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H I G H L I G H T S

• Deep convolutional neural network (CNN) yielded accurate automated Coronary Artery Disease Reporting and Data System (CAD-RADS) classification in patients
with suspicious CAD.

• CAD-RADS classification is significantly faster compared to human evaluation.

• CNN can reduce the time of CCTA reporting in the next future.
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A B S T R A C T

Background and aims: Artificial intelligence (AI) is increasing its role in diagnosis of patients with suspicious
coronary artery disease. The aim of this manuscript is to develop a deep convolutional neural network (CNN) to
classify coronary computed tomography angiography (CCTA) in the correct Coronary Artery Disease Reporting
and Data System (CAD-RADS) category.
Methods: Two hundred eighty eight patients who underwent clinically indicated CCTA were included in this
single-center retrospective study. The CCTAs were stratified by CAD-RADS scores by expert readers and con-
sidered as reference standard. A deep CNN was designed and tested on the CCTA dataset and compared to on-site
reading. The deep CNN analyzed the diagnostic accuracy of the following three Models based on CAD-RADS
classification: Model A (CAD-RADS 0 vs CAD-RADS 1–2 vs CAD-RADS 3,4,5), Model 1 (CAD-RADS 0 vs CAD-
RADS > 0), Model 2 (CAD-RADS 0–2 vs CAD-RADS 3–5). Time of analysis for both physicians and CNN were
recorded.
Results: Model A showed a sensitivity, specificity, negative predictive value, positive predictive value and ac-
curacy of 47%, 74%, 77%, 46% and 60%, respectively. Model 1 showed a sensitivity, specificity, negative
predictive value, positive predictive value and accuracy of 66%, 91%, 92%, 63%, 86%, respectively. Conversely,
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Model 2 demonstrated the following sensitivity, specificity, negative predictive value, positive predictive value
and accuracy: 82%, 58%, 74%, 69%, 71%, respectively. Time of analysis was significantly lower using CNN as
compared to on-site reading (530.5 ± 179.1 vs 104.3 ± 1.4 sec, p=0.01)
Conclusions: Deep CNN yielded accurate automated classification of patients with CAD-RADS.

1. Introduction

Cardiac computed tomography angiography (CCTA) is an excellent
non-invasive technique for the assessment of stable coronary artery
disease (CAD) [1,2].

Thus, application of CCTA in clinical practice is rapidly increasing
especially considering its potential role as a gatekeeper for invasive
coronary angiography [3]. Several classification systems for reporting of
CCTA have been created with the recent introduction of CAD-RADS [4].

In CAD-RADS classification, the final score of CCTA is based on
patient based analysis. Each vessel is evaluated using the following
scale: 0 = absence of CAD; 1 = stenosis between 1 and 24%; 2 = ste-
nosis between 25 and 49%; 3 = stenosis between 50 and 69%;
4 = stenosis between 70 and 99% or > 50% left main or three ves-
sels > 70%; 5 = total occlusion; N = non diagnostic studies.

The CAD-RADS classification affords to have a simple classification
for CAD, identifying patients that may require additional functional
testing or invasive angiography.

Furthermore, CAD-RADS classification has a pivotal role in terms of
prognosis. Indeed, as shown by Xie et al., patients with CAD-RADS 5
showed a 5 year event significantly higher compared with CAD-RADS 0
[5].

Despite the majority of cardiac imaging interpretation and reporting
being performed by readers, it is important to consider that machine
learning or deep learning (DL) approaches may allow the evaluation of
images in a short time compared to humans [6]. The application of
artificial intelligence (AI) in cardiac imaging represents an interesting
novelty in terms of both diagnosis and prognosis [7].

Convolutional neural networks (CNN) are the most powerful Deep
Learning technique used for diagnostic classification and prediction,
starting from medical images [8].

Considering the impact on clinical practice of CAD-RADS classifi-
cation and the relative short time of analysis of the AI approach, we
analyzed the effect of a novel CNN technique for CAD-RADS classifi-
cation in patients referred for clinically indicated CCTA.

2. Materials and methods

2.1. Study population

We retrospectively analyzed the examinations of patients who un-
derwent CCTA for clinical purposes from 2016 to 2018. Exclusion cri-
teria were heart rate ≥80 bpm despite intravenous administration of
beta blockers, atrial fibrillation and BMI ≥35 kg/m2. The study was
approved by the institutional ethical committee. All patients provided
written informed consent.

