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Abstract: Knowledge of the spatial distribution of soil organic carbon (SOC) is of crucial importance
for improving crop productivity and assessing the effect of agronomic management strategies on
crop response and soil quality. Incorporating secondary variables correlated to SOC allows using
information often available at finer spatial resolution, such as proximal and remote sensing data,
and improving prediction accuracy. In this study, two nonstationary interpolation methods were
used to predict SOC, namely, regression kriging (RK) and multivariate adaptive regression splines
(MARS), using as secondary variables electromagnetic induction (EMI) and ground-penetrating radar
(GPR) data. Two GPR covariates, representing two soil layers at different depths, and X geographical
coordinates were selected by both methods with similar variable importance. Unlike the linear model
of RK, the MARS model also selected one EMI covariate. This result can be attributed to the intrinsic
capability of MARS to intercept the interactions among variables and highlight nonlinear features
underlying the data. The results indicated a larger contribution of GPR than of EMI data due to
the different resolution of EMI from that of GPR. Thus, MARS coupled with geophysical data is
recommended for prediction of SOC, pointing out the need to improve soil management to guarantee
agricultural land sustainability.

Keywords: SOC spatial distribution; regression kriging (RK); multivariate adaptive regression
splines (MARS); secondary variables; electromagnetic induction technique (EMI); ground-penetrating
radar (GPR)

1. Introduction

Soil organic carbon (SOC) is one of the most important indicators for assessing soil
quality and overall soil health [1]. SOC plays a key role in unveiling soil structure develop-
ment, nutrient turnover and stability, soil water retention, regulation of greenhouse gases,
and susceptibility or resilience to land degradation [2]. SOC stock is thus a main factor
in soil health, fertility, quality, and productivity [3] and supports important soil-derived
ecosystem services (ESs) including water filtration and erosion control, soil strength and
stability, nutrient conservation, and climate change adaptation and mitigation by seques-
tration of atmospheric CO2 [4]. By selecting key soil indicators under different land use
and management practices, Shukla et al. [5] concluded that SOC was the main soil quality
indicator and suggested using SOC to monitor soil quality changes [6].

Land 2022, 11, 381. https://doi.org/10.3390/land11030381 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11030381
https://doi.org/10.3390/land11030381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-3131-4339
https://orcid.org/0000-0001-8049-0537
https://orcid.org/0000-0001-9836-6569
https://orcid.org/0000-0002-0173-2647
https://orcid.org/0000-0002-0556-0096
https://orcid.org/0000-0001-9689-7649
https://doi.org/10.3390/land11030381
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11030381?type=check_update&version=2


Land 2022, 11, 381 2 of 18

SOC distribution is influenced by many factors, including climate variables (tempera-
ture and rainfall), topographical features, soil texture, parent material, vegetation, land-use
types, and human management at different spatial scales [7].

Agronomic management strategies, with particular regard to fertilization, soil tillage,
and irrigation, may significantly modify SOC content and its labile fractions, mainly in
the shallower soil layers [6,8–10]. Because of the interaction of the factors described, SOC
spatial variation is often wide and complex, and the knowledge of its spatial distribution is
the key information in agricultural productivity to improve food security, enhance crop
production [11], and predict the effects of different agronomic management strategies.
Among these strategies, irrigation with treated municipal wastewater can be considered
important for saving limited freshwater resources and protecting the environment, but its
effects should be monitored to avoid soil fertility decline in the medium to long term [9].

Conventional laboratory methods for quantifying this soil variable are destructive,
time consuming, expensive, and hazardous for the environment. In addition, because of
the associated costs, soil is sampled at relatively few spatial locations, which are often irreg-
ularly distributed over the study area. The small sample size does not allow meeting the
criteria for soil quality assessment for precision farming or for using statistical methods tak-
ing into account residual autocorrelation [12]. Making a short review, a number of samples
ranging from 50 [13] to 100 [14] is considered well suited for an accurate spatial analysis.

A strategy to enhance the quality of the estimation of SOC content and to reduce the
spatial sampling intensity consists of incorporating secondary information correlated to
the primary variable [15,16]. This multivariate approach allows utilization of secondary
information, such as that derived from proximally and remotely sensed data, that is often
much more abundant than information deriving from the primary target variable [17,18].

Proximal sensing data could provide strong support for characterizing the spatial
variability at the field or even regional scale. These data are very attractive because of their
high resolution, their noninvasive nature, the relatively low cost of data acquisition, the
possibility for a mobile survey configuration, and their three-dimensional (3D) information,
although their outcome is not a direct measurement of soil properties [19].

