, from a formal point of view, equations (16)–(19) are
really identical to those of the balanced case [20] (which in turn also apply to the pure TASEP).
The difference lies only in the parameter ϑ (i.e. the left-boundary bulk density), whose expres-
sions for the balanced case and for the pure TASEP were respectively (β +Ω)′ and β ′. The
behavior of x∗ turns out to be consequently analogous, as we outline below (for more details
see [20]).8

As previously mentioned, we assume that ΩA andΩD are fixed, so that ϑ only depends on β,
according to (12). Given a particular value of β, there turns out to exist an interval of α values,
larger than a critical threshold αc, such that

f (x;α,ϑ) < 1 ∀x � 1. (20)

In all this interval we have x∗ = 1, independently of α. Otherwise, when α becomes smaller
than αc, condition (20) no longer holds, and in particular f(1;α,ϑ) > 1. In this case we have
x∗ > 1, and the precise value of x∗ is determined by the equation

f (x∗;α,ϑ) = 1. (21)

Still at fixed β (i.e. fixed ϑ), the x∗ value depends on α, in particular x∗ decreases upon
increasing α. The critical threshold αc(ϑ) is determined by the equation

f (1;αc,ϑ) = 1. (22)

In the end x∗ turns out to be (at fixed ϑ) a continuous function of α, with a discontinuity in the
second derivative (second-order singularity) at α = αc.

Let us now consider equation (15). As discussed in the previous section, in the low-β region
(β < �′) the bulk density profile has a positive slope, and hence β′ > ϑ. Since we are in the HD
phase, both β′ and ϑ are larger than 1/2, which entails ϑϑ′ > ββ ′. Now, as we have previously
seen that x∗ � 1, it obviously follows that (15) simplifies to

λmin
(∞) = 1 − 2x∗

√
ϑϑ′. (23)

In this regime, the behavior of λmin
(∞) as a function of α is only governed by x∗ (which

gives rise to the aforementioned second-order singularity), and therefore it turns out to
be qualitatively similar to that of the balanced case, as displayed in figure 3. Conversely,
in the high-β region (β > �′), the bulk density profile has a negative slope, so that
all inequalities are reversed, yielding ϑϑ′ < ββ′. Since we have previously seen that x∗
decreases upon increasing α for α < αc and remains constantly equal to 1 for α � αc,
we can argue that in this case there necessarily exists another threshold value α̃c < αc,
such that

√
ββ′ > x∗

√
ϑϑ′ for α > α̃c. This latter threshold is of course determined by

8 The analogy is in fact very precise, as it consists in making the substitution β → β +Ω (from the pure TASEP to the
balanced TASEP-LK) or β → ϑ′ (from the pure TASEP to the unbalanced TASEP-LK).
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Figure 5. Phase diagram in the α–β plane (HD phase region) for ΩD = 0.1 and ΩA =
0.3. Thick lines denote static transitions (line types as in figure 1), thin lines denote
dynamical transitions (line types and subphase labels explained in the text).

the equation

f

(√
ββ′

ϑϑ′ ; α̃c,ϑ

)
= 1, (24)

from which one can also argue that α̃c(ϑ, β) shall coincide with αc(ϑ) when β = �′ = ϑ′

(that is when the bulk density profile is flat and coinciding with the equilibrium Langmuir
density). In this regime, which has no analogue in the balanced case, λmin

(∞) as a func-
tion of α develops a discontinuity in the first derivative (first-order singularity) at α = α̃c,
as displayed in figure 4. We also notice an intriguing fact, namely that for α > α̃c the
analytical expression (23), while moving away from the smallest eigenvalue, closely fol-
lows the whole series of avoided crossings. Moreover, the critical value αc, where (23)
exhibits the second-order singularity, can be roughly identified with the end of the crossing
regime.

We summarize all the analytical results in a dynamical phase diagram (figure 5), partition-
ing the HD phase into regions (subphases), whose border lines coincide with the singularities
described above. We first distinguish two main subphases, denoted as HD-s (‘slow’) and HD-f
(‘fast’), which respectively correspond to the regions where λmin

(∞) depends onα or not. These
two dynamical subphases are the ‘usual’ ones, previously detected in the pure TASEP, the bal-
anced TASEP-LK and other variants (the terms ‘slow’ and ‘fast’ have been used in [19, 21]).
Concerning the fast phase, we see that λmin

(∞) is not only independent of α but it also takes
the highest admissible value at given β, namely

λmin
(∞) = 1 − 2 max

{√
ϑϑ′,

√
ββ′

}
. (25)

The remarkable point is that this last expression exhibits a first-order singularity at β = �′ = ϑ′

(= 0.25 in figure 5), which justifies a further subdivision of the HD-f region into HD-f′ and
HD-f′′, or in other words the existence of one more dynamical transition. Note that in this case,
as the right-hand side of (25) no longer depends on α, the singularity appears as a discontinuity

11
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Figure 6. Phase diagram in the α–β plane (LD phase region) for ΩD = 0.1 and ΩA =
0.2. Thick lines denote static transitions (line types as in figure 1), a thin dashed line
denotes the (second-order-like) dynamical transition (subphase labels explained in the
text).

in the first derivative with respect to β. The latter transition is indeed a peculiarity of the unbal-
anced TASEP-LK since, as previously observed, in the balanced case (in the HD phase) the
bulk density is always a monotonically increasing function of the node index n, which entails
ϑϑ′ > ββ′ (the current profile is decreasing), and therefore no singularity can occur in (25). In
figure 5 we denote dynamical transitions, characterized by first- or second-order singularities,
respectively by solid or dashed (thin) lines. According to the above discussion, the transition
between HD-s and HD-f′ is of the former type (having no analogue in the balanced case), and
occurs at α = α̃c, whereas the transition between HD-s and HD-f′′ is of the latter type (the only
one appearing in the balanced case), and occurs on the line α = αc. Concerning this last curve,
let us finally note that in figure 5 we have also displayed (as a dotted line) its continuation for
β > �′. As previously mentioned, this section of the line cannot be properly said to represent a
dynamical transition, because it is unrelated to the slowest relaxation rate, yet it contains some
extra information about the spectrum, in that it can be loosely considered as a border line for
the level-crossing region.

To conclude this subsection, we give a brief account of the dynamical transition scenario
also in the LD phase (figure 6).9 We do not report any analytical detail about this case, which
is indeed conceptually analogous, the basic differences being only that the bulk density profile
is described by the other real branch of the Lambert function [15] and that the boundary layer
takes place at the right, rather than left, boundary. In the LD phase the bulk density profile
is always monotonically increasing and, as previously mentioned, this property gives rise to
the simpler transition scenario, with a unique transition line characterized by a second-order
singularity. Such a transition divides the LD phase into slow and fast subphases (labeled as
LD-s and LD-f), respectively characterized by the property that λmin

(∞) depends on β or not.
Accordingly, the singularity appears as a discontinuity in the (second) derivative with respect to
β. A noticeable fact is that, at the LD-phase boundary, the dynamical transition line terminates

9 Let us recall, once again, that these results refer to a case ΩA > ΩD, and that the roles of HD and LD would be
exchanged, if we took the opposite assumption ΩA < ΩD.
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Figure 7. Difference between the finite-size slowest relaxation rate λmin
(N) and its

infinite-size limit λmin
(∞) as a function of N for ΩD = 0.1, ΩA = 0.3, β = 0.1 and dif-

ferent α values (α = 0.5, 0.56, 0.57, 0.58, 0.6, 1), below (squares) and above (circles)
the critical threshold αc ≈ 0.573 676. The solid lines represent scaling functions. The
dotted lines are a guide for the eye.

precisely at the pseudo-critical point, which we mentioned in section 3, where the amplitude
of the static domain wall vanishes. We do not have, however, an intuitive explanation of this
fact.