2.2. CCTA acquisition and analysis

2.2.1. Patient preparation to CCTA and CCTA protocol
In patients with heart rate ≥65 bpm, without any contraindications

to β-blockade therapy, metoprolol with a titration dose up to 25 mg was
administered [9]. Sublingual nitrates were administered 5 min before
the CCTA acquisition [10].

CCTA acquisition was acquired using the following two CT scanners:
Discovery CT 750 HD and Revolution CT (GE Healthcare, Milwaukee,
IL). In the CCTA protocol of Discovery CT 750 HD, the following CT
protocols were used: slice configuration 64×0.625 mm, with adapted
tube current and tube voltage based on patient's BMI [11].

The CCTA protocol with the Revolution CT (GE Healthcare,
Milwaukee, IL) was based on the following parameters: slice config-
uration 256×0.625 mm with tube current and tube voltage based on
BMI.

In both CT scanner protocols, 50–70 mL of contrast medium
(Iomeron 400 mg/mL, Bracco, Milan, Italy) was administered through
the antecubital vein at an infusion rate of 5 mL/s, followed by 50 mL of
saline solution at the same infusion rate of contrast agent. In both CT
scanners, CCTA was performed using the bolus tracking technique.

All images for both CT scanners were reconstructed using filtered
back projection and in 75% or 40–80% of cardiac cycle based on the
ECG-triggering acquisition used [12]. In selected cases with poor image
quality, the dataset was reconstructed by using intracycle motion cor-
rection as previously described [12,13].

2.2.2. Image quality analysis
Subjective image quality was assessed by two cardiac imaging

radiologists (VP and GM) with five and seven years of experience in
cardiovascular imaging using the following four point Likert scale:
1 = non-diagnostic, 2 = adequate image quality, 3 = good image
quality; 4 = excellent image quality.

Regarding objective image quality, the image noise was measured
by manually drawing a region of interest (ROI) 20 mm in diameter in
the aortic root, above the origin of the left main coronary artery (LM)
and expressed as the standard deviation (SD) of vessel attenuation.
Signal to noise ratio (SNR) for each coronary segment was calculated by
dividing the coronary attenuation of proximal segments and image
noise. Contrast to noise ratio (CNR) was obtained by dividing the dif-
ference between attenuation of coronary and surrounding tissue with
the image noise [14].

Coronary arteries were analyzed using the segmentation model ac-
cording to the American Heart Association (AHA) [15].

2.2.3. CAD-RADS score and coronary plaque evaluation
The pool of CCTA examinations was reconstructed then analyzed in

consensus by five different random couples between 10 radiologists and
cardiologists (GP, MG, MG, AB, SD, GP, VP, GR, AC, DA). The experi-
ence of the cardiac imagers involved in the analysis ranged from 5 to 10
years. A CAD-RADS score was attributed for each examination. In cases
of disagreement, a cardiac imager (AIG) with ten years of experience in
cardiovascular imaging adjudicated the final CAD-RADS score.

Based on composition of plaque, in patients with CADRADS > 0,
coronary plaques were identified and classified as calcified, mixed and
soft in all vessels [16].

Considering that CAD-RADS score is based on patient analysis, the
burden of coronary artery disease of stenosis in other vessels was
evaluated and classified according to the SCCT guidelines [17].

According to the CAD-RADS classification, the following three
models were created: Model A = CAD-RADS 0 vs CAD-RADS 1–2 vs
CAD-RADS 3–5. Subsequently, two models were derived from Model A:
Model 1 =(CAD-RADS 0 vs CAD-RADS 1–5) and Model 2 =(CAD-RADS
0–2 vs CAD-RADS 3–5). Time of analysis for each CCTA analysis of CNN
and on-site reading were recorded and compared.

2.3. Deep learning methods

2.3.1. Dataset generation
Each CCTA scan was stored in a DICOM format. For each sample, we

removed the first 16 slices, selected the next (excluding the slices not
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representing the heart), placed them in an 11x11 squared image and
resized each image to 512x512 pixels.

Axial images were provided to CNN algorithm in the same cardiac
phase used for the clinical reporting. All CCTA images did not include
any annotation.

Finally, to increase and balance the number of samples (100 in each
class) and to reduce the overfitting, we performed the data augmenta-
tion strategy, rotating and zooming images [18]. At the end, the dataset
was composed of 6 classes, each one of 100 samples.