Among the geophysical methods, electromagnetic induction (EMI) and ground-
penetrating radar (GPR) have been widely applied. EMI methods measure apparent
electrical conductivity (ECa), an integrated value of soil physical, chemical, and biological
properties [20] that can capture soil spatial variability and characterize soil organic car-
bon distribution [21,22]. However, since soil properties vary in both the horizontal and
vertical domains, soil needs to be described in three dimensions, and EMI sensors may
have limitations when highly contrasting horizons are present [23]. Ground-penetrating
radar (GPR) technology allows overcoming this limitation by measuring large volumes
of soil (about cubic decimetres to cubic meters). Thus, GPR is suggested for field-scale
determinations rather than for pointwise measurements, provides higher resolution of
subsurface features, and is particularly suited to visualizing soil in two or three dimen-
sions [24]. One of the most useful presentations of GPR data is to display horizontal maps
of recorded reflection amplitudes, called “time slice” (or depth slice) maps [25]. There
have been several studies involving GPR to determine thickness and characterize depths of
organic soil materials [26,27], but few studies have been devoted so far to the potentiality
of GPR to study the spatial variation of soil organic carbon.

The use of geophysical proximal sensor data as auxiliary information to effectively
support an irregularly sampled target variable is not free from practical difficulties and
experimental limits. This is because proximal sensing data are often massive, need to be
collected on different spatial and temporal scales, and use different measurement supports.
Several statistical methods are able to incorporate secondary information; for example, a
multivariate extension of kriging, known as cokriging, is used for improving the prediction
of a primary variable by using secondary information [28,29]. This technique assumes in-
trinsic stationarity, both of the target variables and of more intensively measured secondary
variables, supposing a strong correlation between primary and secondary information [30].
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These conditions are not always verified. Another way of taking into account the secondary
variable is by checking for a spatial trend in the primary variable with respect to the sec-
ondary variable(s) and combining the deterministic part and the stochastic component, as
in “hybrid methods” [29], or by adopting complex multivariate nonlinear approaches. In
recent times, a number of hybrid interpolation techniques, which combine kriging with
methods that use auxiliary information (covariates), have been developed and applied. Sev-
eral authors have compared some of the techniques to incorporate trends and account for
nonstationarity [31,32]. Two possible methods of nonstationary interpolation are regression
kriging (RK) [28,33] and multivariate adaptive regression splines (MARS) [34]. In many
cases, these techniques have been proven superior to common geostatistical methods, yield-
ing more detailed results and higher accuracy of prediction, because they take advantage
of being linear hybrid (RK) or nonlinear (MARS) [35]. MARS is a nonparametric predictive
method that intrinsically models nonlinearities and interactions between variables, suitably
managing local nonstationarity [34]. This method has been successfully applied in vari-
ous fields, such as estimating the collapse potential for compacted soil, underground gas
storage in bedded salt formations, and lateral spreading induced by earthquakes [36,37].

The regression kriging (RK) method is of straightforward use and often performs
better than cokriging [38–40].

In this study, we compared the performance of RK and MARS to achieve the following
objectives: (i) to prove that there are preferential nonlinear relationships between SOC and
geophysical measurements, and (ii) to compare the performance of two nonstationary inter-
polation methods to effectively model SOC at the field scale. Machine learning techniques
may open new perspectives to modelling SOC spatial distribution at the field and regional
scales. The study was performed on a dataset deriving from a field experiment in which
water of different qualities was used for irrigation.

To the best of authors’ knowledge, no comparison between these methods has been
presented before; therefore, it can be considered a novelty.

2. Materials and Methods
2.1. Study Area

Soil data were derived from a field experiment carried out in an olive grove located
in Fasano (Apulia region, Southern Italy). The climate of the study area is “accentuated
thermo-Mediterranean”, as classified by UNESCO FAO [41,42], characterized by rather
mild and rainy winters and warm and dry summer months. The soil of the experimental
site is classified as loam (USDA classification), with an average content of silt, clay, and
sand fractions of 35.28%, 21.74%, and 42.98%, respectively.

Olive trees were irrigated with treated municipal wastewater (TWW), and the fol-
lowing treatments were applied: irrigation with fresh water and full fertilization supply
(FW); irrigation with TWW and full fertilization supply (R1); and irrigation with TWW
and fertilizer supply reduced by the amount provided by TWW (R2) [10]. Treatments were
arranged in a randomized complete block design (RCBD) with four replicates (Figure 1).
Unit plot size was 108 m2, with 3 plants per plot and a plant spacing of 6 m × 6 m; field
size was 1296 m2 (whole experimental area was 1728 m2).

2.2. Soil Sampling and Soil Analysis

Soil samples with absolute coordinates were collected on a regular grid (April 2017)
at 6 locations (subreplicates) per plot at a 0–0.20 m depth for a total of 72 observations
(Figure 1); only 71 were used in this study. Soil organic carbon (SOC) was quantified
on air-dried and sieved samples through dry combustion [43]. Further details about the
experimental trial were reported by Barca et al. [44] and Stellacci et al. [10].
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Figure 1. Location of the field experiment (Google Earth Pro, 2021) the soil sampling locations (black
dots), and the electromagnetic induction (EMI) and ground-penetrating radar (GPR) acquisitions
along transects (red lines).