4.3. Other numerical results

In this subsection we deal with some more issues that may be of interest for the system under
investigation, but which go beyond the analytical treatment presented above.

In the first place, we consider the asymptotic scaling behavior of the slowest relaxation
rate at large N, specifically in order to verify whether the scaling exponents are the same as
those obtained in the balanced case. A comparison between the numerical results and the trial
scaling functions is reported in figure 7 for the low-β regime (β < �′), where we recall that
the dynamical transition is second-order-like. The results are apparently well compatible with
a scenario in which the quantity λmin

(N) − λmin
(∞) scales with the inverse of N as a power law

with the same balanced-case exponents, namely 1 in the HD-s phase (α < αc) and 2/3 in the
HD-f′′ phase (α > αc). We have performed a similar analysis in the high-β regime (β > �′) and
the results (not shown) clearly indicate that even the HD-f′ phase is characterized by power-law
scaling with exponent 2/3. Let us recall that, as far as the pure TASEP is concerned, the exact
result [16] predicts a power-law behavior with a unique scaling exponent 2, being unaffected
by the dynamical transition, whereas the mean-field theory predicts the same exponent, though
(curiously) only in the fast phase. The current paper, along with [20], provide considerable
evidence that the mean-field scaling exponent is 2/3 in the HD-f (and LD-f as well) of both
the balanced and unbalanced TASEP-LK. All these results together lead us to conjecture that
2/3 might indeed be the exact scaling exponent for the TASEP-LK in the whole HD and LD
phases.

Another interesting point is that, according to our mean-field theory, the first-order-like
dynamical transition turns out to be accompanied by a structural change in the relaxation
mode associated to the slowest relaxation rate (or, in mathematical terms, the eigenvector

13
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Figure 8. The symbols (crosses) denote the components un of the (normalized) eigen-
vector corresponding to the smallest eigenvalue for N = 100, ΩD = 0.1, ΩA = 0.3,
β = 0.3 and different α values, close to the (first-order-like) dynamical transition. The
dotted lines are a guide for the eye. The inset displays the smallest (λ1, solid line) and
second smallest (λ2, dashed line) eigenvalues as a function of α.

associated to the smallest eigenvalue of the relaxation matrix). This is not the case in an ordi-
nary (i.e. second-order-like) dynamical transition. To get an example of this behavior, we solve
the eigenvalue problem for a system of finite size N, fixing β (in the high-β regime of the HD
phase) and varying α. The results are reported in figure 8. We can identify a transition region,
around α ≈ 0.41 7016, where the eigenvector exhibits a bimodal shape, being characterized
by two different ‘peaks’ of (conventionally) positive components at both low and high n val-
ues. The bimodality region clearly corresponds to the avoided crossing region, where the first
and second smallest eigenvalues are nearly degenerate (see the inset in figure 8). Note that,
due to the finite size, the bimodality region has a finite extension in α and it is not so close to
the theoretical (infinite-size) threshold α̃c ≈ 0.393 451. However, upon increasing N, one can
verify numerically that the transition region tends to collapse, and it does so precisely toward
α̃c. Out of this region, the eigenvector rapidly becomes unimodal, and in particular the low-n
peak survives at low α, whereas the high-n peak survives at high α. Moreover, the eigenvector
associated to the second smallest eigenvalue exhibits a similar but opposite behavior: it is still
bimodal in the transition region10 and unimodal elsewhere, but the low-n peak survives at high
α, whereas the high-n peak survives at low α. In other words, one could state that the two relax-
ation modes exchange their respective structure concurrently with the avoided crossing. This
mechanism, which similarly takes place at every subsequent avoided crossing, can provide a
qualitative explanation of a previously observed fact, namely that the analytical expression
(23) closely follows the sequence of avoided crossings. The reason is indeed that this expres-
sion, ultimately based on approximating the eigenvector with the sequence vn(x∗), describes a

10 For orthogonality reasons, in this case the eigenvector components do not have a definite sign.
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specific eigenmode structure, characterized by a low-n peak. According to the above discus-
sion, one can argue that such a structure does not remain associated to the smallest eigenvalue
(as it happens in the second-order-like scenario), but it is progressively ‘transferred’ to higher
eigenvalues.

Let us make a brief comment about these last results, in particular about the possibility of
observing dynamical transitions in real (or simulated) kinetics. It is a known fact that the ordi-
nary (second-order-like) dynamical transition occurring in the pure TASEP, whose existence
has been proved rigorously [17], is nonetheless difficult to detect in simulations [26], because
the effect is weak and it is easily overcome by noise. Based on the mean-field theory, in [20]
we suggested that such a difficulty could also be related to the fact that, concurrently with
the dynamical transition, the slowest relaxation mode joins the band of higher-order modes,
whose level spacing vanishes in the thermodynamic limit. As a consequence, entering the
fast phase, simulations inevitably begin to observe a superposition of modes, resulting in a
smoothed transition. In principle, one could expect that the eigenmode structure change asso-
ciated with the first-order-like dynamical transition could make it more clearly detectable. This
idea is based on the quite natural physical interpretation of our eigenvector (associated to the
smallest eigenvalue) as describing the form of the (longest lasting) perturbation of the den-
sity profile. Still in principle, the latter could be determined e.g. in simulations as difference
between density profiles computed at subsequent times, in the limit of very long times. One
could then expect to observe the aforementioned perturbation being concentrated at the left
or right boundary in the slow or fast phase, respectively, with an abrupt switch between the
two situations upon crossing the first-order-like transition. Of course, dealing with a finite-size
system, one also expects a narrow region around the transition, characterized by a bimodal
perturbation. Unfortunately, two kinds of difficulties emerge. On the one hand, the calcula-
tion of the longest-lasting perturbation as a difference of two density profiles, both very close
to the stationary state, would be heavily affected by noise. Moreover, we must remember the
results presented above refer to the eigenvectors of the symmetrized relaxation matrix, and
that in order to obtain those of the original matrix (i.e. the physically relevant ones), we have
to invert the similarity transformation (8). Qualitatively speaking, the latter operation amounts
to superimposing an exponential decay (with respect to n), which would result in a nearly
complete suppression of the right-boundary peak. In conclusion we expect that the first-order-
like dynamical transition might present the same detection difficulties as the second-order
one.

5. Summary and conclusions

We have investigated dynamical transitions in the open TASEP with unbalanced Langmuir
kinetics. This is a generalization of the TASEP, such that particles can also bind to empty
nodes or unbind from occupied ones. When the rates of these additional processes (which we
denote as binding and unbinding rates) are equal, we say that the Langmuir kinetics is balanced,
otherwise it is called unbalanced. The model cannot be solved exactly, but its stationary state
is well known from [12–15]. In this paper we focused on purely dynamical transitions, that is
on singularities of the relaxation rate that are not associated to any stationary-state transition.
Such dynamical transitions occur in the high- and low-density phases, splitting each of them
into a slow subphase, where the relaxation rate depends on both boundary reservoirs (i.e. on
both the injection and extraction rates), and a fast subphase, where it depends on just one of
these control parameters. All the analysis relies on a mean-field approximation, previously
validated as a tool for studying dynamical transitions in the pure TASEP [22]. The simplicity
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of the theory allows us to obtain many analytical results in the infinite-size limit, extending the
approach developed in the balanced case [20].