2.3.2. CNN architecture
The 2D-CNN used in this study was designed after testing several

combinations of hyperparameters. The keras R package in the frame-
work of Tensorflow was used to build and test the CNN. The convolu-
tional section of the network consisted of three consecutive layers of
blocks, each one containing a sequence of three convolutional layers
(32 filters 3 x 3 px) and a max-pooling layer. Before each max-pooling
layer, a batch normalization strategy was implemented to reduce the
overfitting of the training model [19]. Each convolutional layer was
composed of 32 filters (3 x 3 px) and the pooling windows size was 2 x
2. The number of neurons in the output layer corresponded to the
number of classes in a specific classification analysis. To handle the
overfitting, a dropout strategy was implemented before the first hidden
layer (dropout rate: 0.5) [19]. The ReLU activation function [19] was
used for each neuron (densely connected and convolutional ones), ex-
cept for the output layer ones (activation function: ‘softmax’). Finally,
we used the Back Propagation optimizer to minimize the categorical
cross entropy and implemented the ‘early stopping’ strategy as a reg-
ularization method to prevent overfitting. The designed CNN is sket-
ched in Fig. 1.

The main endpoints of the study were:

a) Evaluation of diagnostic accuracy of CNN in Model A, Model 1 and
Model 2.

b) Univariate and multivariate analysis for identification of predictive
factors for failure of CNN were analyzed.

c) Comparison of time of analysis between CNN approach and on-site
reading.

2.3.3. Statistical analysis
To evaluate the overall classification performance, a 5-fold Cross

Validation was implemented (Fig. 2). For each iteration, a training set is
generated, combining four folds (80 samples per class); the remaining
fold (20 samples per class) was used as test set. The training set is used
to learn the CNN parameters (Fig. 3 and Supplemental materials), while
on the test set the standard evaluation metrics (i.e., sensitivity, speci-
ficity, negative predicted value, positive predicted value, and accuracy,
and the area under the curve) are calculated.

Intra- and inter-observer reliability was calculated using the kappa
score by considering all subjects and splitting subjects by class.

Univariate and multivariate logistic regression analyses were used
to identify independent factors associated with a CNN misreading of the
CAD-RADS score. A p-value < 0.05 was considered significant.
Statistical analysis was performed using SPSS 25 (SPSS Inc, Chicago, IL)
and R version 3.5.1 (R Foundation for Statistical Computing, Vienna,
Austria).

3. Results

Two hundred eighty-eight patients were randomly extracted and
evaluated (CAD-RADS 0: 50 exams; CAD-RADS 1: 50 exams; CAD-RADS
2: 50 exams; CAD-RADS 3: 50 exams; CAD-RADS 4: 50 exams; CAD-
RADS 5: 38 exams). Four patients were excluded due to inadequate
image quality. Two example cases of CAD-RADS 0 and CAD-RADS 5 are
summarized in Fig. 3.

The baseline characteristics of the overall population are summar-
ized in Table 1.

The subjective image quality was good for all coronary segments
showing a high inter-reader and intra-reader reproducibility Tables 2
and 3.

The diagnostic accuracy of the 2D-CNN approach was analyzed for
Model A, demonstrating a sensitivity, specificity, negative predictive

Fig. 1. Graphical sketch of the designed CNN architecture.
Three consecutive convolutional blocks, each one composed of 3 convolutional layers (light blue squares) and a max pooling layer (green square), are followed by a
densely connected network (2 hidden layers (violet squares) and an output layer (yellow square)). During the CNN training, some neurons are dropped out (red
crossed circles) and others are active (blue circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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value, positive predictive value and accuracy of 47% (20–74%), 74%
(54–94%), 77% (68–86%), 46% (31–61%) and 60% (54–66%), re-
spectively.

From Model A, two further models were derived, Model 1 and
Model 2, showing a sensitivity, specificity, negative predictive value,
positive predictive value, accuracy and area under curve of 66%

Fig. 2. Overview of the deep learning analysis.
First, the whole dataset was split in 5 folds, each one composed of 20 samples per class. Then, a cross validation procedure was implemented: 4 folds were selected to
train the CNN (training set) and build the model; the fifth fold was used to test the learned model (test set) and to assess the performance.