2.3. Acquisition and Preprocessing of Auxiliary Information

A geophysical survey was carried out using an EMI sensor (EM38DD, Geonics Limited,
Mississauga, ON, Canada) and a Georadar (RIS 2k-MF Multifrequency Array Radar-System,
manufactured by IDS SpA, Italy) connected to the DGPS along 6 parallel transects by sliding
the sensors on the surface (Figure 1) on the same day as soil sampling.

EMI soil survey is based on the principle that a transmitter coil in contact with the soil
surface produces a time-varying primary magnetic field in the subsoil. The eddy currents
induced in the soil generate a secondary magnetic field, which is recorded by a receiver
coil in the EM unit. The apparent conductivity near the receiver is determined by the ratio
of the magnitude of the secondary magnetic field to that of the primary magnetic field [22].
The EMI sensor used herein consisted of two perpendicularly superposed EM38 sensors
that simultaneously measured apparent electrical conductivity (ECa, expressed in mSm−1)
near the soil surface (0–0.75 m depth) with the horizontal mode (ECa-H) and up to 1.5 m
depth with the vertical mode (ECa-V) [22]. Before operation, the instrument was set to zero
at a height of 1.5 m, according to the manufacturer’s instructions, and at the end of the
survey, the zeroing was checked to detect possible drift. The survey was performed using a
nonmetallic platform with wood cover, and the sensor was towed behind a tractor/The ECa
was recorded every second, with spatial resolution of 0.5 m, on average, along each transect.

Immediately after the EMI survey, the GPR survey was carried out by sliding the
sensor along the surface. GPR data were collected with the common offset reflection
method, using a monostatic system (the transmitting and receiving antenna placed in the
same box) with two central frequencies of 600 and 1600 MHz (IDS Ing-manufactured, RIS
2k-MF Multifrequency Array Radar-System). The GPR worked with a time window of 60 ns
and a temporal sampling interval of 0.05 ns; successive traces were collected every 0.024 m.
GPR used electromagnetic pulse energy in the frequency range of 10 MHz to 1000 MHz.
The transmitter component of the GPR system allowed the passage of generated pulse
energy, which propagated through the subsurface materials, and the interactions with the
material were sensed by the receiver component. Traditional surveys employ reflections of
electromagnetic waves from boundaries between environments of different electromagnetic
properties [45]. Theoretical aspects and working principles of radar components can be
found in detail in Davis and Annan [46].

Both the data quality check and cleaning procedure characterized the preliminary data
analysis. For EMI data, the points at which the instrument was stationary and any negative
values were removed.

Processing the raw GPR data consisted of extracting quantifiable variables, such as
attenuation, and displaying GPR data in horizontal maps at a specified time (or depth),
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called amplitude maps or time slices. The preprocessing of GPR signal amplitude data
included the application of a set of filters [47] and the extraction of quantifiable variables.

The enveloped amplitude maps (time slices) were built by averaging the amplitude
(or the square amplitude) of the radar signal, expressed in digital number (DN), within
overlapping time windows of width ∆t equal to the order of the dominant period of each
antenna (2 and 1 ns for the 600 and 1600 MHz antennas, respectively). The total time
interval was of 10 ns for the 600 MHz antenna because this time was comparable with the
depth of the soil, and it was 6 ns for 1600 MHz because of the attenuation of radar signal.
The time slices were then transformed in depth slices using the velocity of the radar waves
determined through the analysis of hyperbolae [48]. Data preprocessing was performed
with ReflexW Software [49].

In order to estimate the geophysical covariates at the same locations as the SOC
measurements, geostatistical procedures were separately applied to EMI and GPR data
by using a multivariate approach and fitting a linear model of coregionalization (LMC)
to the experimental variograms. Each group of geophysical data was interpolated with
ordinary cokriging (ck) on a 0.5 m × 0.5 m grid. The estimated covariates, migrated at
the sample locations, were: the ECa in horizontal (ECaH) and vertical (ECaV) modes; the
amplitude for the 600 MHz antenna at ten depths from 0.05 m to 0.50 m with a step of 0.05 m
(Amp600MHz_0.05 m-Amp600MHz_0.50 m); and the amplitude for 1600 MHz frequency
antenna at eleven depths from 0.025 m to 0.275 m with a step 0.025 m (Amp1600MHz_0.025
m-Amp1600MHz_0.275 m).

Finally, 25 covariates were considered, namely, the 23 geophysical covariates plus the
(two) geographical coordinates expressed in the WGS84 coordinate system.