Our main result is that the unbalanced Langmuir kinetics can change the nature of the
dynamical transition and give rise to qualitatively new phenomena, which we have called (bor-
rowing the term from equilibrium statistical physics) first-order-like dynamical transitions.
The latter term has different motivations. In the first place, we have observed that, depending
on the model parameters, the singularity associated with the dynamical transition may also
appear as a discontinuity in the first derivative of the relaxation rate with respect to either the
injection or extraction rate. This is a novel feature, since both in the pure TASEP (which is
exactly solvable) [16–18] and in some variants (including the TASEP with balanced Lang-
muir kinetics) [19–21] the relaxation rate only exhibits discontinuities in the second derivative
(in such cases we speak of second-order-like dynamical transitions). Furthermore, we have
found that, when the relaxation rate exhibits first-order singularities, the whole spectrum of the
mean-field relaxation matrix exhibits a non-trivial behavior, being characterized (at finite size)
by avoided crossings. Indeed, the first-order-like dynamical transition emerges as the infinite-
size limit of one such avoided crossing. Still at finite size, we have characterized numerically
the spatial structure of the slowest relaxation mode, i.e. the eigenvector of the (mean-field)
relaxation matrix corresponding to its smallest eigenvalue. Our results show that the first-order-
like dynamical transition is accompanied by an abrupt structural change and in particular that
the eigenvector exhibits a clearly bimodal shape, concurrently with the transition. We argue
that such a behavior may be loosely interpreted as a ‘coexistence’ of two different relax-
ation modes, that is, a dynamical analogue of coexisting states at equilibrium first-order phase
transitions.

We have also obtained accurate numerical results about the finite-size scaling of the mean-
field relaxation rate, showing that it approaches the asymptotic value with a power law. By
comparison with the pure TASEP, we have conjectured that the exact value of the corresponding
exponent is 2/3 in the whole high- and low-density phases.

In conclusion, even though the present work is entirely based on a mean-field theory, the
latter has proved to be reliable in the case of pure TASEP, where the dynamical transition is
known exactly, and hence we expect that the first-order-like transition is not an artifact of the
approximation. However, it may be worth trying to reproduce this phenomenon, as well as the
scaling exponent, using complementary approaches. As shown in [26], Monte Carlo simula-
tions are not a very efficient tool for studying dynamical transitions, so we plan to resort to a
modified domain-wall theory and to extrapolation of finite-size results, as we have previously
done for the Antal–Schütz [19] and Katz–Lebowitz–Spohn [21] models. Work is in progress
along these lines.

Appendix A. Density and current profiles

In this appendix we report some details about the properties of the steady-state density and
current profiles in the HD phase. Let us recall that, assuming fixed ΩA > ΩD, the HD-phase
region is defined by the inequalities (13). As discussed in [15], in the continuum limit the den-
sity profile is the solution of a first-order differential equation, so that it can match at most one
boundary condition (in the HD phase the right-boundary condition). As previously mentioned,
this bulk solution ρ(h) can be expressed in terms of the Lambert W function (in the HD phase
the so-called main branch W0), in the following form
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ρ(h) − �

�− 1
2

= W0

(
β′ − �

�− 1
2

exp
β′ − �− ΩA+ΩD

2 h′

�− 1
2

)
, (A.1)

where � is the Langmuir density (11) and h ∈ [0, 1] is the position variable (h = 0 and h = 1
denoting respectively the left and right boundaries). Exploiting the fact that W0

(
ξeξ

)
= ξ for

all ξ � −1, and observing that (13a) implies (β′ − �)/(�− 1
2 ) > −1, one can easily verify

that

ρ(1) = β′, (A.2)

i.e. that the right-boundary condition is satisfied. Moreover, taking into account (12), the left-
boundary value of the bulk profile reads

ρ(0) = ϑ, (A.3)

so that in general the left-boundary condition is not satisfied (the resulting mismatch is filled
up by the boundary layer).

As previously observed for the balanced case [20], since our final goal is to investigate the
eigenvalue problem for the relaxation matrix, it is convenient to perform the whole analysis
at finite N, in order to avoid dealing with infinite-dimensional operators. The basic difference
with respect to our previous work [20] is that here we do not have an analytical form for the
bulk solution at finite N. Nevertheless, we can define the latter as a sequence (qn)N+1

n=0 satisfying
the steady-state equations (4), that is

qn

(
qn+1

′ + ωD
)
= (qn−1 + ωA) qn

′ n = 1, . . . , N, (A.4)

with the boundary values matching precisely those of the continuum solution, i.e.

q0 = ϑ, (A.5a)

qN+1 = β′. (A.5b)

Since the solution of the discrete boundary problem is unique [20], the above definition is
unambiguous, and for large N we can expect

qn ≈ ρ

(
n

N + 1

)
n = 0, . . . , N + 1, (A.6)

where (from now on) the symbol ≈ means that the two sides of the equation can differ at most
by an amount that vanishes for N →∞. Note that, at odds with [20], in this paper we do not
state rigorous bounds for the distance between the terms of approximate equalities, but it is
understood that we have always verified numerically that such a distance actually vanishes for
large N.

After this step, we can proceed in analogy with the balanced case [20], by defining the
detrended densities

rn ≡ pn − (qn − q0) n = 0, . . . , N + 1, (A.7)

i.e. the quantities obtained by subtracting from the local densities the non-uniform part of the
bulk profile. From (A.7) we have of course
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pn = rn + qn − q0, (A.8a)

pn
′ = rn

′ + qn
′ − q0

′, (A.8b)

which, plugged into the steady-state equation (4), yield by simple algebra

qn

(
qn+1

′ + ωD
)
+ rnrn+1

′ − (qn − q0) rn+1 − (rn − q0)
(
qn+1 − ωD

)
= (qn−1 + ωA) qn

′ + rn−1rn
′ − (qn − q0) rn−1 − (rn − q0) (qn−1 + ωA) (A.9)

for all n = 1, . . . , N. We notice that the first terms on both sides cancel out because of (A.4),
so that we get

rnrn+1
′ − rn−1rn

′ = (qn − q0)
(
rn+1 − rn−1

)
+ (rn − q0)

(
qn+1 − qn−1 − ωA − ωD

)
(A.10)

still for all n = 1, . . . , N. Because of (A.7), (A.5) and (3), the boundary conditions
become

r0 = p0 = α, (A.11a)

rN+1 = q0 = ϑ. (A.11b)

