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Abstract. In this paper we consider a regular grid with equal spatial spacings
and construct a new finite di↵erence approximation (di↵erence scheme) for the
system of two-dimensional Navier-Stokes equations describing the unsteady
motion of an incompressible viscous liquid of constant viscosity. In so doing,
we use earlier constructed discretization of the system of three equations: the
continuity equation and the proper Navier-Stokes equations. Then, we com-
pute the canonical Gröbner basis form for the obtained discrete system. It
gives one more di↵erence equation which is equivalent to the pressure Poisson
equation modulo di↵erence ideal generated by the Navier-Stokes equations,
and thereby comprises a new finite di↵erence approximation (scheme). We
show that the new scheme is strongly consistent. Besides, our computational
experiments demonstrate much better numerical behaviour of the new scheme
in comparison with the other strongly consistent schemes we constructed ear-
lier and with the scheme which is not strongly consistent.

1. Introduction

Numerical solving of partial di↵erential equations (PDE) is a fundamental task
of applied mathematics and engineering. There are three numerical methods which
have been used extensively for solving of PDE: the finite element method, the
finite volume method and the finite di↵erence method. In the present paper we
consider the last method described in a rather large number of textbooks (see, for
examle, [15, 21, 23, 24]). Its application is based on a finite di↵erence approximation
(FDA) to a PDE.

The standard way to derive a FDA resides in the approximation of partial
derivatives by linear combinations of function values at the grid points. In the
case of a single di↵erential equation, such an approximation must provide consis-

tency (cf. [15], p.15; [21], p.25; [23], Sect.8.4) of the obtained di↵erence equation with
the di↵erential one. If one deals with a PDE system, then its FDA, such that every
di↵erence equation in the discretized system, is consistent with the corresponding
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di↵erential equation in the PDE system is called equation-wise consistent [8] or
weakly consistent (w-consistent) [4]. In doing so, if one rewrites the FDA into a
fully equivalent (i.e. preserving the solution set) form, then it may happen that the
di↵erence equations in the rewritten FDA in the continuous limit (i.e. in the limit
when the grid spacings go to zero) give a PDE system whose solution set is not
equal to the solution set of the original di↵erential system. If a FDA to a given PDE
system is such that any equivalent form of the FDA in the continuous limit gives an
equivalent form of the PDE system, then the FDA is called strongly consistent or
s-consistent (cf. [4, 8]). Given a polynomially nonlinear PDE system and its FDA
on a regular grid, one can verify s-consistency of the FDA by its transformation
into a Gröbner basis form [4].

If a FDA inherits at the discrete level all fundamental algebraic properties (e.g.
conservation local laws) of the PDE system under consideration, then the FDA is
a mimetic or compatible discretization (see, for example, book [3], its bibliography
and articles [19, 20]). Such FDA is s-consistent. While mimetic methods initially
construct a discrete mathematical analog of a physical conservation or constitutive
law (cf. [3], Ch.1, p.2), for an s-consistent FDA the numerical scheme for such con-
servation law (cf. [24], Ch.9) is a di↵erence–algebraic consequence of the FDA (see
Definition 2.10). Besides, s-consistency is expected to be necessary for convergence
of the FDA as a di↵erence scheme, since it has been adopted that the convergence

is provided if a given FDA to the PDE is consistent and stable. This adaptation
extends of the brilliant Lax equivalence theorem [21, 23] rigorously proven for the
initial value problem posed for a single linear PDE ([15], Thm. 5.1, p.159; [21],
Thm.10.5.1, p.262; [23], Thm.8.4.1, p.61).

In [5] three di↵erent FDAs (di↵erent schemes) for the two-dimensional Navier-
Stokes equations describing the unsteady motion of an incompressible viscous liquid
of constant viscosity were constructed. The method used for construction was pro-
posed in [6]. It combines the finite volume method, numerical integration and the
di↵erence elimination of the grid functions for partial derivatives from the discrete
equations obtained after numerical integration. The elimination was performed by
means of di↵erence Gröbner bases [4, 7, 12]. The s-consistency check has shown
that two of the generated FDA are s-consistent, and the third one is not. Accord-
ing to our computational experiments done in [1], s-consistent FDAs have better
numerical behavior than the FDAs which are not s-consistent.

In the given paper we derive, in addition to those produced in [5] and studied
in [1], one more s-consistent FDA to the Navier-Stokes equations. For this purpose
we exploit the FDA to the 2D Navier-Stokes PDE system that is comprised of the
proper Navier-Stokes equations and the continuity equation, and does not include
the pressure Poisson equation. Then, by making use of the algorithms which are
described in [7, 12] we compute a Gröbner basis for the obtained di↵erence system.
As a result, we obtain an additional di↵erence equation that is equivalent to the
pressure Poisson equation modulo the di↵erence ideal generated by the polynomials
occurring in the Navier-Stokes equations. We prove s-consistency of the new FDA
and compare its numerical behavior with the other s-consistent FDA constructed
in [5] and also with the FDA constructed in [1] which is not s-consistent. As
benchmarks we use the following two exact solutions to the Navier-Stokes equations:
(i) the unsteady flow solution originally found in [22] and as a benchmark used
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firstly in [14]; (ii) Kavasznay’ steady flow problem [11]. The benchmarking shows
a significant superiority of the new FDA over the others.
This paper is organized as follows. In Section 2 we consider the 2D Navier-Stokes
equations and specify for them basic definitions and notions of di↵erential and
di↵erence algebra used in the next sections. In Section 3 we give definition of s-
consistency and outline procedure of its verification. The derivation of the new
di↵erence approximation to the Navier-Stokes equations, as a di↵erence scheme, is
considered in Section 4. In Section 5 we describe the numerical implementation of
our new dicretization. Section 6 presents our numerical experiments. Concluding
remarks are given in Section 7.