2.4. Regression Kriging (Residual Kriging)

In the present paper, kriging combined with linear regression (RK), a hybrid inter-
polation technique, was applied [35,39] (see Figure 2). In mathematical terms, RK can be
described as the sum of a deterministic (regression) component and kriging as shown in
the following equation:

ẑ(s0) =
ˆ

m(s0) + ê(s0) =
p

∑
k=1

ˆ
βk·qk(s0) +

N

∑
i=1

λi·e(si) (1)

where s0 is the spatial location associated with the desired prediction,
ˆ

m(s0) is the trend,

ê(s0) is the interpolated residual,
ˆ
βk are the estimated regressive coefficients, qk are the

covariates, p is the number of coviariates, λi are kriging weights, N is the number of
observations, and e(si) is the residual (i.e., the difference between the regression estimation
minus the observation) at the generic observational location si.

From a practical standpoint, once the trend component has been estimated, the resid-
ual can be interpolated with kriging and then added to the previously estimated component.
The prediction of the residual is a very critical step, because in principle, only the auto-
correlated components should be estimated, neglecting the purely random component.
Unfortunately, it is very difficult to separate the overall residual into the autocorrelated and
the noncorrelated components. There are many different opinions about the best way to
accomplish this issue [50,51]. In the present paper, the variography directly performed on
the residuals provided results that did not depart much from those obtained with more
sophisticated statistical methods; in other words, this approach did not significantly bias the
final predictions. Therefore, the more straightforward approach, which brutally separates
observations from trend values to obtain residuals, was preferred [29,52]. The validation
of the RK method is usually carried out by means of the cross-validation procedure, and
specifically the leave-one-out method [53]. Cross-validation is structured as a two-stage
procedure. In the first stage, a leave-one-out method is applied, which consists of dropping
an observation from the dataset and predicting this omitted value using the remaining
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data. Leave-one-out is iterated for each value in the dataset, and each time, a residual is
computed as the difference between the observed and predicted values. The second stage of
the cross-validation consists of making inferences about the residuals’ distribution [54,55].
The R library [56] used to perform the aforementioned analysis was {Automap version
1.0–14}.

Figure 2. An example of the regression-kriging approach shown by means of a cross-section of the
spatial random field (after Hengl, [35]).

2.5. Multivariate Adaptive Regression Splines (MARS)

MARS is a nonparametric and nonlinear predictive method that automatically models
nonlinearities and interactions between variables managing suitably local nonstationar-
ity [34]. Datasets are split into piecewise curves (splines) of differing slopes. Splines consist
of two branches, i.e., left-sided (Equation (2)) and right-sided (Equation (3)) truncated
functions, separated by a point called the knot [57].

b−
q (x − t) = [−(x − t)]q+=

{
(t − x)q if x < t

0 otherwise
(2)

b+
q (x − t) = [+(x − t)]q+=

{
(x − t)q if x > t

0 otherwise
(3)

b−
q (x − t) and b+

q (x − t) are splines describing the regions on the right and left sides of the
knot (t), respectively, and q is the degree of the polynomial. The subscript “+” indicates that
the result of the function is 0 outside the local definition domain. For each of the covariate
variables, MARS selects the couple of splines and the knot location more in accordance
with the response variable. In a next stage, the different splines are added up in a single
multivariate model, which describes the response as a function of the covariates. The result
is a nonlinear model assuming the form:

ŷ = a0

M

∑
m=1

amBm(x) (4)

where ŷ is the prediction of the response variable; a0 is the known term; M is the number of
basic splines; and Bm and am are the m-th basic spline and its coefficient, respectively [58].

Overall, a MARS analysis consists of three stages. Specifically, (i) the variable that
best describes the response by means of the splines in terms of R2 is selected. Afterwards,
(ii) other covariates are added stepwise, always using splines, to build a multivariate model
(i.e., the global MARS model). The aim of this addition is the improvement of model
in terms of performance (R2). The performance is computed on the training set. Since
the global MARS model is usually affected by overfitting, it needs to be “pruned” in a
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further stage, for which iterations of the generalized cross-validations (GCV) alternated
with 10-fold cross-validation are used [59]. The GCV index is a sum of squared errors
(observations minus predictions) adjusted by embodying a penalty for reducing the model
complexity. This criterion is used to prevent overfitting derived from an excessively
accurate model with respect to the training set:

GCV =

1
n ∑n

m=1

(
yi − f̂m(xi)

)2

(1 − C(M)/n)2 (5)

where C(M) is a parameter that penalizes models involving a large number of splines,
defined as follows:

C(M) = (M + 1) + dM (6)

where M is the number of nonconstant splines (i.e., all terms of Equation (4) except a0) in the
MARS model and d is a user-defined penalty value for each spline optimization. Increases
in the cost d cause the exclusion of splines. Substantially, d is increased during the pruning
step in order to obtain smaller models. Besides its use during the pruning phase, GCV index
is essential to rank covariates based on their importance in the model. The definition of the
final model is reached in a third phase. This phase (iii) is performed by cross-validation
or a new independent test set. The R library used to perform the aforementioned analysis
herein is {earth} [59].