Now, since we know from numerics that in the HD phase the local density pn approaches
exponentially the bulk solution, with the characteristic length of the exponential remaining
finite as N grows to infinity, we can expect that the detrended density profile will be similar to
the density profile of an ‘effective pure TASEP’. One can easily verify that the consequences
of this conjecture are fully consistent. In particular, assuming that rn tends to q0 exponentially
upon increasing n, the difference rn+1 − rn−1, appearing in the right-hand side of (A.10), would
be significantly different from zero only up to finite n. Yet, in this region the factor qn − q0
turns out be of order 1/N, because, according to (A.6), qn can be regarded as a discretization
of the continuous function ρ(h). Similar arguments apply to the last term in (A.10), leading to
the conclusion that the whole right-hand side of (A.10) can be neglected, and the detrended
densities satisfy

rnrn+1
′ ≈ constant n = 0, 1, . . . , N. (A.12)

The latter are indeed pure-TASEP mean-field equations (check (4) with ωA = ωD = 0), with
a renormalized right-boundary condition, namely (A.11b). The resulting physical picture is
as well analogous to that of the balanced case. The local density pn undergoes variations
of order 1 just over a finite number of nodes. In such a small region (boundary layer),
the effect of Langmuir kinetics becomes negligible for large N and, as a consequence, the
system behaves there as a pure TASEP with a bulk density adjusted to match the local
bulk density of the TASEP-LK in that region. In particular, in the HD phase the boundary
layer is on the left, so that the effective pure TASEP is one with a right-boundary con-
dition renormalized to the left-boundary value of the bulk solution, that is q0 = ϑ. Let us
observe that equations (A.12) are more and more accurate as N →∞, so that it is natu-
ral to define an infinite sequence (sn)∞n=0, being a solution of (A.12) taken as an equality,
namely

snsn+1
′ = ϑϑ′ n = 0, 1, 2, . . . , (A.13)
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where the constant (right-hand side) reflects the fact that sn should approach the bulk value ϑ.
Choosing also the left-boundary condition according to (A.11a), that is

s0 = α, (A.14)

in the limit of large N we expect that

rn ≈ sn n = 0, . . . , N + 1. (A.15)

Let us recall that the closed-form solution of (A.13) with the ‘initial’ condition (A.14) can be
written as [20]

sn = ϑ+ ψn n = 0, 1, 2 . . . , (A.16)

where

ψn ≡ (ϑ− ϑ′)

{[
1 − α− ϑ

α− ϑ′

(
ϑ′

ϑ

)n ]−1

− 1

}
, (A.17)

which is in fact equivalent to the one reported in [5]. Let us also note that (12) along with the
parameter bound (13a) entail

0 <
ϑ′

ϑ
< 1, (A.18)

which in turn shows that ψn → 0 (exponentially) for n →∞. In the end, taking into account
(A.8a), (A.5a), (A.6), (A.15) and (A.16), we can state that the stationary density profile of the
HD phase is

pn = qn + rn − q0 ≈ ρ

(
n

N + 1

)
+ ψn n = 0, . . . , N + 1, (A.19)

where ρ(h) and ψn are defined respectively by (A.1) and (A.17), together with (12).
It is possible to show that the above arguments entail relevant consequences regarding also

the current profile, in particular that the latter is very close (for large N) to the current profile
corresponding to the bulk solution alone (which we shall denote as bulk current). In fact, using
(A.8), we can write by simple algebra

pn pn+1
′ − qnqn+1

′ =
(
rnrn+1

′ − q0q0
′)− (qn − q0)

(
rn+1 − q0

)
−
(
qn+1 − q0

)
(rn − q0) (A.20)

for all n = 0, . . . , N. The first term on the right-hand side is negligible because of (A.15) and
(A.13), along with (A.5a). The subsequent terms can be neglected as well, because of the same
arguments used for (A.10), so that in the end we obtain the expected result

Jn = pn pn+1
′ ≈ qnqn+1

′ ≈ ρ

(
n

N + 1

)
ρ′
(

n
N + 1

)
n = 0, . . . , N,

(A.21)

where the latter approximate equality follows from (A.6) together with the continuity of ρ(h).
One can easily argue that in the HD phase, where the bulk density is always larger than 1/2, the
maximum current corresponds to the minimum bulk density, as ρρ′ is a decreasing function of
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ρ for ρ > 1/2. As a consequence, keeping in mind figure 2, the maximum current may occur
either at the left or at the right boundary (respectively taking values ϑϑ′ or ββ ′) depending
on whether β < �′ or β > �′. This last result will be invoked several times in the forthcoming
section.

Appendix B. Relaxation rates

In section 2 we have seen that the relaxation rates are the eigenvalues of a tridiagonal sym-
metric matrix, which we now call A, mapping the generic vector u ≡ (u1, . . . , uN) to Au. The
expression in components of the latter vector is

(Au)n ≡ anun −
√

Jn un+1 −
√

Jn−1 un−1 n = 1, . . . , N, (B.1)

where the diagonal term an is defined by (6), Jn = pn pn+1
′ is the local steady-state cur-

rent and u0 ≡ uN+1 ≡ 0. The slowest relaxation rate is the smallest eigenvalue of A, which
we denote (emphasizing the dependence on N) by λmin

(N). Our goal in this appendix
is the analytical derivation of the asymptotic value λmin

(∞), still in the HD phase. The
basic idea is to find suitable upper- and lower-bounds, which may coincide in the limit
N →∞.

B.1. Upper-bounds

According to Courant’s minimax principle, we can state the inequality

λmin
(N) � (u, Au), (B.2)

for any vector u ∈ R
N such that ‖u‖ = 1, where (u, v) ≡

∑N
n=1 unvn is the usual Euclidean

scalar product and ‖u‖ ≡
√

(u, u) is the corresponding norm. From now on we shall always
assume that u is a vector with the above property (i.e. a normalized vector), or equivalently
that u1, . . . , uN are real numbers such that

∑N
n=1 un

2 = 1. Taking into account (B.1), we have
in general

(u, Au) =
N∑

n=1

anun
2 − 2

N−1∑
n=1

√
Jn unun+1, (B.3)

where, plugging (A.8a) into (6),

an = 1 −
(
rn+1 − rn−1

)
−
(
qn+1 − qn−1 − ωA − ωD

)
. (B.4)

Since we are interested in the limit N →∞, the quadratic form (u, Au) can be manipulated,
neglecting any term that vanishes for large N. In particular, as previously argued in appendix
A, we can neglect the last term in the right-hand side of (B.4), and replace rn with sn, so
that

an ≈ 1 −
(
sn+1 − sn−1

)
(B.5)

and therefore

(u, Au) ≈ 1 −
N∑

n=1

(
sn+1 − sn−1

)
un

2 − 2
N−1∑
n=1

√
Jn unun+1. (B.6)
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Upper-bound (i). For a given integer M > 1, let us define the sequence

yn ≡
√

2
M

sin
πn
M

, (B.7)

for which the following properties can be easily verified

M−1∑
n=1

yn
2 = 1, (B.8a)

M−2∑
n=1

ynyn+1 = cos
π

M
. (B.8b)

In particular, for any M ∈ {2, . . . , N + 1}, (B.8a) allows one to choose a normalized trial-vector
u as

un ≡
{

yn if n � M

0 if n � M
n = 1, . . . , N. (B.9)

We take care of choosing M in such a way that, for N →∞, one has M →∞ yet M/N → 0.
This means that, for large N, the vector u will have at the same time a large number and a
vanishing fraction of nonzero components, being concentrated at low n values (that is at the
left boundary of the system). Let us now consider the right-hand side of (B.6). From appendix
A we know that the difference sn+1 − sn−1 vanishes exponentially upon increasing n, so that
for large N (and thence large M) we can write