Fig. 3. Upper row: A 53-year-old woman with fa-
mily history of cardiovascular disease, palpitations
and dyspnea. CAD RADS 0: (A) absence of pa-
thology in the left anterior descending artery, (B)
circumflex artery and (C) right coronary artery.
Lower row: A 67-year-old man with dyslipidemia
and severe left ventricular dysfunction by echo-
cardiography. CAD RADS 5: (D) severe stenosis of
the proximal left anterior descending artery, (E)
absence of pathology of circumflex artery and (F)
occlusion of mid portion of right coronary artery
(arrow).
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(53–79%), 91% (54–94%), 92% (89–96%), 63% (50–75%), 86%
(82–90%), 89% (84–94%), respectively and 82% (76–88%), 58%
(50–67%), 74% (66–82%), 69% (63–76%), 71% (66–76%), 78%
(75–82%), respectively. The results concerning Model 1 and 2 are
summarized in Table 4 and Fig. 4.

On multivariate analysis, the analysis tailored for plaque analysis
showed that plaque characteristics, degree of stenosis as well as subjective
image quality did not influence the predictive value of Model A (Table 5).

Considering that plaque imaging did not influence the diagnostic
accuracy in Model A, we focused on plaque imaging in derived Model 1
and Model 2.

Regarding Models 1 and 2, multivariate analysis showed that the
presence of plaque, regardless of the composition, was an independent
predictor of success in Model 1; conversely, in Model 2, the presence of
stenosis > 50% was a predictor of failure (Table 6).

After the evaluation of CCTA image quality and diagnostic accuracy
of 2D CNN, we analyzed the impact of time consumed in terms of CAD-
RADS classification and we observed that time of analysis was sig-
nificantly higher (p = 0.01) for on-site physicians reading as compared
to the CNN approach (530.5 ± 179.1 vs. 104.3 ± 1.4 sec, p=0.01).

4. Discussion

Our study is the first to describe the application of AI for CAD-RADS
classification. In clinical practice, it is important to correctly identify
the CAD-RADS category. Patients in CAD-RADS 0 do not appear to
derive benefit from medical therapy, while patients with CAD-RADS
1–2 may benefit from medical treatment and patients with CAD-RADS
3–5 may necessitate further testing of ischemia or invasive coronary
angiography. The main results of our study are that Model A did not
show a good diagnostic accuracy and area under the curve. A more
simplified approach of CAD-RADS classification was shown in Model 1
and Model 2. Model 1 was composed of two subgroups of patients
differing for clinical management based on CCTA results. As compared
to Model A, Model 1 showed good diagnostic accuracy for detection of

Table 1
Baseline characteristics of the overall population.

Characteristics Values

Number, n 288
Age (y), mean ± SD 60.6 ± 12.4
Male, n (%) 198 (69)
Body mass index (kg/m2), mean ± SD 25.8 ± 4.5
Risk factors

Hypertension, n (%) 96 (33)
Smoker, n (%) 46 (16)
Hyperlipidemia, n (%) 86 (30)
Diabetes, n (%) 21 (7)
Family history, n (%) 96 (33)

Clinical history
Chest pain, n (%) 95 (33)
Dyspnea, n (%) 20 (7)
Palpitation, n (%) 4 (1)
Positive stress test, n (%) 68 (24)
Follow-up of known CAD, n (%) 35 (12)
Valvular disease, n (%) 12 (4)
Arrhythmias, n (%) 43 (15)
Dilated cardiomyopathy, n (%) 11 (4)

Intravenous β-blocker
Number of patients, n (%) 155 (54)
Dose (mg), mean ± SD 9.8 ± 4.7

Heart rate during the scan
Minimum heart rate (bpm), mean ± SD 55.4 ± 9.6
Mean heart rate (bpm), mean ± SD 60.6 ± 10.5
Maximum heart rate (bpm), mean ± SD 74.4 ± 31.7

Radiation exposure
Dose length product, mean ± SD 264.9 ± 125.5

CAD, coronary artery disease; SD, standard deviation.

Table 2
Comparison of Image Quality of all classes of patients by Readers 1 and 2.