3. Results
3.1. Exploratory Data Analysis

Descriptive statistics showed that SOC data were normally distributed as confirmed
by skewness and kurtosis values (Table 1) and by Shapiro–Wilk test (p = 0.656); for this
reason, they were not subjected to a normal transform. The reported bubble plot (Figure 3)
shows the spatial distribution of the SOC observations, evidencing some clusters of similar
values.

Table 1. Summary statistics for SOC (g 100 g−1).

Variable N Mean Std Min Max Skewness Kurtosis

SOC 71 1.85 0.28 1.19 2.43 −0.21 −0.29

Figure 3. Bubble plot of spatial distribution of SOC values (g 100 g−1).

The global Moran index provided an assessment of the spatial autocorrelation strength
over the study area and is reported in Table 2. The result (I = 0.42) indicated a significant
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spatial autocorrelation (p = 0.00034). In addition to the global Moran index, the peak of the
Moran index (local Moran index) was estimated by means of the computation of the mean
of nearest neighbours. Afterwards, a lagged scatterplot provided the Moran computation
at such distance lag. For the considered case, the mean of nearest neighbours was 2.63 m,
and Figure 4 shows the Moran value corresponding to that distance, indicating a greater
spatial correlation at short range (r = 0.75).

Table 2. Assessment of the global Moran index.

Spatial Autocorrelation Analysis (Original Data)

Moran I Variance Expectation p-Value

0.42 0.017 −0.014 0.00034

Figure 4. h-scatterplot for assessing local Moran I.

3.2. Linear Model Outcomes

The correlation matrix between SOC and the 25 covariates (23 geophysical variables
plus the geographical coordinates) was first computed, and different sets of highly corre-
lated covariates were derived and used to fit SOC data.

The following equation shows the first attempt to model SOC with the most correlated
variables:

SOC ~ ckAmp0.05m_600MHz+ ckAmp0.1m_600MHz + ckAmp0.4m_600MHz

The five-point summary statistics and the coefficients of the linear model are reported
in Tables 3 and 4. The outcomes seemed to indicate a larger contribution of the GPR data
than of the EMI sensor data. The covariates related to the higher frequency antennae
(1600MHz frequency) were therefore excluded.

Table 3. Five-point table of the linear model’s residuals.

Min 1Q Median 3Q Max

−0.47 −0.16 0.01 0.15 0.63

In particular, the GPR data representations for both frequencies showed a first dis-
continuity in the radar signal at 0.1 m depth, a high level of spatial continuity along the
soil profile at least to 0.30 m, and a second discontinuity after 0.30 m depth. Therefore, the
selected covariates were representative of information derived by two different layers.
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Table 4. Coefficients of the linear model.

Estimate Std_Error t_Value Pr(>|t|)

(Intercept) −7.056e−01 1.14e+00 −0.62 0.54
ckAmp0.05m_600MHz 4.63e−06 7.06e−05 0.07 0.95
ckAmp0.1m_600MHz 2.07e−04 8.12e−05 2.55 0.013 *
ckAmp0.4m_600MHz −6.34e−04 1.51e−03 −0.42 0.68

Signif. codes: 0.01, “*”; 0.05, “.”.

The model was significant (F-statistic: 4.80 on 3 and 67 DF, p-value: 0.004) and showed
a residual standard error of 0.26 with 67 degrees of freedom; multiple R-squared and
adjusted R-squared were 0.177 and 0.14, respectively. Analysing Table 4, it was evident
that there was a unique significant covariate, ckAmp0.1m_600MHz. The result showed the
distribution of SOC to be significantly affected by the shallower layer, probably because it
was comparable with the portion of sampled soil.

After many other attempts (not reported), a model was developed with the following
optimal arrangement of the covariates:

SOC ~ X + Y + ckAmp0.35m_600MHz

This model included the geographical coordinates and a unique geophysical covariate,
ckAmp0.35m_600MHz (see Tables 5 and 6). This model was better that the aforementioned
one, with all the covariates significant, a better value of R-squared (multiple R-squared:
0.26, adjusted R-squared: 0.22), and a more significant F-statistic p-value (F = 7.9 on 3 and
67 DF, p-value: 0.00018). Residual standard error was 0.24 with 67 degrees of freedom.

Table 5. Five-point table of the second linear model’s residuals.

Min 1Q Median 3Q Max

−0.47 −0.16 −0.02 0.13 0.66

Table 6. The second linear model’s coefficients with related statistics.