2. Navier-Stokes equations and related notions of differential and

difference algebra

We consider the two-dimensional Navier-Stokes equations describing the un-
steady motion of an incompressible viscous liquid of constant viscosity in the fol-
lowing dimensionless form

(1) F :=

8
><

>:

f1 := ux + vy = 0 ,

f2 := ut + uux + vuy + px � 1

Re
�u = 0 ,

f3 := vt + uvx + vvy + py � 1

Re
� v = 0 .

Here (u, v) is the velocity field, p is the pressure, the constant Re is the Reynolds
number, f1 is the continuity equation, f2 and f3 are the proper Navier-Stokes
equations.

A di↵erential polynomial associated with system (1) is a polynomial in the inde-
pendent variables u, v, p and their partial derivatives w.r.t. x, y, t with coe�cients
belonging to Q(Re), the field of rational functions in Re with rational coe�cients.
The set of all possible di↵erential polynomials, including zero one, closed under
operations of addition, multiplication and action of partial derivatives @t, @x, @y,
forms the di↵erential polynomial ring. We shall denote this ring by

R := Q(Re)[u, v, p] .

Note that the left-hand sides f1, f2, f3 of the Navier-Stokes equations are also
di↵erential polynomials and elements in this ring.

Definition 2.1. [4] A (di↵erential–algebraic) consequence of (1) is a PDE f = 0
where a di↵erential polynomial f 2 R vanishes on each solution to (1)1.

An important consequence of system (1) is given by f4 = 0 where

(2) f4 := (f1)t � (f2)x = � p+ u
2

x + 2vxuy + v
2

y ,

This equation is the well-known pressure Poisson equation [9].

Definition 2.2. The di↵erential ideal generated by polynomial set F := {f1, f2, f3}
and denoted by I := [F ] is the smallest subset of R containing F and satisfying

( 8� 2 { @t, @x, @y }) ( 8a, b 2 I ) ( 8c 2 R ) [ a+ b 2 I , a c 2 I, �(a) 2 I ] .

1We consider solutions (cf. [17], p.97) which are analytic in an open and connected domain of
C3 with coordinates t, x, y.
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Definition 2.3. Let P be the set of partial derivatives:

P := { @n
t @

j
x@

k
yw | n, j, k 2 N�0, w 2 {u, v, p} } .

A total ordering � on P is ranking if for any q, r 2 P such that q � r the relations

�(q) � �(r) , �(q) � r ,

hold for all � 2 { @t, @x, @y }. Given a ranking, every non-constant polynomial f 2 R
has the highest ranking derivative occurring in f . This derivative is the leader of

polynomial f . If the functions u, v, p are compared first and the elements in the

monoid of derivations {@n
t @

j
x@

k
y | n, j, k 2 N�0} second, then the ranking is called

elimination. Otherwise, the ranking is called orderly.

If one chooses the elimination ranking � on partial derivatives compatible with
p � u � v and @t � @x � @y and such that

(3) ut � vt � px � py � ux � uy � vx � vy ,

then the consequence (2) of (1) is the only integrability condition
2. The inclusion

of (2) into (1) makes the system involutive [5]

(4)

8
>>>><

>>>>:

f1 = ux + vy = 0 ,

f2 = ut + uux + vuy + px � 1

Re
�u = 0 ,

f3 = vt + uvx + vvy + py � 1

Re
� v = 0 ,

f4 = pxx + pyy + u
2
x + 2vxuy + v

2
y = 0 .

The underlined terms in (4) are leaders.
The completion algorithm based on di↵erential Thomas decomposition (cf. [2],

Sect.3; [17], Sect.2.2) for the input f1, f2, f3 outputs the slightly di↵erent involutive
form of (1) with the same leaders as in (5)

(5)

8
>>>><

>>>>:

ux + vy = 0 ,
1

Re
(uyy � vxy � uvy)� vuy � ut � px = 0 ,

1

Re
(vxx + vyy)� uvx � vvy � vt � py = 0 ,

2vxuy +� p+ 2v2y = 0 .

The involutive system (5) is obtained from (4) by the Gröbner (see [16], Def.7)
or Janet (cf. [2], Alg.3.3; [17], Alg.2.2.40) (inter)reduction under ranking (3). We
prefer to use (4) since it preserves the symmetry (u , v, x , y) of the initial
equations (1) and helps to keep this symmetry at the discrete level.

Each of the involutive systems (4) and (5) can be used to check whether a
given di↵erential polynomial f 2 R is a consequence of (1). The di↵erential ideal
[F ] = [F [{f4}] in Definition 2.2 is radical, since the ideal generated by polynomials
in any PDE system outputted by the Thomas decomposition algorithm (see [2],
Sect.3; [17], Sect.2.2) is radical, what means

p
i 2 I (i 2 N�1) =) p 2 I .

Therefore, f is a consequence of (1) if and only if f 2 I (cf. [10], p.6). Both (4)
and (5) are di↵erential Gröbner bases of I. It can be readily verified by hand with

2For definition of integrability conditions, and for related algebraic and geometric aspects of
completion of di↵erential systems to involution we refer to [18], in particular, Sect.2.3 and Sect.7.2.
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the Olivier algorithm (see [16], p.314). Therefore, the reduction of f modulo (4)
or (5) is zero if and only if f 2 I.

It is easy to rewrite the equations in system (4) as conservation laws [24]

(6)

8
>><

>>:

f1 = div(u, v) = 0 ,

f2 = ut + div
�
u
2 + p� 1

Re
ux, vu� 1

Re
uy

�
= 0 ,

f3 = vt + div
�
uv � 1

Re
vx, v

2 + p� 1

Re
vy

�
= 0 ,

where div(a, b) := ax + by .
Now we consider a regular grid in the space R3 of independent variables (t, x, y)

with the grid spacings ⌧, h, h

(7) tn+1 � tn = ⌧ > 0 , xj+1 � xj = yk+1 � yk = h > 0 ,

and introduce the conventional notations (cf. [21, 23]) for the grid functions

u
n
j,k := u(n ⌧, j h, k h), v

n
j,k := v(n ⌧, j h, k h), p

n
j,k := (n ⌧, j h, k h) .

