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Abstract 
In this paper, we formulate a hierarchical Bayesian version of the Mixture of Uni- 

grams model for text clustering and approach its posterior inference through vari- 

ational inference. We compute the explicit expression of the variational objective 

function for our hierarchical model under a mean-field approximation. We then 

derive the update equations of a suitable algorithm based on coordinate ascent 

to find local maxima of the variational target, and estimate the model parameters 

through the optimized variational hyperparameters. The advantages of variational 

algorithms over traditional Markov Chain Monte Carlo methods based on iterative 

posterior sampling are also discussed in detail. 
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1 Introduction 

Text clustering is a data analysis activity that has become increasingly important 

with the availability of large collections of text data from the Web (Andrews and 

Fox 2007; Aggarwal and Zhai 2012). Once the corpus has been suitably trans- 

formed into a structured data source, each document is assigned, in an unsuper- 

vised manner, to a single label indicating the thematic content of the document 

itself. The main underlying assumption is that a document can be represented as 

a Bag-of-Words (BOW; Harris 1954), in the sense that both the syntax and the 

order of occurrence of individual terms are not relevant for decoding the seman- 

tics, but only the frequency of occurrence of each term. In other words, each doc- 

ument can be represented as a high-dimensional vector of counts, and documents 

with different thematic content (topic) will tend to be dissimilar, in the sense that 

terms that occur frequently in documents of one class will tend to be less frequent 

in documents of other classes. 

Since documents are converted into numerical vectors, the most obvious 

approach is to use classical hierarchical algorithms based on purely geometric 

notions, such as the distance between two points in a p-dimensional space, where 

clusters are sets of nested subsets arranged as a tree. Iterative partitioning algo- 

rithms, such as k-means, are another possibility. Each of these approaches has its 

advantages and disadvantages, both in terms of computational cost and accuracy 

in forming clusters, and we refer the reader to the extensive literature on this topic 

(Anastasiu et al. 2014; Xu and Tian 2015) for further discussion. An alternative 

view is the probabilistic approach, in which the overall likelihood function of a 

corpus is modeled as a finite mixture of Multinomial distributions, each of which 

is determined by a particular probability distribution of the frequency of occur- 

rence of terms (Nigam et al. 2000). A topic is then identified as a probability 

distribution over the vocabulary of terms. This model, commonly known as mix- 

ture of Unigrams, has been generalized in several directions in the literature. For 

example, latent topic models are extremely flexible generative models that allow 

for multiple topics to occur simultaneously in a single document because different 

words in the document can be assigned to different topics (Blei et al. 2003; Blei 

and Lafferty 2007; Blei 2012). 

Mixtures of Unigrams are finite mixtures of Multinomial likelihoods and, as 

such, can be represented by a hierarchical Bayesian model by introducing a set of 

latent variables that describe to which component of the mixture each observation 

belongs. The model is augmented by a set of prior distributions for the weights 

of the mixture and the likelihood parameters, with hyperparameters set in such a 

way that these distributions are weakly informative (Gelman et al. 2013). Learn- 

ing the parameters of this hierarchical full-Bayes model has traditionally been 

dominated in the literature by the use of iterative Markov Chain Monte Carlo 

methods (MCMC; Frühwirth-Schnatter 2006). However, their behavior is often 

problematic due to the geometric properties of the likelihood surface, which is 

invariant for each of the k! permutations of the component indices (when the mix- 

ture has k components). When the prior distributions of the model parameters 



  

 

 

are symmetric, this invariance is transferred to the posterior distribution, with 

the result that any MCMC algorithm tends to jump between the posterior modes 

and produce inconsistent estimates. This phenomenon, known as label switch- 

ing, reflects the impossibility of learning any feature of the mixture model that 

depends on the labels of the components (Celeux et al. 2018b). The use of 

MCMC methods is also problematic when we are dealing with the “big k prob- 

lem” (i.e., with high-dimensional mixtures). In this case, schemes based on the 

Metropolis-Hastings algorithm are difficult to tune, while the use of Gibbs sam- 

pling tends to produce extremely sparse partitions when the posterior estimates of 

the latent variables are used to assign the observations to the components of the 

mixture (Chandra et al. 2020). 

In contrast to MCMC methods, the variational approach to posterior inference 

is based on optimization. The posterior surface is approximated by a suitable non- 

concave objective function depending on a set of variational hyperparameters that 

control the quality of the approximation (Blei et al. 2017). This objective func- 

tion is maximized by an ad-hoc coordinate ascent variational inference (CAVI) 

algorithm. Each run of the algorithm converges to a single local maximum of the 

objective function, and multiple runs can be used to find the best one and esti- 

mate the model parameters through the optimized variational hyperparameters. 