Coefficients Estimate Std. Error t Value Pr(>|t|)

(Intercept) 7.3e+04 2.1e+04 3.4 0.00153 **
X −1.0e−02 3.9e−03 −2.7 0.01270 *
Y −1.4e−02 4.1e−03 −3.5 0.00118 **

ckAmp0.35m_600MHz −2.4e−03 6.0e−04 −4.0 0.00018 ***
Signif. codes: 0, “***”; 0.001, “**”; 0.01, “*”; 0.05, “.”.

The model’s residuals were then analysed. The Shapiro–Wilk Gaussianity test showed
a nonsignificant departure from the normal distribution (W = 0.98567, p-value = 0.598);
as a consequence, the Gaussian hypothesis was accepted. Afterwards, spatial autocorre-
lation analysis was performed to check at what extent the linear model filtered out the
autocorrelation present in the raw data.

From Table 7, it was evident that in the linear model’s residuals, there was still a
significant quantity of spatial autocorrelation (p-value = 0.0012). Therefore, it made sense
to apply regression kriging (RK) to exploit the residual autocorrelation with the aim of
improving the goodness of fit.

Table 7. Linear model coefficients with related statistics.

Spatial Autocorrelation Analysis (Linear Model’s Residuals)

Moran I Variance Expectation p-Value
0.29 0.01 −0.014 0.0012
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3.3. Regression Kriging (RK)

Geostatistical analysis was then applied to the linear model’s residuals with the aim of
finding in them a structure that could represent their spatial variability.

The goodness of fit between the selected variogram model and the empirical variogram
was evaluated by means of the SSErr index, which provides a value that helps user to judge
the quality of the final model. For the case at hand, the value was SSErr = 0.00050, which
appeared to be a satisfactory result. Moreover, by analysing the variogram parameters,
reported in Table 8, it was possible to figure out the strength of the model by computing
the nugget-to-sill ratio index [60], also called the spatial dependence index (SDI; [61]). For
the case at hand, the observed value was 0.075, indicating high descriptive capability for
the variogram model.

Table 8. Variogram model and parameters.

Model Psill * Range

Nugget 0.0042 0.0
Spherical 0.056 8.64

* Psill = Partial sill.

In Figure 5, the experimental variogram and the fitted nested model (nugget + spheri-
cal) are reported.

Figure 5. Experimental variogram and fitted variogram model.

Cross-validation statistics showed an MAE to RMSE ratio of 0.76, indicating a very
good outcome. Mathematically, RMSE is always larger than MAE, because large errors
are magnified by the square contained in the formula; therefore, the ratio between MAE
and RMSE is always less than 1. However, the closer to 1 the ratio is, the fewer large errors
made are by the model. This positive result was confirmed by a MAPE value far lower than
10% (Table 9). Computing the Lin coefficient (CCC) between observations and predictions,
the outcomes were 0.65 for overall CCC, 0.68, for overall precision, and 0.95 for overall
accuracy. The scatterplot of predicted versus observed values qualitatively showed the
adequacy between the two data series (Figure 6).

Table 9. Accuracy metrics to assess the goodness of fit of the RK model.

Metric MBE MAE RMSE MAE/RMSE MAPE MIN MAX

value 0.0013 0.15 0.20 0.76 8.47% −0.49 0.42
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Figure 6. Scatterplot of predicted (RK model) vs. observed values.

The spatial distribution of SOC obtained through RK is reported in Figure 7.

Figure 7. Map of SOC obtained with regression kriging. The black polygons indicate the four blocks
in the RCB experimental design.

3.4. MARS Model Assessment

The original dataset was split into two complementary subsets, namely, training and
test, corresponding to 80% and 20% of the original data, respectively.

Since the model is calibrated by means of the training dataset with the aim to predict
the test data, the two subsets should be (statistically) similar at some extent. For this reason,
after the splitting, subsets were subjected to the t-test for mean homogeneity and the Levene
test for variance homogeneity. In addition, a univariate cluster analysis, carried out to
assess the presence of clusters among data, showed that observations could be split into
four groups. This represents another constraint about the splitting that has to be taken
into account, i.e., the training and test subsets should be formed by a balanced quantity
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of elements extracted from all the clusters. Subsets were both checked for Gaussianity by
means of Shapiro–Wilk test; results showed for both subsets a nonsignificant departure from
normal distribution (W = 0.99, p-value = 0.90, for the training set; W = 0.97, p-value = 0.81,
for the test set).

A Welch two-sample t-test showed that the means of the two subsets were not statisti-
cally different (t = −0.25, df = 20.36, p-value = 0.81). In addition, a boxplot confirmed the
equality of the two means of the SOC variable subsets (Figure 8).

Figure 8. Boxplot for SOC comparison between training and test sets.