N∑
n=1

(
sn+1 − sn−1

)
un

2 ≈ 0. (B.10)

Regarding the other sum, we can argue

N−1∑
n=1

√
Jn unun+1 =

M−2∑
n=1

√
Jn ynyn+1 ≈

√
ϑϑ′

M−2∑
n=1

ynyn+1, (B.11)

where the exact equality descends immediately from (B.9) and the approximate one can be
explained as follows. According to (A.21), for large N the local current Jn can be treated as a
continuous function of the position variable h ≡ n/(N + 1). Since M/N → 0, we have h → 0
for all n values included in the sum, then Jn can be replaced by the left-boundary value
ρ(0)ρ′(0) = ϑϑ′, where this last equality obviously descends from (A.3). Taking into account
(B.8b) along with M →∞, we then get

(u, Au) ≈ 1 − 2
√
ϑϑ′, (B.12)

whereas (B.2) finally gives

λmin
(∞) � 1 − 2

√
ϑϑ′. (B.13)
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Upper-bound (ii). This bound is very similar to the previous one, in that we choose a trial-
vector u being concentrated at the right (rather than left) boundary, namely

un ≡
{

0 if n � N + 1 − M

yN+1−n if n � N + 1 − M
n = 1, . . . , N, (B.14)

with yn still defined by (B.7). Considering the right-hand side of (B.6), we can first observe
that (B.10) still holds. Regarding the other sum, we can argue

N−1∑
n=1

√
Jn unun+1 =

M−2∑
n=1

√
JN+1−n ynyn+1 ≈

√
ββ′

M−2∑
n=1

ynyn+1. (B.15)

In analogy with upper-bound (i), the exact equality follows from (B.14), whereas the approx-
imate one descends from the fact that, for all n values included in the sum, the local current
JN+1−n is well approximated (in the usual sense) by the right-boundary value ρ(1)ρ′(1) = ββ ′,
the last equality obviously descending from (A.2). Still taking into account (B.8b) with M →
∞, we get

(u, Au) ≈ 1 − 2
√
ββ′, (B.16)

and by (B.2) we finally obtain

λmin
(∞) � 1 − 2

√
ββ′. (B.17)

Upper-bound (iii). The above two bounds do not depend on α and hold in principle with
no restrictions on α, except α > ϑ′, required in order to stay within the HD-phase region
(as it is always understood). Looking at the numerical results (subsection 4.1), one obvi-
ously expects that in the low-α range (i.e. below the dynamical transition) these cannot
be good bounds, because in that regime the smallest eigenvalue gets much lower than its
plateau value and strongly dependent on α. The basic idea, previously exploited in [20],
is that, in order to obtain good bounds, we have to choose u in (B.2) as close as pos-
sible to the actual eigenvector. Such an argument underlies definition (19) for the fam-
ily of sequences vn(x) (parameterized by the real variable x). Based on the above, we
define

un ≡
vn(x∗)√∑N
k=1 vk(x∗)2

n = 0, 1, 2, . . . , (B.18)

where x∗ is a function of the model parameters, defined as in subsection 4.2.11 Note that (B.18)
obviously entails

∑N
n=1 un

2 = 1 for any N, as required in order to use u1, . . . , uN for Courant-
type bounds in the form (B.2), whereas the reason for the specific choice of x∗ will be clear in
the following. Taking into account (19) we have

sn+1 − sn−1√
ϑϑ′ un = 2x∗un − un+1 − un−1 n = 1, 2, . . . . (B.19)

11 As proved in [20], x∗ represents the smallest real value such that the sequence vn(x∗) is strictly positive, except
v0(x∗) being zero by definition.
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Let us multiply both sides of the above equation by un and sum over n = 1, . . . , N. Keeping in
mind that (B.18) also implies u0 = 0, we obtain

N∑
n=1

sn+1 − sn−1√
ϑϑ′ un

2 = 2x∗ − 2
N−1∑
n=1

unun+1 − uNuN+1. (B.20)

At this point we need to recall that, as proven in [20], if x∗ > 1 then the sequence vn(x∗) can
be upper-bounded (up to a positive constant factor) by ζ(x∗)n, where ζ(x∗) < 1 follows easily
from (17). Also taking into account that

∑N
k=1 vk(x∗)2 � v1(x∗)2 = 1, we see that un admits

the same upper-bound, which immediately entails that the last term in the right-hand side of
(B.20) can be dropped. Then, plugging the remainder of (B.20) into (B.6), we obtain

(u, Au) ≈ 1 − 2x∗
√
ϑϑ′ − 2

N−1∑
n=1

(√
Jn −

√
ϑϑ′

)
unun+1. (B.21)

In the right-hand side of this last equation we can see that, due to the usual argument, the differ-
ence in brackets is of order n/N. As a consequence, still taking into account that un is bounded
by ζ(x∗)n, for N →∞ the whole sum turns out to be of order 1/N, and can be neglected. We
thus obtain

(u, Au) ≈ 1 − 2x∗
√
ϑϑ′, (B.22)

and thence

λmin
(∞) � 1 − 2x∗

√
ϑϑ′. (B.23)

Let us stress the fact that this last bound holds only assuming that x∗ > 1, which corresponds
by definition to α < αc, as discussed in subsection 4.2.

Overall upper-bound. In conclusion, let us consider the above three bounds together. Let
us first observe that upper-bound (i) can be viewed as the analogue of (iii) with x∗ = 1.
Consequently, we can state that (B.23) holds in fact for x∗ � 1, that is for any admissible
value of x∗, that is with no restrictions on α. Furthermore, since all bounds hold simultane-
ously, we can put together the last statement with upper-bound (ii), which leads to the overall
bound

λmin
(∞) � 1 − 2 max

{
x∗
√
ϑϑ′,

√
ββ′

}
. (B.24)

B.2. Lower-bounds

As in our previous work [20], we deal with lower-bounds by means of an argument closely
related to Gershgorin’s circle theorem. Let us consider an infinite sequence w0,w1,w2, . . .
of positive real numbers (except w0, possibly being zero) and let u ∈ R

N be an eigenvector
of A corresponding to the smallest eigenvalue λmin

(N). The vector u can be chosen in such
a way that um = wm for some m ∈ {1, . . . , N} and |un| � wn for all other n = m (including
n = 0 and n = N + 1, since by definition u0 ≡ uN+1 ≡ 0). In practice, given u with an arbitrary
normalization, one can take m to be an index where the maximum of {|u1|/w1, . . . , |uN|/wN} is
attained, and then renormalize u dividing by um/wm. From this argument, we have in particular
that um = 0, so that we can write

λmin
(N) =

(Au)m

um
= am −

√
Jm

um+1

um
−
√

Jm−1
um−1

um
. (B.25)
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Then, using um = wm > 0 and um±1 � wm±1, we easily get the bound

λmin
(N) � am −

√
Jm

wm+1

wm
−
√

Jm−1
wm−1

wm
. (B.26)

At this point, in general one cannot foresee the proper index m, so that we are forced to choose
the worst case, that is

λmin
(N) �

N
min
n=1

{
an −

√
Jn

wn+1

wn
−
√

Jn−1
wn−1

wn

}
. (B.27)

As for the upper-bounds, we shall only be interested in the limit N →∞, and therefore we can
treat the right-hand side of (B.27), neglecting contributions that go to zero in such a limit. In
particular we can express an by (B.5) and, because of the usual argument that Jn behaves like
a continuous function of n/N, we can safely write Jn−1 ≈ Jn. We thus obtain

λmin
(N) � 1 −

N
max
n=1

Δn, (B.28)

where we have defined

Δn ≡ sn+1 − sn−1 +
√

Jn
wn+1 + wn−1

wn
n = 1, . . . , N, (B.29)

and where the symbol � means that either the left-hand side is larger than the right-hand side
or it may be smaller, but at most by an amount which vanishes for N →∞.