Because of the parameters Re, ⌧, h, we consider the field K = Q(Re, ⌧, h) of
rational functions in Re, ⌧, h with rational coe�cients and define the (infinitely
generated) polynomial algebra

R̃ = K[un
j,k, v

n
j,k, p

n
j,k | n, j, k � 0]

i.e. the (infinite) set of polynomials in u
n
j,k, v

n
j,k, p

n
j,k with coe�cients from K and

with operations of addition and multiplication3.
We endow R̃ with the partial shift operators �x,�y,�t, that is, R̃ is the algebra of

the di↵erence polynomials in the variables u = u
0
0,0, v = v

0
0,0 and p = p

0
0,0. In doing

so, the notion of di↵erence polynomial a perfect analogy of the above described
notion of di↵erential polynomial if one replaces the derivation operators with the
shift operators. By definition, �x : R̃ ! R̃ is the K-algebra endomorphism such
that

u
n
j,k 7! u

n
j+1,k , v

n
j,k 7! v

n
j+1,k , p

n
j,k 7! p

n
j+1,k .

In the same way, one defines the other shift operators �y and �t.
The following definition is a di↵erence analogue of Definition 2.2.

Definition 2.4. Given a finite set F̃ := { f̃1, . . . , f̃m } ⇢ R̃ of di↵erence polynomi-

als, the di↵erence ideal or ��ideal ([13], p.104) generated by the set F̃ and denoted

by Ĩ := [F̃ ] is the smallest subset of R̃ containing F̃ and satisfying

( 8a, b 2 Ĩ ), ( 8c 2 R̃ ) ( 8� 2 {�t,�x,�y } ) [ a+ b 2 Ĩ , a c 2 Ĩ , � � a 2 Ĩ ].

A di↵erence polynomial f̃ 2 R̃ is a finite sum of monomials

f̃ =
X

i

↵imi , ↵ 2 Q(Re, ⌧, h) , mi := (✓1 � u0

0,0)
i1(✓1 � v00,0)i2(✓1 � p00,0)i3 .

Here i1, i2, i3 2 N�0 and ✓1, ✓2, ✓3 2 ⇥ where

⇥ := {�n
t � �j

x � �k
y | i, j, k 2 N�0 }.

In perfect analogy to the notion of di↵erential ranking (Definition 3), we intro-
duce a notion of di↵erence ranking (cf.[13], p.129).

3Hereafter we will use the tilde mark (˜ ) placed over letters denoting di↵erence polynomials
and their sets.
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Definition 2.5. Let D be the following set:

D := { ✓ � w | ✓ 2 ⇥, w 2 {u0

0,0, v
0

0,0, p
0

0,0} } .

A total ordering � on D is di↵erence ranking if for any q, r 2 D such that q � r

the relations

�(q) � �(r) , �(q) � r ,

hold for all � 2 {�t,�x,�y}. Given such a ranking, every non-constant polynomial

f̃ 2 R̃ has the highest ranking variable ✓ � w occurring in f̃ . This variable is the

leader of polynomial f̃ . If the functions u, v, p are compared first and the shift

operators ✓ second, then the ranking is called elimination. Otherwise, the ranking

is called orderly.

Definition 2.6. A total ordering � on the set M of di↵erence monomials

M := {�n
t � �j

x � �k
y � w | n, j, k 2 N�0, w 2 {u, v, p} }

is admissible if it extends a ranking and satisfies

(8m 2 M\{1}) [m � 1] ^ ( 8 ✓ 2 ⌃) ( 8 a, b, c 2 M ) [ a � b () c ✓ � a � c ✓ � b ].

As an example of admissible monomial ordering, we indicate a lexicographical
ordering compatible with a lexicographical ranking. This monomial ordering is
similar to the lexicographical monomial ordering used in di↵erential algebra (Def-
inition 2 in [16]). Given an admissible ordering �, every di↵erence polynomial f̃
has the leading monomial lm(f̃) 2 M with the leading coe�cient lc(f̃). In what
follows every di↵erence polynomial is assumed to be normalized by the division of
the polynomial by its leading coe�cient. This provides ( 8f̃ 2 R̃ ) [ lc(f̃) = 1 ].

If for a, b, c 2 M the equality b = c ✓ � a holds for some ✓ 2 ⇥ and then we shall
say that a divides b and write a | b. It is easy to see that this divisibility relation
yields a partial order.

Now we can present a definition of di↵erence Gröbner (standard) basis – a uni-
versal algorithmic tool in the di↵erence polynomial algebra.

Definition 2.7. [4, 7, 12] Given a �-ideal Ĩ and an admissible monomial ordering

�, a subset G̃ ⇢ Ĩ is its (di↵erence) standard basis (cf. [16]), if [G̃] = Ĩ and

( 8 f̃ 2 I )( 9 g̃ 2 G̃ ) [ lm(g̃) | lm(f̃) ] .

If the standard basis is finite it is called a Gröbner basis.

This definition is not constructive. It does not give a recipe for construction of
a Gröbner basis. The following definition and theorem provide such a recipe.

Definition 2.8. [4, 7, 12] Given an admissible ordering, and normalized di↵erence

polynomials p̃, q̃, the polynomial S(p̃, q̃) := m1 ✓1�p̃�m2 ✓2�q̃ is called S-polynomial
associated to p̃ and q̃

4
, if m1 ✓1 � lm(p̃) = m2 ✓2 � lm(q̃) with co-prime m1 ✓1 and

m2 ✓2.

Theorem 2.9. [4, 7, 12] Given an ideal Ĩ ⇢ R̃ and an admissible ordering �, a

set of polynomials G̃ ⇢ Ĩ is a standard basis of Ĩ, if and only if NF(S(p̃, q̃), G̃) = 0
for all S-polynomials associated with the polynomials in G̃.