A Levene test, based on the absolute deviations from the median with a modified
structural zero removal method and correction factor, showed the homogeneity of the
group variances (test statistic = 0.059, p-value = 0.81). In Figure 9, the placement of the
observations for the training (red points) and the test (green points) sets is reported.

Figure 9. Spatial distribution of training and test sets points.

In summary, the two subsets could be considered similar according to the distribution,
mean value, and variance comparisons. Therefore, the training set seemed to be appropriate
to calibrate the model and the test set to check for overfitting.

The MARS model selected only 4 out of 25 predictors, namely, ckAmp0.35m_600MHz,
X, ckECaVer, and ckAmp0.1m_600MHz.
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The model included the main GPR covariates selected previously. Regarding EMI data,
only the apparent electrical conductivity measured in vertical polarization was selected
because the two electrical conductivity variables were strongly correlated and therefore
redundant. In addition, the sensor in vertical polarization had a maximum sensitivity
approximately at a depth of 0.40 m, which was comparable with the time slices of GPR
repeatedly selected (0.35 m).

From Table 10, it can be drawn that the MARS model was formed by four terms; apart
from the intercept, the first was linear, and the remaining two were interactions between
couples of covariates. After importance analysis was applied, by using the GCV and raw
residual sum of squares (Rss) indices, the selected predictors were ranked accordingly
(Table 11).

Table 10. MARS model structure.

MARS Terms Coefficients

(Intercept) 2.0
h(ckAmp0.35m_600MHz-408) −1.12e−02

h(13011-ckAmp0.1m_600MHz)*h(408-ckAmp0.35m_600MHz) −5.87e−06
h(704990-X)*ckECaVer −2.68e−03

Table 11. Covariates of the MARS model listed according to their importance rank with respect to
GCV (generalized cross-validation) and Rss (raw residual sum of squares).

GCV Rss

ckAmp0.35m_600MHz 100.0 100.0
X 63.4 66.5

ckECaVer 63.4 66.5
ckAmp0.1m_600MHz 48.2 47.9

As first step, the Gaussianity of the residuals after the training was tested using
the Shapiro–Wilk test; the residuals distribution could be considered Gaussian with a
distribution ~ N(0.0, 0.036) (W = 0.98, p-value = 0.50).

By applying a blind cross-validation with k-fold = 10, the resulting R2 was 0.51, but
it should be borne in mind that this was a pessimistic result, as the extractions of blocks
of 10 elements (k-fold with k = 10) from the original dataset was performed 200 times in
a purely random fashion, neglecting similar subsets. Moreover, the original dataset was
relatively small and represents a not-very-homogeneous reality. Finally, the results in terms
of goodness of fit were averaged.

The first step consisted of checking the correlation between predicted and observed
values for the training set; the results showed a certain agreement (r = 0.72, p-value ≈ 0.0).
In addition, correlation between residuals and predicted values of training subset was
checked and was close to zero, as expected.

Afterwards, the MARS model calibrated on the training set was applied to predict SOC
data from the test set, which was independent from the model calibration (training) set.

As a first step, the correlation between observations and (test set) predictions was
analysed. This resulted in a highly significant correlation (r = 0.87, p-value ≈ 0.0). The value
gained after the validation step surprisingly outperformed that of the training set, which is
a rare event. The correlation between residuals and (test-set) predicted was not significant.

The residuals, according to the Shapiro–Wilk test, were Gaussian, with a distribution
~ N(0.027, 0.025) (W = 0.93, p-value = 0.23).

Computing the Lin coefficient (CCC) between observations and predictions, the out-
comes showed very good agreement (overall CCC, 0.81; overall precision, 0.88; overall
accuracy, 0.93).

Since the observations were available, it was possible to compute the error metrics,
which are reported in Table 12.
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Table 12. Accuracy metrics to assess the goodness of fit of the MARS model.

Metric MBE MAE RMSE MAE/RMSE MAPE MIN MAX

value −0.03 0.13 0.16 0.80 6.7% −0.42 0.19

The error indices were good overall; in particular, MAPE was below 10%, which value
has been indicated in literature as a critical threshold. Another very interesting result
concerned the ratio between MAE and RMSE, which was larger than that obtained with
regression kriging (0.8 vs. 0.76). In conclusion, the MARS model could be considered
effective whenever the coefficients of the covariates were not constant over the study
domain and the covariates were intertwined in more complex ways than additively.

By comparing the error indices and Lin’s coefficients of both methods, it became
evident that MARS performed better than RK. The two methods were linear (RK) and
nonlinear (MARS), respectively. The main difference concerns the interaction terms, since
the MARS model has one linear term and two multiplicative terms (interactions) that
represent the added value that allowed improving the predictive capability of MARS with
respect to that of RK.