The difficulties one encounters in applying this sort of bound turn out to be considerably
different, depending on the parameter values. In particular, as far as the HD phase is concerned,
we can distinguish three different cases of increasing complexity.

Case α � ϑ. The parameter regionα � ϑ turns out to be quite simple, because, according to
(A.16) and (A.17), in this case the sequence sn is non-increasing, which entails sn+1 − sn−1 �
0. As a consequence, (B.29) with the simple choicewn ≡ constant (which turns out to coincide
with the usual Gershgorin bound) immediately gives

Δn � 2
√

Jn n = 1, . . . , N. (B.30)

Then, by (B.28) and (B.30), taking the limit N →∞ and exploiting the usual fact that Jn can
be approximated by (A.21) (and therefore that the maximum current value may be either ϑϑ′

or ββ ′), we obtain

λmin
(∞) � 1 − 2 max

{√
ϑϑ′,

√
ββ′

}
. (B.31)

Comparing this lower-bound with the upper-bound (B.24), and recalling that for α � ϑ we
always have x∗ = 1, we easily conclude that in this region the bound is tight, i.e. it holds as an
equality.

Case αc � α < ϑ. Following [20], let us choose

wn ≡ vn(x∗) n = 0, 1, 2, . . . , (B.32)

where vn(x) still denotes the family of sequences defined by (19). Note that this choice is
feasible because in [20] we proved that vn(x∗) is strictly positive (except v0(x∗) = 0). With the
above definition, (B.29) obviously reads
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Δn = sn+1 − sn−1 +
√

Jn
vn+1 + vn−1

vn
n = 1, . . . , N, (B.33)

where vn is used as a shorthand for vn(x∗), as it will be from now on. From (19) we get

sn+1 − sn−1 =
√
ϑϑ′

[
2x∗ −

vn+1 + vn−1

vn

]
n = 1, 2, . . . , (B.34)

which, plugged into (B.33), gives

Δn = 2x∗
√
ϑϑ′ +

(√
Jn −

√
ϑϑ′

) vn+1 + vn−1

vn
n = 1, . . . , N. (B.35)

Now, according to (A.16) and (A.17), the hypothesis α < ϑ implies sn+1 − sn−1 > 0, so that
from (B.34) we also get

vn+1 + vn−1

vn
< 2x∗ n = 1, 2, . . . . (B.36)

Plugging this last inequality into (B.35), one can easily deduce

Δn � 2x∗ max
{√

ϑϑ′,
√

Jn

}
n = 1, . . . , N. (B.37)

Hence (B.28) in the limit N →∞ and the usual argument for Jn (i.e. that its maximum value
may be either ϑϑ′ or ββ ′) finally yield

λmin
(∞) � 1 − 2x∗ max

{√
ϑϑ′,

√
ββ′

}
. (B.38)

Comparing the above lower-bound with (B.24), we can see that even in this region both bounds
are tight, since for α � αc we still have x∗ = 1.

More precisely, let us observe that, limited to the low-β region β � �′, these bounds turn out
to be actually tight for all α < ϑ (within the HD-phase border α > ϑ′). Indeed, for β � �′ we
know that the current profile is non-increasing (as in the balanced case [20]), so that in particular
ϑϑ′ � ββ′. As a consequence, the term ββ ′ (right-boundary current) can be dropped, and the
two bounds lead to equality (23), regardless of the α value.

Case α < αc. We still recall that, as discussed in subsection 4.2, α < αc corresponds by
definition to x∗ > 1. In this hypothesis, building on the results of [20], it is possible to prove
that

lim
n→∞

vn+1(x∗)
vn(x∗)

= ζ(x∗) < 1, (B.39)

where ζ(x∗) < 1 follows immediately from (17). A proof of the above statement, which turns
out to be of use in the following discussion, will be given afterward. For the sequence wn, let
us consider the following expression

wn ≡

⎧⎪⎪⎨
⎪⎪⎩
vn(x∗) if n � L

vL(x∗) if n � M

φnvL(x∗) + φn
′vn(x∗) if L � n � M

n = 0, 1, 2, . . . , (B.40)

where L and M are positive integers such that L < M < N, and
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φn ≡ n − L
M − L

. (B.41)

Note that in some sense the above definition incorporates both previous trials for wn, either
constant or equal to vn(x∗), along with a convex combination thereof. For reasons that will be
clear in the following, we also need to assume that L and M depend on N in such a way that,
for N →∞, one has L →∞ and M →∞, yet L/M → 0 and M/N → 0. Taking into account
(B.28) and (B.29), we see that (B.40) naturally suggests to split the maximum operation over
different subsets, in formulae

N
max
n=1

Δn = max

{
L

max
n=1

Δn,
N

max
n=M

Δn,
M−1
max

n=L+1
Δn

}
. (B.42)

Let us discuss each different subset below.

(a) For n = 1, . . . , L, the fact that L/N → 0 allows us to approximate Jn ≈ ϑϑ′ (left-boundary
current), so that from (B.29) we can write

Δn ≈ sn+1 − sn−1 +
√
ϑϑ′ wn+1 + wn−1

wn
n = 1, . . . , L. (B.43)

Moreover, according to (B.40) we have

wn+1 + wn−1

wn
=

vn+1 + vn−1

vn
n = 1, . . . , L − 1, (B.44a)

wL+1 + wL−1

wL
=

vL+1 + vL−1

vL
+

1 − vL+1/vL

M − L
. (B.44b)

Since L →∞, according to (B.39) the ratio vL+1/vL tends to a finite quantity, whereas
M − L →∞, so that the last term in (B.44b) can be neglected, i.e. (B.44a) can be used
even for n = L. As a consequence, (B.43) along with (B.34) yields

Δn ≈ 2x∗
√
ϑϑ′ n = 1, . . . , L. (B.45)

(b) For n = M, . . . , N, the fact that M →∞ allows us to neglect the exponentially decaying
term sn+1 − sn−1, so that from (B.29) we can write

Δn ≈
√

Jn
wn+1 + wn−1

wn
n = M, . . . , N. (B.46)

Moreover, according to (B.40) we have

wn+1 + wn−1

wn
= 2 n = M + 1, . . . , N, (B.47a)

wM+1 + wM−1

wM
= 2 − 1 − vM−1/vL

M − L
. (B.47b)

Since L, M →∞ and L/M → 0, still by (B.39) we can argue that vM−1/vL → 0, whereas
M − L →∞, so that the last term in (B.47b) can be neglected, i.e. (B.47a) can be used for
n = M as well. As a consequence, (B.46) yields
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Δn ≈ 2
√

Jn n = M, . . . , N. (B.48)

Expressing Jn by (A.21) and taking into account that M/N → 0, we obtain

N
max
n=M

Δn ≈ 2 max
{√

ϑϑ′,
√
ββ′

}
. (B.49)