All classes

Reader 1 Reader 2 Cohen's Kappa

LM 3.2 ± 0.5 3.6 ± 0.5 0.93
Proximal_LAD 3.6 ± 0.5 3.6 ± 0.5 0.89
Mid_LAD 3.5 ± 0.6 3.5 ± 0.6 0.90
Distal_LAD 3.2 ± 0.8 3.1 ± 0.8 0.90

LAD 3.5 ± 0.6 3.5 ± 0.6 0.92
D1 2.9 ± 0.7 2.9 ± 0.7 0.89

Proximal_LCX 3.3 ± 0.6 3.3 ± 0.6 0.93
Mid_LCX 3.2 ± 0.7 3.2 ± 0.6 0.92
Distal_LCX 2.8 ± 0.8 2.8 ± 0.8 0.89

LCX 3.1 ± 0.6 3.1 ± 0.6 0.94
M1 2.8 ± 0.8 2.8 ± 0.8 0.93

Proximal_RCA 3.5 ± 0.6 3.5 ± 0.6 0.95
Mid_RCA 3.5 ± 0.6 3.5 ± 0.7 0.95
Distal_RCA 3.4 ± 0.7 3.4 ± 0.7 0.96

RCA 3.5 ± 0.6 3.5 ± 0.6 0.97
PLA 3.4 ± 0.6 3.3 ± 0.6 0.93
PDA 3.3 ± 0.7 3.3 ± 0.7 0.93
Patient 3.4 ± 0.6 3.4 ± 0.6 0.93

LM, left main coronary; LAD, anterior descending artery; D1, first diagonal
artery; LCX, circumflex artery; M1, first obtuse marginal branch; RCA, right
coronary artery, PLA, postero-lateral branch; PDA, posterior descending artery.

Table 3
Comparison of Image Quality of all classes of patients by the same Reader in
two different lectures.

All classes

First Lecture Second Lecture Cohen's Kappa

LM 3.2 ± 0.5 3.6 ± 0.5 0.90
Proximal_LAD 3.6 ± 0.5 3.6 ± 0.5 0.87
Mid_LAD 3.5 ± 0.6 3.5 ± 0.6 0.85
Distal_LAD 3.2 ± 0.8 3.1 ± 0.8 0.86

LAD 3.5 ± 0.6 3.5 ± 0.6 0.87
D1 2.9 ± 0.7 3.0 ± 0.7 0.86

Proximal_LCX 3.3 ± 0.6 3.3 ± 0.6 0.95
Mid_LCX 3.2 ± 0.7 3.1 ± 0.7 0.93
Distal_LCX 2.8 ± 0.8 2.7 ± 0.8 0.87

LCX 3.1 ± 0.6 3.1 ± 0.6 0.93
M1 2.8 ± 0.8 2.8 ± 0.8 0.91

Proximal_RCA 3.5 ± 0.6 3.5 ± 0.6 0.93
Mid_RCA 3.5 ± 0.6 3.5 ± 0.6 0.94
Distal_RCA 3.4 ± 0.7 3.4 ± 0.7 0.93

RCA 3.5 ± 0.6 3.5 ± 0.6 0.94
PLA 3.4 ± 0.6 3.3 ± 0.6 0.88
PDA 3.3 ± 0.7 3.2 ± 0.7 0.88
Patient 3.4 ± 0.6 3.4 ± 0.6 0.93

LM, left main coronary; LAD, anterior descending artery; D1, first diagonal
artery; LCX, circumflex artery; M1, first obtuse marginal branch; RCA, right
coronary artery, PLA, postero-lateral branch; PDA, posterior descending artery.

Table 4
Diagnostic accuracy for Model 1 and Model 2.

Model 1 (95%CI) Model 2 (95%CI)

Sensitivity 66% (53–79%) 82% (76–88%)
Specificity 91% (87–95%) 58% (50–67%)
Positive predictive value 63% (50–75%) 69% (63–76%)
Negative predictive value 92% (89–96%) 74% (66–82%)
Accuracy 86% (82–90%) 71% (66–76%)
Area under curve 89% (84–94%) 78% (75–82%)
True positive 35 125
False positive 21 55
True negative 210 77
False negative 18 27

Model 1, CAD-RADS 0 vs CAD-RADS 1–5; Model 2, CAD-RADS 0–2 vs CAD-
RADS 3-5.
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patients positive and negative for the presence of CAD regardless of
plaque composition and grade of stenosis. Finally, Model 2 was com-
posed of two subgroups that mainly differ in the therapeutic approach
after the results of CCTA. In the subgroup of CAD-RADS 0–2, patients
may benefit from medical therapy while the subgroup of CAD-RADS
3–5 may benefit from further tests of ischemia or invasive coronary
angiography [20]. Compared to Model 1, Model 2 showed a lower di-
agnostic accuracy and AUC with a high degree of stenosis as a major
independent predictor of misclassification.