4For p̃ = q̃ we shall say that S-polynomial is associated with p̃.
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Here NF(S(p̃, q̃), G̃) denotes the simplified (reduced) value (normal form) of S(p̃, q̃)
modulo set G̃ which is computed by a finite chain of elementary reductions. For an
algorithmic construction of di↵erence Gröbner bases we refer to [4, 7, 12].

The di↵erence analogue of Definition 2.1 is the following one.

Definition 2.10. [4] Given a system of di↵erence equations

(8) f̃1 = 0, . . . , f̃m = 0 , f̃i 2 R̃ , i = 1, . . . ,m , m 2 N�1 ,

its (di↵erence–algebraic) consequence is a di↵erence equation f̃ = 0, f̃ 2 R̃ such

that f̃ vanishes on each solution to the system (8).

However, as distinct from the di↵erential case, the ideal generated by polynomials
f̃ 2 R̃ which vanish on all common solutions to (8)5 is not the radical di↵erence
ideal, but the perfect di↵erence ideal [13, 25] defined as follows.

Definition 2.11. ([13], Def.2.3.1) A perfect di↵erence ideal generated by a set

F̃ 2 R̃ and denoted by JF̃ K is the smallest di↵erence ideal containing F̃ and such

that for any f̃ 2 R̃, ✓1, . . . , ✓r 2 ⇥ and k1, . . . , kr 2 N�0

(✓1 � f̃)k1 s(✓r � f̃)kr 2 JF̃ K =) f̃ 2 JF̃ K , ✓1, . . . , ✓r 2 ⌃ , k1, . . . , kr 2 N�0 .

3. Consistency of FDA with the Navier-Stockes equations

In this section we discuss the consistency issues for FDA to the system of Navier-
Stokes equations in its involutive form (4) when the pressure Poisson equation (2)
is incorporated.

Definition 3.1. [4, 8] We shall say that a di↵erence equation f̃ = 0 (f̃ 2 R̃)
defined on grid (7) implies the di↵erential equation f = 0 (f 2 R) and write f̃ B f

if the Taylor expansion about a grid point yields

f̃ ����!
⌧,h!0

f +O(⌧, h)

where O(⌧, h) denotes terms that reduce to zero when ⌧, h ! 0.

Definition 3.2. [4] Given a FDA

(9) { f̃ = 0 | f̃ 2 F̃ := {f̃1, f̃2, f̃3, f̃4 } ⇢ R̃ }

to (4), we shall say that FDA is weakly consistent or w-consistent with (4), if

(10) ( 8f̃ 2 F̃ ) ( 9f 2 F := { f1, f2, f3, f4, } ) [ f̃ B f ] .

The notion of w-consistency is a natural adaptation of the notion of consistency
for a single di↵erential equation [21, 23] to di↵erential systems (cf. [15], Sect.5.4).
However, w-consistency does not guarantee suitability of a FDA for approximation
of a solution to the di↵erential system. To show this for our case of the Navier-
Stokes equations (4), consider the following approximation obtained in [5]

5Usually one considers solutions in the universal family of di↵erence field extensions of
K (see [13], Sect.2.6).



8 P. AMODIO, Y. BLIKOV, V. GERDT, AND R. LA SCALA

(11)

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ẽ1 :=
un
j+1 k�un

j�1 k

2h +
vn
j k+1�vn

j k�1

2h = 0 ,

ẽ2 :=
un+1
j k �un

j k

⌧ +
(un

j+1 k)
2�(un

j�1 k)
2

2h +
un
j k+1v

n
j k+1�un

j k�1v
n
j k�1

2h

+
pnj+1 k�pnj�1 k

2h � 1
Re

⇣
un
j+1 k�2un

j k+un
j�1 k

h2 +
un
j k+1�2un

j k+un
j k�1

h2

⌘
= 0 ,

ẽ3 :=
vn+1
j k �vn

j k

⌧ +
un
j+1 kv

n
j+1 k�un

j�1 kv
n
j�1 k

2h +
(vn

j k+1)
2�(vn

j k�1)
2

2h

+
pnj k+1�pnj k�1

2h � 1
Re

⇣
vn
j+1 k�2vn

j k+vn
j�1 k

h2 +
vn
j k+1�2vn

j k+vn
j k�1

h2

⌘
= 0 ,

ẽ4 :=
pnj+1,k�2pnj,k+pnj�1,k

h2 +
pnj,k+1�2pnj,k+pnj,k�1

h2

+
(un

j+1,k)
2�2(un

j,k)
2+(un

j�1,k)
2

h2 +
(vn

j,k+1)
2�2(vn

j,k)
2+(vn

j,k�1)
2

h2

+
un
j+1,k+1v

n
j+1,k+1�un

j+1,k�1v
n
j+1,k�1�un

j�1,k+1v
n
j�1,k+1+un

j�1,k�1v
n
j�1,k�1

2h2 .

It is easy to see that (11) implies (4), ẽi B fi (i = 1, . . . , 4), and hence (11) is
w-consistent. Consider now the S�polynomial (cf. Definition 2.8) associated with
ẽ1 and ẽ2

S(ẽ1, ẽ2) := 2h�1 � ẽ2 � ⌧ �1 � ẽ1
The straightforward computation shows that this S�polynomial satisfies the

equality

(12)

S(ẽ1, ẽ2)� ẽ2
n
j�1,k2h+ ẽ3

n
j,k+12h� ẽ3

n
j,k�12h+ ẽ1

n
j,k⌧

+
4
Re

�
ẽ1

n
j+1,k + ẽ1

n
j,k+1 � 4ẽ1

n
j,k + ẽ1

n
j�1,k + ẽ1

n
j,k�1

�
� ẽ4

n
j,kh

2 =

= (un
j+2, k)

2 � (un
j+1, k)

2 � (un
j�1, k)

2 + (un
j�2, k)

2

+ (vnj, k+2)
2 � (vnj, k+1)

2 � (vnj, k�1)
2 + (vnj, k�2)

2

+ pnj+2, k + pnj, k+2 � pnj+1, k � pnj, k+1 � pnj�1, k � pnj, k�1 + pnj�2, k + pnj, k�2 .