(c) For n = L + 1, . . . , M − 1, the fact that M/N → 0 allows us to approximate Jn ≈ ϑϑ′ (left-
boundary current), whereas L →∞ also allows us to neglect the exponentially decaying
term sn+1 − sn−1. From (B.29) we can then write

Δn ≈
√
ϑϑ′ wn+1 + wn−1

wn
n = L + 1, . . . , M − 1. (B.50)

Moreover, according to (B.40) we have

wn+1 + wn−1

wn
=

2φnvL + φn
′(vn+1 + vn−1) + vn−1−vn+1

M−L

φnvL + φn
′vn

(B.51)

for all n in the range of interest. Let us now consider the three numerator terms in the right-
hand side of this last equation, where we note that all displayed variables are positive.
As far as the first term is concerned, we simply use the fact that x∗ > 1 to state 2φnvL <
2x∗φnvL. Regarding the second term, we take into account (B.36), which obviously implies
φn

′(vn+1 + vn−1) < 2x∗φn
′vn. Regarding the third term, (B.36) together with vn+1 > 0

immediately give also vn−1 − vn+1 < 2x∗vn, whereas we can use (B.39) (i.e. the fact that
vn is eventually decreasing) to state φnvL + φn

′vn > φnvn + φn
′vn = vn for all n > L. In

the end we obtain

wn+1 + wn−1

wn
< 2x∗ +

2x∗
M − L

n = L + 1, . . . , M − 1. (B.52)

Plugging this inequality into (B.50), we finally get

Δn � 2x∗
√
ϑϑ′ n = L + 1, . . . , M − 1. (B.53)

We can now put together (B.45), (B.49), (B.53) into (B.42), and thence into (B.28). In the limit
N →∞ we obtain

λmin
(∞) � 1 − 2 max

{
x∗
√
ϑϑ′,

√
ββ′

}
. (B.54)

Comparing this last inequality with (B.24), we easily conclude that the bound is tight. In the
next (and last) subsection we give the proof that we had previously skipped.

B.3. Proof of statement (B.39)

Let us first define

zn ≡ vn+1(x∗)
vn(x∗)

n = 1, 2, . . . . (B.55)

Since we know that vn(x∗) is strictly positive for all n > 0, the definition is feasible and it also
entails that zn is itself strictly positive for all n. From (19) we have
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z1 = 2x∗ −
s2 − s0√

ϑϑ′ , (B.56a)

zn+1 = 2x∗ −
sn+2 − sn√

ϑϑ′ − 1
zn

n = 1, 2, . . . . (B.56b)

The proof can be reduced to showing that, given two arbitrarily small positive real numbers ε
and δ, the inequalities

ζ(x∗) − ε < zn < ζ(x∗ − δ) (B.57)

are verified at least for n large enough. Thereafter, the thesis (B.39) is easily achieved by send-
ing n to infinity and taking into account the continuity of ζ(x). In the following we report
separate proofs for the lower and upper bounds.

Lower-bound. Let us consider any positive real number ε such that

ε < ζ(x∗), (B.58)

where the latter condition can be satisfied because ζ(x∗) > 0 by construction. In the current
hypotheses (entailing in particular α < ϑ), we know that sn is a monotonically increasing
sequence, and therefore

sn+2 − sn√
ϑϑ′ > 0 (B.59)

for all n (� 0). From (B.56b) we then have

zn+1 < 2x∗ −
1
zn

, (B.60)

still for all n (� 1). Taking into account (17), it is also possible to verify that, for any positive
real number z, the following inequality holds

2x∗ −
1
z
� ζ(x∗) +

z − ζ(x∗)
ζ(x∗)2

. (B.61)

Then, since zn is positive by construction, from (B.60) and (B.61) we get

zn+1 < ζ(x∗) +
zn − ζ(x∗)
ζ(x∗)2

. (B.62)

Reasoning by contradiction, let us now assume that there exists some n (� 1) such that
zn � ζ(x∗) − ε, where (B.58) allows zn to be positive. Then, by a repeated use of (B.62) we
could argue that

zn+k < ζ(x∗) −
ε

ζ(x∗)2k
(B.63)

for any positive integer k, and therefore zn+k < 0 for some k, which is a contradiction. We can
thus conclude that for any positive ε satisfying (B.58) (and hence in particular for ε arbitrarily
close to 0), the inequality

zn > ζ(x∗) − ε (B.64)
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must hold for all n (� 1).
Upper-bound. Let us consider any positive real number δ such that

δ < x∗ − 1, (B.65)

where the latter condition can be satisfied because x∗ > 1 by hypothesis. We know that the term
sn+2 − sn decays exponentially for n →∞ and, as a consequence, there exists some integer m
(depending on δ) such that

sn+2 − sn√
ϑϑ′ < δ (B.66)

for all n � m. From (B.56b) we then have

zn+1 > 2x∗ −
1
zn

− δ, (B.67)

still for all n � m. Using this last inequality, let us first prove that zn < 1 for all n � m. Rea-
soning by contradiction, if we had zn � 1 for some n � m, then (B.67) and (B.65) with x∗ > 1
would imply zn+1 > 1, and therefore by induction zn eventually larger than 1. This is clearly in
contradiction with the fact that vn(x∗) is bounded (up to a constant prefactor) by the exponen-
tially decreasing sequence ζ(x∗)n. Now, taking into account (17), it is possible to verify that,
given a positive real number z < 1, the inequality

2x∗ −
1
z
� z + 2δ (B.68)

is verified if and only if

z � ζ(x∗ − δ), (B.69)

where (B.65) ensures that ζ(x∗ − δ) is real (positive and less than 1).
Again reasoning by contradiction, let us now assume that there exists some n � m such that

zn � ζ(x∗ − δ). Then, since it must be zn < 1 because of the above argument, (B.67) and the
equivalence between (B.68) and (B.69) imply the inequality

zn+1 > zn + δ, (B.70)

also entailing zn+1 > ζ(x∗ − δ). Proceeding by induction, we obtain zn+k > 1 for some
positive integer k, which is clearly a contradiction. We can thus conclude that for any
positive δ satisfying (B.65) (and hence in particular for δ arbitrarily close to 0), the
inequality

zn < ζ(x∗ − δ) (B.71)

must hold for large enough n.