Nowadays, the non-invasive assessment of CAD is mainly focused on
evaluation of calcium score (CS) and CCTA. Both CS and CCTA provide
information useful for planning treatment strategy and prognostic stra-
tification; therefore, considering the pivotal role of these CT acquisitions,
an ML approach has been developed [7,21]. Artificial intelligence, si-
milar to our manuscript, appears to be important for the diagnosis of
CAD [22], furthermore, using some algorithms, it is possible also to
provide information concerning CAD in non-gated CT images [23].

Takx et al. described the possibility to evaluate CS using non-con-
trast, non-gated CT using a low dose protocol [23]. In particular, Takx
and colleagues, using a supervised pattern recognition system k-nearest
neighbor with support vector machine classifiers for identification of
CS, demonstrated a good reliability when compared with CS calculated
by manual delineation [23].

One of the applications of AI in CCTA was shown by Kang and
colleagues [22]. The authors, using a two-step ML approach which in-
corporated a support vector machine, demonstrated a sensitivity,

specificity, accuracy and AUC of 93%; 95%, 94% and 94%, in diag-
nosing CAD. This promising technique did not differentiate the entity of
CAD further and the authors did not specify the time spent for each
analysis [22]. Another interesting technique for the evaluation of CAD
in CCTA using an automated algorithm was described by Dey et al.
[24]. The authors quantified the non-calcified and calcified plaque
using an automated algorithm and discovered a good agreement when
compared with human evaluation [24].

The aforementioned manuscripts regarding the application of AI in
diagnostic pathway of CAD differ by the algorithm of AI used. Despite
we used the 2D CNN approach, unlike the others articles that used
different algorithms of AI, we have in common the main purpose re-
presented by the simplification of diagnostic pathway.

Despite the aforementioned studies analyzing the impact of AI in car-
diac imaging, none of them evaluate its role in CAD-RADS classification.

In this article, the main finding is represented by the ability of CNN
to differentiate with high diagnostic accuracy patients with CAD-RADS
0 versus CAD-RADS > 0.

Based on the results of our manuscript, it may be possible to use a
CNN algorithm in clinical practice and rule out the presence of CAD in a
relatively short time. Considering that the prevalence of normal cor-
onaries is high in patients even with an increased pretest probability
[25,26], it is plausible that CCTA interpretation may be accelerated by
the application of CNN algorithms as shown in Fig. 5.

Another important finding is the possibility to correctly predict with
high diagnostic accuracy Models 1 and 2, independently of the image
quality of CCTA acquisition. Indeed, both SNR and CNR do not appear
to influence CAD-RADS classification using CNN. The latter finding is
important, especially when employing low dose CCTA protocols.

Some limitations should be mentioned in this manuscript.
First, a small sample size was used for the study. A larger, multi-

center study, involving a larger sample size may increase the diagnostic
accuracy in all three models used in the manuscript.

Second, we speculate that for Model 1, the CNN approach was able
to better identify patients with plaque because an increase in CAD-
RADS score is correlated with more calcified and soft plaque and sub-
sequently a larger amount of data for the training set.

Third, most of the CCTA were acquired using the latest generation
CT, therefore it is important to consider that the application of CNN
algorithms may provide different results with poor image quality.

In conclusion, this new CNN approach can be helpful for the iden-
tification of patients with CAD-RADS 0 in a short time of analysis using

Fig. 4. Receiver operating characteristic curve (ROC) showing the predictive accuracy of Convolutional Neural Networks to distinguish between CAD-RADS 0 vs.
CAD-RADS > 0 (Left Panel) and CAD-RADS 0–2 vs.CAD-RADS 3–5 (Model 2).

Table 5
Univariate analysis for model A.

CAD-RADS 0 vs CAD-RADS 1–2 vs CAD-RADS 3-5 Univariate

OR (95%CI) p value

BMI 1.021(0.966–1.08) 0.455
Mean HR 0.992(0.969–1.017) 0.542
Plaques

No plaques – –
Fibrotic 1.136(0.450–2.867) 0.787
Calcific 1.617(0.844–3.099) 0.147

Stenosis > 50% 1.269(0.743–2.057) 0.333
SNR 1.028(0.957–1.104) 0.447
CNR 1.020(0.95–1.094) 0.588

BMI, body mass index; HR, heart rate; SNR, signal to noise ratio; CNR, contrast
to noise ratio.
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a good image quality dataset. Further studies with a larger population
need to be performed to improve the diagnostic accuracy of CNN.
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