The left-hand side of (12) is a di↵erence-algebraic consequence of (11) (see Defi-
nition 2.10) , and after division of the both sides in (12) by 3h2, its right-hand side
implies

(13) g := � p+ 2uuxx + 2vvyy + 2u2

x + 2v2y .

The di↵erential polynomial g in (13) is not a di↵erential-algebraic consequence
of (1). This can be verified using the well known exact solution [14, 22] to the
Navier-Stokes equations (1)

8
>><

>>:

u = �e
� 2t

Re cos(x) sin(y) ,

v = e
� 2t

Re sin(x) cos(y) ,

p = � 1

4
e
� 4t

Re (cos(2x) + cos(2y)) ,

(14)

whose substitution into the right-hand side of (13) shows that g does not vanish
whereas, by Definition 2.1, (14) must be a solution to any di↵erential-algebraic
consequence of (1). Therefore, FDA (11) is not suitable for numerical construction
of the exact solution (14). We demonstrated this by numerical experiments in [1].



ALGEBRAIC CONSTRUCTION OF A NEW S-CONSISTENT . . . 9

To be suitable for numerical construction of any smooth solution to the system (4),
its FDA must possess the property of strong consistency formulated in the following
definition.

Definition 3.3. [4] A FDA (9) to the system (4) is strongly consistent or s-
consistent, if each di↵erence-algebraic consequence of the FDA implies a di↵erential-

algebraic consequence of (4).

(15) ( 8f̃ 2 JF̃ K ) ( 9f 2 Jf1, f2, f3, f4K ) [ f̃ B f ] .

Note that in the case when a PDE system under consideration possesses a conser-
vation law in the form of di↵erential polynomial, a good FDA to the PDE system
much have a di↵erence-algebraic consequence which imply the conservation law.
An s-consistent FDA satisfies this requirement. In our case the initial PDEs admit
the conservation law form (6), and any w-consistent FDA preserves this form at
the discrete level.

It is clear that s-consistency implies w-consistency. The converse is generally not
true, as we have shown above by example (11). In the case of linear PDE systems
s-consistency admits the algorithmic verification [8] by construction of a Gröbner
basis of the di↵erence ideal generated by the polynomials occurring in FDA. Since
the Navier-Stokes system (1) or (4) is nonlinear, the verification of s-consistency
for its FDA is based on the following theorem proved in [4].

Theorem 3.4. [4] A w-consistent di↵erence approximation (10) to (4) is s-con-

sistent, if and only if a standard basis G̃ ⇢ R̃ of the di↵erence ideal [F̃ ] satisfies

( 8g̃ 2 G̃ ) ( 9 g 2 JF K ) [ g̃ B g ] .

In contrast to linear di↵erential systems, for nonlinear systems in general and
for the Navier-Stokes equations in particular, a di↵erence Gröbner basis may not
exist, i.e. be infinite. In this situation, the algorithm described in [4, 7, 12] can be
used to verify wether the intermediate S�polynomials, that arise in course of the
algorithm imply di↵erential-algebraic consequences of the Navier-Stokes equations.
Since a S�polynomial is a di↵erence consequence of the FDA under consideration,
in the case of s-consistency it implies a di↵erential polynomial that belongs to the
radical di↵erential ideal generated by the Navier-Stokes equations. This condition
is necessary for the s-consistency of FDA and admits algorithmic verification.

In [4, 7, 12] the simplest forms of a Bucheberger’s like algorithm were proposed
for computatiing a Gröbner basis for finitely generated di↵erence ideals.

4. Derivation of new s-consistent FDA

In this section we explain how to obtain a new s-consistent finite di↵erence
approximation to the Navier-Stokes equations (1) by means of the computation
of a di↵erence Gröbner basis. We start with a di↵erence approximation ẽ1, ẽ2, ẽ3

in (11) to the Navier-Stokes equations (1).
Then, we denote by Ĩ ⇢ R̃ the di↵erence ideal which is generated by the dif-

ference polynomials corresponding to the equations (11). Aiming to obtain a time-
independent equation with linear leading monomial in the variable p in order to
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solve numerically the FDA, we compute a di↵erence Gröbner basis of Ĩ with respect
to the lexicographic ranking with

�t � �x � �y p � u � v .

Precisely, we fix on the polynomial algebra R̃ the lexicographic monomial order-
ing based on the following variable ordering. For all q, r 2 {u, v, p} (p > u > v)
we define q

n
j,k � r

n0

j0,k0 if and only if lexicographically (n, j, k) > (n0
, j

0
, k

0) or
(n, j, k) = (n0

, j
0
, k

0) ^ q > r . The result of the computation is the Gröbner ba-
sis of Ĩ given on the next page.

g̃1 :=
un
j+2,k+1 � un

j,k+1 + vnj+1,k+2 � vnj+1,k

2h
,

g̃2 :=
un+1
j+1,k+1 � un

j+1,k+1

⌧
�

un
j+2,k+1 � 4un

j+1,k+1 + un
j,k+1 + un

j+1,k+2 + un
j+1,k

h2Re

+
(un

j+2,k+1)
2 � (un

j,k+1)
2 + un

j+1,k+2v
n
j+1,k+2 � un

j+1,kv
n
j+1,k + pnj+2,k+1 � pnj,k+1

2h
,

g̃3 :=
vn+1
j+1,k + un+1

j,k+1 � vnj+1,k+2 � un
j+2,k+1

⌧
�

pnj+1,k+1 � un
j+2,k+2v

n
j+2,k+2

h
4vnj+1,k+2 � vnj+1,k+1 + 4un

j+2,k+1 � un
j+1,k+1 � un

j+3,k+1 � un
j+2,k

h2Re

�
un
j+2,k+2 + vnj+2,k+2 + vnj,k+2 + vnj+1,k+3

h2Re
�

un
j+2,kv

n
j+2,k � pnj+3,k+1 � (vnj+1,k+3)