ORCID iDs

D Botto https://orcid.org/0000-0002-8327-5629
A Pelizzola https://orcid.org/0000-0001-6778-0628
M Pretti https://orcid.org/0000-0001-7603-4627
M Zamparo https://orcid.org/0000-0002-1336-0158

29

https://orcid.org/0000-0002-8327-5629
https://orcid.org/0000-0002-8327-5629
https://orcid.org/0000-0002-8327-5629
https://orcid.org/0000-0001-6778-0628
https://orcid.org/0000-0001-6778-0628
https://orcid.org/0000-0001-6778-0628
https://orcid.org/0000-0001-7603-4627
https://orcid.org/0000-0001-7603-4627
https://orcid.org/0000-0001-7603-4627
https://orcid.org/0000-0002-1336-0158
https://orcid.org/0000-0002-1336-0158
https://orcid.org/0000-0002-1336-0158


J. Phys. A: Math. Theor. 53 (2020) 345001 D Botto et al

References

[1] Chou T, Mallick K and Zia R K P 2011 Non-equilibrium statistical mechanics: from a paradigmatic
model to biological transport Rep. Prog. Phys. 74 116601

[2] Schadschneider A, Chowdhury D and Nishinari K 2011 Stochastic Transport in Complex Systems
(Amsterdam: Elsevier)

[3] Lazarescu A 2015 The physicist’s companion to current fluctuations: one-dimensional bulk-driven
lattice gases J. Phys. A: Math. Theor. 48 503001

[4] Kriecherbauer T and Krug J 2010 A pedestrian’s view on interacting particle systems, KPZ
universality and random matrices J. Phys. A: Math. Theor. 43 403001

[5] Derrida B, Domany E and Mukamel D 1992 An exact solution of a one-dimensional asymmetric
exclusion model with open boundaries J. Stat. Phys. 69 667

[6] Schütz G and Domany E 1993 Phase transitions in an exactly soluble one-dimensional exclusion
process J. Stat. Phys. 72 277

[7] Derrida B, Evans M R, Hakim V and Pasquier V 1993 Exact solution of a 1D asymmetric exclusion
model using a matrix formulation J. Phys. A: Math. Gen. 26 1493

[8] Derrida B 1998 An exactly soluble non-equilibrium system: the asymmetric simple exclusion
process Phys. Rep. 301 65

[9] Willmann R D, Schutz G M and Challet D 2002 Exact Hurst exponent and crossover behavior in a
limit order market model Physica A 316 430

[10] Nishinari K, Okada Y, Schadschneider A and Chowdhury D 2005 Intracellular transport of single-
headed molecular motors KIF1A Phys. Rev. Lett. 95 118101

[11] Greulich P and Schadschneider A 2009 Disordered driven lattice gases with boundary reservoirs
and Langmuir kinetics Phys. Rev. E 79 031107

[12] Parmeggiani A, Franosch T and Frey E 2003 Phase coexistence in driven one-dimensional transport
Phys. Rev. Lett. 90 086601

[13] Popkov V, Rákos A, Willmann R D, Kolomeisky A B and Schütz G M 2003 Localization of shocks
in driven diffusive systems without particle number conservation Phys. Rev. E 67 066117

[14] Evans M R, Juhász R and Santen L 2003 Shock formation in an exclusion process with creation and
annihilation Phys. Rev. E 68 026117

[15] Parmeggiani A, Franosch T and Frey E 2004 Totally asymmetric simple exclusion process with
Langmuir kinetics Phys. Rev. E 70 046101

[16] deGier J and Essler F H L 2005 Bethe ansatz solution of the asymmetric exclusion process with
open boundaries Phys. Rev. Lett. 95 240601

[17] deGier J and Essler F H L 2006 Exact spectral gaps of the asymmetric exclusion process with open
boundaries J. Stat. Mech. P12011

[18] deGier J and Essler F H L 2008 Slowest relaxation mode of the partially asymmetric exclusion
process with open boundaries J. Phys. A: Math. Theor. 41 485002

[19] Botto D, Pelizzola A and Pretti M 2018 Dynamical transitions in a driven diffusive model with
interactions Europhys. Lett. 124 50004

[20] Botto D, Pelizzola A, Pretti M and Zamparo M 2019 Dynamical transition in the TASEP with
Langmuir kinetics: mean field theory J. Phys. A: Math. Theor. 52 045001

[21] Pelizzola A, Pretti M and Puccioni F 2019 Dynamical transitions in a one-dimensional Katz-
Lebowitz-Spohn model Entropy 21 1028

[22] Pelizzola A and Pretti M 2017 Cluster approximations for the TASEP: stationary state and dynamical
transition Eur. Phys. J. B 90 183

[23] Kolomeisky A B, Schütz G M, Kolomeisky E B and Straley J P 1998 Phase diagram of one-
dimensional driven lattice gases with open boundaries J. Phys. A: Math. Gen. 31 6911

[24] Dudzinski M and Schütz G M 2000 Relaxation spectrum of the asymmetric exclusion process with
open boundaries J. Phys. A: Math. Gen. 33 8351

[25] Nagy Z, Appert C and Santen L 2002 Relaxation times in the ASEP model using a DMRG method
J. Stat. Phys. 109 623

[26] Proeme A, Blythe R A and Evans M R 2011 Dynamical transition in the open-boundary totally
asymmetric exclusion process J. Phys. A: Math. Theor. 44 035003

30

https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1088/1751-8113/48/50/503001
https://doi.org/10.1088/1751-8113/48/50/503001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1007/bf01050430
https://doi.org/10.1007/bf01050430
https://doi.org/10.1007/bf01048050
https://doi.org/10.1007/bf01048050
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1016/s0370-1573(98)00006-4
https://doi.org/10.1016/s0370-1573(98)00006-4
https://doi.org/10.1016/s0378-4371(02)01217-7
https://doi.org/10.1016/s0378-4371(02)01217-7
https://doi.org/10.1103/physrevlett.95.118101
https://doi.org/10.1103/physrevlett.95.118101
https://doi.org/10.1103/physreve.79.031107
https://doi.org/10.1103/physreve.79.031107
https://doi.org/10.1103/physrevlett.90.086601
https://doi.org/10.1103/physrevlett.90.086601
https://doi.org/10.1103/physreve.67.066117
https://doi.org/10.1103/physreve.67.066117
https://doi.org/10.1103/physreve.68.026117
https://doi.org/10.1103/physreve.68.026117
https://doi.org/10.1103/physreve.70.046101
https://doi.org/10.1103/physreve.70.046101
https://doi.org/10.1103/physrevlett.95.240601
https://doi.org/10.1103/physrevlett.95.240601
https://doi.org/10.1088/1742-5468/2006/12/p12011
https://doi.org/10.1088/1751-8113/41/48/485002
https://doi.org/10.1088/1751-8113/41/48/485002
https://doi.org/10.1209/0295-5075/124/50004
https://doi.org/10.1209/0295-5075/124/50004
https://doi.org/10.1088/1751-8121/aaf1f8
https://doi.org/10.1088/1751-8121/aaf1f8
https://doi.org/10.3390/e21111028
https://doi.org/10.3390/e21111028
https://doi.org/10.1140/epjb/e2017-80248-7
https://doi.org/10.1140/epjb/e2017-80248-7
https://doi.org/10.1088/0305-4470/31/33/003
https://doi.org/10.1088/0305-4470/31/33/003
https://doi.org/10.1088/0305-4470/33/47/302
https://doi.org/10.1088/0305-4470/33/47/302
https://doi.org/10.1023/a:1020462531383
https://doi.org/10.1023/a:1020462531383
https://doi.org/10.1088/1751-8113/44/3/035003
https://doi.org/10.1088/1751-8113/44/3/035003

	Unbalanced Langmuir kinetics affects TASEP dynamical transitions: mean-field theory
	1.  Introduction
	2.  The model and the mean-field theory
	3.  Static phase diagram and density profiles
	4.  The dynamical transitions
	4.1.  Spectrum of the relaxation matrix
	4.2.  Analytical results
	4.3.  Other numerical results

	5.  Summary and conclusions
	Appendix A.  Density and current profiles
	Appendix B.  Relaxation rates
	B.1.  Upper-bounds
	B.2.  Lower-bounds
	B.3.  Proof of statement (B.39)

	ORCID iDs
	References