In Figure 10, the map of SOC predictions obtained with the MARS model is reported.
Comparing the RK and MARS maps, they showed overall agreement, with a cluster of
lower values in the northern part of the study area, a central part with the lowest values,
and finally, a southern part with two clusters of larger values and a cluster of lower values.

Figure 10. Map of SOC obtained with MARS model. The black polygons indicate the four blocks in
the RCB experimental design.

Finally, to quantitatively compare the maps obtained by the two methods, a cross-
correlogram was computed. The result was a value of 0.67 at the distance 0. Therefore, the
map gained from RK can be considered a first approximation of that from MARS. This result
underlines the reliability of the SOC spatial distribution predicted by the MARS model.

4. Discussion

Spatial prediction of SOC is critical for assessing the effect of agronomic management
strategies on soil quality and crop productivity. In this scope, the sample size is a value
that plays a key role in SOC prediction. Thus, it needs to be balanced between economic
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and predictive constraints. In fact, increasing the sample size may allow the application
of statistical methods that take residual autocorrelation into account and thereby reduce
the probability of inflation of the type I error rate [12], but at large cost. Regression kriging
and MARS, incorporating covariate information often available at a finer resolution than
primary data, such as proximal and remote sensor data, may improve the quality of SOC
estimation without increasing the sampling size of the primary variable [62,63].

Outcomes obtained from linear models seem to highlight a larger informative contri-
bution of GPR than of EMI data. From a physical standpoint, this result can be explained
by the different nature of sensors’ outcomes. In fact, GPR information results are more
sensitive to near-surface effects than EMI data, which are integrated values over all soil
layers [15]. However, unexpectedly [64], the covariates related to the higher-frequency
antenna (1600 MHz frequency) were excluded, probably because they did not add further
information or were redundant in this study case.

Two GPR covariates, namely, ckAmp0.35m_600MHz and ckAmp0.1m_600MHz, were
selected by the MARS model. The same variables were also chosen by the final RK model
(ckAmp0.35m_600MHz) and the preliminary RK model (ckAmp0.1m_600MHz). Similar
importance was also assigned to the selected variables by both statistical methods, as shown
by the ranking defined by GCV and Rss in MARS model, suggesting that their significance
was physically based. In fact, the selected covariates were representative of information
derived by two soil layers with different physical properties influencing radar signal and
soil organic carbon distribution. The two methods also had the X geographical coordinate
in common, indicating a larger continuity along this direction.

The main difference between the two approaches concerned the selection of the EMI
covariate in vertical polarization performed only by the MARS model, indicating the
different explanatory power of information brought by the two sensors. This result was tied
to the intrinsic capability of the MARS model to intercept the interactions among variables
and highlight nonlinear features underlying the data [34]. In addition, the coefficients
of the MARS model were not constant but piecewise linear (splines), and therefore, their
gradient varied over the studied domain [57]. This explains the larger descriptive capability
of the MARS model and its ability to select hidden features with respect to regression
kriging. Although MARS is not explicitly a spatial method, its capability of modelling
covariate coefficients by means of flexible functions allows, when the geographic variables
are included in the analysis, filtering out the spatial autocorrelation contained in the data,
which makes it substantially a spatial method [65]. A confirmation of this was the statistical
nonsignificance of the Moran I index obtained from the MARS residuals.

Studies on the spatial variability of SOC in agricultural soils remain a central theme in
assessing the environmental sustainability of agricultural systems [66], because agronomic
inputs could be rationalized in order to not impoverish the soil’s fertility. Therefore,
our results represent a knowledge contribution for future studies aimed at detecting
the spatial distribution of soil organic carbon at the field scale. Geophysical methods
show new applicative potentialities for environmental sciences (see, among others, [67])
and can represent support for research in this field. However, because of the complex
interactions with soil properties, the use of geophysical measurements as covariates needs
to be investigated in more detail to draw more precise conclusions. A limit of the present
work could be its potential site-specificity, which could not be quantified in advance.
Therefore, further experiments in different study areas and agroenvironments should be
performed to test the performance of the methods under different conditions.

5. Conclusions

The results of our investigation showed that MARS outperformed RK in predicting
SOC spatial distribution. The nonlinearity of MARS evidenced the contribution of EMI
variables neglected by linear approaches. That result would have to be deepened in future
works in consideration of the fact that EMI measures are more easily achievable than
GPR ones.
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The accuracy reached in mapping SOC with the support of MARS was remarkable
and opens interesting perspectives in applying other, more powerful machine learning
methods (e.g., deep learning) to even better exploit proximally sensed data. In the future, it
is hoped that these machine learning methods will be successfully associated with mapping
procedures and then applied at the regional and national level.

The use of relatively easy, accurate, and inexpensive geophysical methods for SOC esti-
mation, together with application of advanced statistical techniques for SOC spatialization,
can represent a viable solution to investigate agroecosystem sustainability.
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