2

2h

�
(vnj+1,k+1)

2 � pnj+1,k+3 � (un
j+3,k+1)

2 + (un
j+1,k+1)

2 + un
j,k+2v

n
j,k+2

2h
,

g̃4 := �
un+1
j,k+2 + un

j+2,k+2 � vnj+1,k+1 + vnj+1,k+3

⌧
�

(vnj+1,k+2)
2 � un

j+2,k+1v
n
j+2,k+1

h

�
un
j+2,k+3v

n
j+2,k+3

h
�

un
j+1,k+2 � 4un

j+2,k+2 � vnj+2,k+1 + un
j+3,k+2 + vnj+2,k+3

h2Re

�
un
j+2,k+1 + un

j+2,k+3 � vnj,k+1 + vnj,k+3 � vnj+1,k + vnj+1,k+4 + 4vnj+1,k+1 � 4vnj+1,k+3

h2Re

+
un
j,k+1v

n
j,k+1 � un

j,k+3v
n
j,k+3 + pnj+1,k � pnj+1,k+2 + pnj+1,k+4

2h

+
pnj+3,k+2 � (un

j+1,k+2)
2 + (un

j+3,k+2)
2 + (vnj+1,k)

2 + (vnj+1,k+4)
2

2h
,

g̃5 :=
pnj+4,k+2 + pnj+2,k+4 + pnj,k+2 + pnj+2,k + (un

j,k+2)
2 + (un

j+4,k+2)
2

2h

+
(vnj+2,k+4)

2 + (vnj+2,k)
2

2h
+

vnj+2,k+3 � vnj+2,k+1 � un
j+1,k+2 + un

j+3,k+2

⌧

�
(vnj+2,k+2)

2 + (un
j+2,k+2)

2 � un
j+1,k+1v

n
j+1,k+1 + un

j+1,k+3v
n
j+1,k+3

h

�
un
j+3,k+1v

n
j+3,k+1 � un

j+3,k+3v
n
j+3,k+3 + 2pnj+2,k+2

h
�

4un
j+1,k+2 + 4vnj+2,k+1

h2Re

+
4un

j+3,k+2 + 4vnj+2,k+3 + un
j,k+2 + un

j+1,k+1 + un
j+1,k+3 � un

j+3,k+1 � un
j+3,k+3

h2Re

�
un
j+4,k+2 � vnj+1,k+1 + vnj+1,k+3 � vnj+2,k + vnj+2,k+4 � vnj+3,k+1 + vnj+3,k+3

h2Re
.

Such computation is obtained by means of a Buchberger’s like algorithm which
is described in full detail in [7, 12]. We just mention that by applying all possible
shifts to the elements {g̃i} one obtains a Gröbner basis of Ĩ as an ordinary ideal of
R̃. Then, this algorithm essentially reduces the s-polynomial computations of the
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ordinary Buchberger’s algorithm up to the monoid symmetry defined by the action
on R of the shift operators. By these methods it takes less then 3 sec to obtain {g̃i}
with an experimental implementation in Maple. Note that this computing time has
been obtained on a laptop with a four core Intel i3 at 2.20GHz and 16GB RAM.
Observe now that the leading monomials of the di↵erence Gröbner basis {g̃i} are
all linear ones, namely

lm(g̃1) = u
n
j+2,k+1

, lm(g̃2) = u
n+1

k+1,j+1
, lm(g̃3) = v

n+1

j+1,k ,

lm(g̃4) = u
n+1

j,k+2
, lm(g̃5) = p

n
j+4,k+2

.

Furthermore, the element g5 is time-independent and hence it is suitable to obtain
an FDA which can be easily solved numerically. Up to some minor simplifications,
such FDA is given by the following equations

un+1
j,k � un

j,k

⌧
+

(un
j+1,k)

2 � (un
j�1,k)

2

2h
+

vnj,k+1u
n
j,k+1 � vnj,k�1u

n
j,k�1

2h
+

pnj+1,k � pnj�1,k

2h

�
1

Re

✓un
j+1,k � 2un

j,k + un
j�1,k

h2
+

un
j,k+1 � 2un

j,k + un
j,k�1

h2

◆
= 0 ,

vn+1
j,k � vnj,k

⌧
+

(vnj,k+1)
2 � (vnj,k�1)

2

2h
+

un
j+1,kv

n
j+1,k � un

j�1,kv
n
j�1,k

2h
+

pnj,k+1 � pnj,k�1

2h

�
1

Re

✓vnj+1,k � 2vnj,k + vnj�1,k

h2
+

vnj,k+1 � 2vnj,k + vnj,k�1

h2

◆
= 0 ,

pnj+2,k � 2pnj,k + pnj�2,k

4h2
+

pnj,k+2 � 2pnj,k + pnj,k�2

4h2

+
(un

j+2,k)
2 � 2(un

j,k)
2 + (un

j�2,k)
2

4h2
+

(vnj,k+2)
2 � 2(vnj,k)

2 + (vnj,k�2)
2

4h2

+ 2
un
j+1,k+1v

n
j+1,k+1 � un

j+1,k�1v
n
j+1,k�1 � un

j�1,k+1v
n
j�1,k+1 + un

j�1,k�1v
n
j�1,k�1

4h2

+
2

Re

�un
j+2,k + 4un

j+1,k � 4un
j�1,k + un

j�2,k � un
j+1,k+1 � un

j+1,k�1 + un
j�1,k+1 + un

j�1,k�1

4h3

+
2

Re

�vnj,k+2 + 4vnj,k+1 � 4vnj,k�1 + vnj,k�2 � vnj+1,k+1 � vnj�1,k+1 + vnj+1,k�1 + vnj�1,k�1

4h3
= 0 .

It is interesting to note that the last computer-generated di↵erence equation is in
fact the approximation of the following di↵erential equation

(pxx + pyy) + 2(u2

x + uxvy + uyvx + v
2

y + u(uxx + vxy) + v(uxy + vyy))

� 1

Re
(uxxx + uxyy + vxxy + 6vyyy) = 0.

One can check that this equation belongs to the di↵erential ideal generated by the
Navier-Stokes equations which provides the s-consistency of the above scheme.

5. Numerical implementation

Let us suppose that the square (rectangular) domain is discretized with respect
to x and y in order to obtain, for each value of t, M ⇥ N gridpoints for u, v and
p. At each time step the unknowns values may be obtained by means of a simple
implementation of the scheme that we have introduced in the previous section.

In particular, since in the first two equations there is only one term at time n+1,
these equations may be used to compute the unknown values of u and v explicitly.
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For j = 1, . . . , N � 1 and k = 1, . . . ,M � 1, from the first equation

u
n+1

j,k = u
n
j,k

� ⌧

2h

⇣
(un

j+1,k)
2 � (un

j�1,k)
2 + v

n
j,k+1

u
n
j,k+1

� v
n
j,k�1

u
n
j,k�1

+ p
n
j+1,k � p

n
j�1,k

⌘

+ ⌧

h
2Re

⇣
u
n
j+1,k � 2un

j,k + u
n
j�1,k + u

n
j,k+1

� 2un
j,k + u

n
j,k�1

⌘

while, from the second one,

v
n+1

j,k = v
n
j,k

� ⌧

2h

⇣
(vnj,k+1

)2 � (vnj,k�1
)2 + u

n
j+1,kv

n
j+1,k � u

n
j�1,kv

n
j�1,k + p

n
j,k+1

� p
n
j,k�1

⌘

+ ⌧

h
2Re

⇣
v
n
j+1,k � 2vnj,k + v

n
j�1,k + v

n
j,k+1

� 2vnj,k + v
n
j,k�1

⌘
,

where, for j = 1, j = M � 1, k = 1 and k = N � 1, the unknowns depend on the
known boundary conditions. It is easy to prove that these formulae are O(h2) and
O(⌧) accurate.
After computing the values of u and v at time step n+1, the third equation proposed
in the previous section may be used to compute the unknown values of p at the
same time step n+ 1. For j = 2, . . . , N � 2 and k = 2, . . . ,M � 2 it is necessary a
rewriting in the following form

�p
n+1

j�2,k � p
n+1

j,k�2
+ 4pn+1

j,k � p
n+1

j,k+2
� p

n+1

j+2,k = b
n+1

j,k ,

where

b
n+1

j,k = (un+1

j+2,k)
2 � 2(un+1

j,k )2 + (un+1

j�2,k)
2 + (vn+1

j,k+2
)2 � 2(vn+1

j,k )2 + (vn+1

j,k�2
)2

+ 2
⇣
u
n+1

j+1,k+1
v
n+1

j+1,k+1
� u

n+1

j+1,k�1
v
n+1

j+1,k�1
� u

n+1

j�1,k+1
v
n+1

j�1,k+1
+ u

n+1

j�1,k�1
v
n+1

j�1,k�1

⌘

+ 2
hRe

⇣
�u

n+1

j+2,k + 4un+1

j+1,k � 4un+1

j�1,k + u
n+1

j�2,k � u
n+1

j+1,k+1
� u

n+1

j+1,k�1

+ u
n+1

j�1,k+1
+ u

n+1

j�1,k�1
�v

n+1

j,k+2
+ 4vn+1

j,k+1
� 4vn+1

j,k�1
+ v

n+1

j,k�2

�v
n+1

j+1,k+1
� v

n+1

j�1,k+1
+ v

n+1

j+1,k�1
+ v

n+1

j�1,k�1

⌘

contains known quantity. Therefore the computation of p at time step n+1 requires
the solution of a linear system with a coe�cient matrix having 5 non-zero diagonals
and hence the computational cost of this system depends linearly on the number
of unknowns. It is worth to note that, di↵erently from what happens with the
classical discretization of the Laplacian, in the proposed discretization the non-
zero diagonals have distance 2 and 2M from the main one (see Fig. 1). This also
means that it is necessary to combine the proposed formulae with di↵erent ones
approximating the solution in the points near the boundaries.

6. Numerical tests

We have compared the new scheme (called FDA1 in the following) with one using
classical discretization formulae

ux(xj , yk, tn) ⇡
u
n
j+1,k � u

n
j�1,k

2h
, uxx(xj , yk, tn) ⇡

u
n
j+1,k � 2un

jk + u
n
j�1,k

h2
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Figure 1. Sparsity structure of the coe�cient matrix comput-
ing the unknown values of p. Circle identifies non-zero elements.
Points identify non-zero elements after factorization.

of order 2 in space and

ut(xj , yk, tn) ⇡
u
n+1

jk � u
n
jk

⌧

order 1 in time (FDA2):

un+1
jk � un

jk

⌧
+ un

jk

un
j+1,k � un

j�1,k

2h
+ vnjk

un
j,k+1 � un

j,k�1

2h
+

pnj+1,k � pnj�1,k

2h

�
1

Re

✓un
j+1,k � 2un

jk + un
j�1,k

h2
+

un
j,k+1 � 2un

jk + un
j,k�1

h2

◆
= 0,

vn+1
jk � vnjk

⌧
+ un

jk

vnj+1,k � vnj�1,k

2h
+ vnjk

vnj,k+1 � vnj,k�1

2h
+

pnj,k+1 � pnj,k�1

2h

�
1

Re

✓vnj+1,k � 2vnjk + vnj�1,k

h2
+

vnj,k+1 � 2vnjk + vnj,k�1

h2

◆
= 0,

✓un
j+1,k � un

j�1,k

2h

◆2

+ 2
vnj+1,k � vnj�1,k

2h

un
j,k+1 � un

j,k�1

2h
+

✓vnj,k+1 � vnj,k�1

2h

◆2

+
pnj+1,k � 2pnjk + pnj�1,k

h2
+

pnj,k+1 � 2pnjk + pnj,k�1

h2
= 0.
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Moreover, we have compared these schemes with the one which was proposed in [5]
and studied in [1] (FDA3)

un+1
jk � un

jk

⌧
+

un
j+1,k

2 � un
j�1,k

2

2h
+

vnj,k+1u
n
j,k+1 � vnj,k�1u

n
j,k�1

2h
+

pnj+1,k � pnj�1,k

2h

�
1

Re

✓un
j+2,k � 2un

jk + un
j�2,k

4h2
+

un
j,k+2 � 2un

jk + un
j,k�2

4h2

◆
= 0,

vn+1
jk � vnjk

⌧
+

un
j+1,kv

n
j+1,k � un

j�1,kv
n
j�1,k

2h

vnj,k+1
2 � vnj,k�1

2

2h
+

pnj,k+1 � pnj,k�1

2h

�
1

Re

✓vnj+2,k � 2vnjk + vnj�2,k

4h2
+

vnj,k+2 � 2vnjk + vnj,k�2

4h2

◆
= 0,

un
j+2,k

2 � 2un
j,k

2 + un
j�2,k

2

4h2
+

vnj,k+2
2 � 2vnj,k

2 + vnj,k�2
2

4h2

+ 2
un
j+1,k+1v

n
j+1,k+1 � un

j+1,k�1v
n
j+1,k�1 � un

j�1,k+1v
n
j�1,k+1 + un

j�1,k�1v
n
j�1,k�1

4h2

+
pnj+2,k � 2pnjk + pnj�2,k

4h2
+

pnj,k+2 � 2pnjk + pnj,k�2

4h2
= 0 .

Note that the first two equations of FDA3 coincide with those proposed in this
paper while the third is simpler, even if less e�cient.
In the following examples we have compared these three schemes by using the
following absolute/relative error formula

(16) e
n
g = max

j,k

|gnj,k � g(xj , yk, tn)|
1 + |g(xj , yk, tn)|

.

where g 2 {u, v, p} and g(x, y, t) belongs to the exact solution.

6.1. Taylor decaying problem. This is a classical Navier-Stokes problem, which
is generally used to state the convergence order of the considered scheme. The exact
solution (14) in [0, 2⇡] ⇥ [0, 2⇡] ⇥ [0, 6], where the Reynolds number Re = 10�2.
Fig. 2 contains the computed error for three di↵erent choices of h (error in u and
v coincides). The value of ⌧ = 10�2 ⌧ h so that we are able to confirm that the
order of convergence with respect to h is essentially 2 for the first two methods.
On the other hand, the lower picture shows the instability of FDA3 for decreasing
values of h.

6.2. Kovasznay flow problem. The exact solution is
8
<

:

u := 1� e
�x cos(2⇡y) ,

v := �
2⇡ e

�x sin(2⇡y) ,
p := p0 � 1

2
e
2�x

.

in [�1.5, 1.5] ⇥ [�2.5, 2] ⇥ [0, 1], where � = Re/2 �
q
Re2/4 + 4⇡2. We have set

Re = 40 and p0 = 1.
The exact solution is independent of t but in general the numerical solution dete-

riorates for increasing values of the time variable. Exact solution shows oscillations
in u and v with respect to the variable y (see Fig. 3 for the v-component). In
Fig. 4 we depict the contour plots of the numerical solution of the v-component
for h 2 {10�1

, 5 10�2
, 2.5 10�2} with respect to the exact one (in the right-lower
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Figure 2. Taylor decaying problem: error with h = .1, .05, .025
in the computed solution with FDA1 scheme (top), second order
standard discretizations FDA2 (center) and FDA3 (bottom)
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Figure 3. Kovasznay flow problem: exact solution for the v component

corner). We observe how strange oscillations for h = 10�1 disappear when smaller
stepsize are considered

In Table 1 we show the error in the three components of the solution.

h Error in u Error in v Error in p

1e-1 5.74e-01 4.26e-01 4.16e-01
5e-2 2.36e-01 1.44e-01 1.17e-01

2.5e-2 6.94e-02 3.45e-02 6.26e-02

Table 1. Kovasznay flow problem: computed error with the
FDA1 scheme for di↵erent values of h.

7. Conclusions

In this paper we introduce a new s-consistent finite di↵erence approximation
to the Navier-Stokes equations. By using the symbolic methods in [7, 12] our
construction is obtained by computing the di↵erence Gröbner basis for the ideal
generated by the three di↵erence polynomials which were derived earlier in [5], as a
part of the s-consistent approximation to the involutive form of the Navier-Stokes
equations. Those three di↵erence polynomials are w-consistent with the continuity
equation and the proper Navier-Stokes equations.

The obtained Gröbner basis contains two more di↵erence polynomials where one
of them is equivalent to the pressure Poisson equation modulo the di↵erence ideal
which is generated by the proposed basis. We have added the equation correspond-
ing to this element of the Gröbner basis to the initial three di↵erence equations
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Figure 4. Kovasznay flow problem: contour plots for the numer-
ical solutions with h = .1, .05, .025 and the exact solution at t = 1
for the v component of the solution

and we have performed some mutual simplification in the obtained finite di↵er-
ence approximation. We have finally shown that the new di↵erence system, as
approximation to the Navier-Stokes equations, is s-consistent and has a very good
numerical behavior.
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