The method does not suffer from the difficulties associated with label switching, 

since only a single mode is explored at a time, nor is it affected by the curse of 

dimensionality, since the exploration of modes is limited only by the available 

computational resources. 

Given the scenario described above, in this paper we make a number of contri- 

butions to the variational inference of generative models for textual data. First, we 

formulate a hierarchical Bayesian version of the Mixture of Unigrams model and 

approach its posterior inference through a special variational method known as 

mean-field inference (Plummer et al. 2020). We calculate the explicit expression of 

the objective function for our hierarchical model under this variational approxima- 

tion. The variational target is also known as the Evidence Lower Bound (ELBO). 

We then derive the update equations of the CAVI algorithm to find local maxima of 

the ELBO. Finally, we show how these algorithmic tools can be applied in the con- 

text of Bayesian text clustering. Last but not least, we conduct a simulation experi- 

ment to investigate the goodness of the approximation of the marginal likelihood 

by the output of the variational procedure for the purpose of model selection (i.e., 

selecting the number of components of the mixture). 

The paper is organized as follows. Section 2 introduces the basic notation and 

presents the details of our Bayesian hierarchical mixture of Unigrams. Section 3 

describes the mean-field variational inference for the proposed model. Section 4 

compares the advantages of optimization-based posterior variational inference 

with the computational difficulties of using traditional iterative MCMC algo- 

rithms. Section 5 describes the CAVI variational algorithm for posterior param- 

eter estimation based on iterative coordinate ascent and also discusses its com- 

putational complexity. Section 6 presents some experimental results on using the 

proposed model for text clustering and compares it with some benchmark clus- 

tering procedures. The problem of choosing the number of components is also 
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investigated using a simulation study. Section 7 reports a bird’s eye view of the 

advantages and disadvantages of variational inference, draws some conclusions, 

and outlines possible future work. 

 

 

 

2 Hierarchical Dirichlet‑multinomial mixtures 

2.1 Basic definitions and notation 

 
Suppose we have a vocabulary V with p = |V| terms from a corpus of n docu- 

ments. We make the usual hypothesis that the data generating mechanism can be 

viewed as a generative probabilistic model that outputs infinitely exchangeable 

streams of terms, such that any two finite sequences of the same length, differing 

only in the order of occurrence of the terms, are generated with the same prob- 

ability and are considered the same BOW (Gelman et al. 2013). In practice, the 

BOW representation is a feature generation tool, since the i-th document, where 

i = 1, 2, … , n, can be represented as a vector of counts: 

yi = (yi1, yi2, … , yip), (1) 

where yil, for l = 1, 2, … , p, provides the number of occurrences for the l-th term 

in the vocabulary V. 

In language model theory, infinite exchangeability is often reformulated in a 

simpler way by assuming that for any document, the probability of occurrence of 

a word in V does not depend on its position in the document, and that the prob- 

ability of occurrence of a finite stream of words of arbitrary length can be factored 

as the product of the corresponding marginal probabilities. These conditions define 

the Unigram language model (Nigam et al. 2000), under which the likelihood of the 

vector of counts yi for the i-th document takes the familiar Multinomial form: 

 

p(yi�β)=  

p 

l=1 
p 

l=1 

yil 

�
! �p 

yil ! l=1 

 

 

βyil , 
 

(2) 

where β = (β1, β2, … , βp)∈ ℝp is the vector of Multinomial parameters that must 

satisfy the constraints 𝛽l > 0 for l = 1, 2, … , p and 
∑p 

βl = 1. Another standard 

document-wise hypothesis is that the documents in the corpus are assumed to be 

conditionally independent given the Multinomial parameters. It is also worth point- 

ing out the role of the Multinomial coefficient, usually abbreviated as follows: 

�∑p 
yil 

�
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y 
� 

p 
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yil ! yi 

with yi+ = yi1 + yi2 + ⋯ + yip. The parameter yi+ (the length of the i-th document) 

is a nuisance parameter that enters only into the normalization constant and is there- 
fore irrelevant for the inference from the posterior distribution of parameters. 
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2.2 The hierarchical model 

 
Extending the Unigram model to a hierarchical mixture of Unigrams introduces 

additional probabilistic levels to increase flexibility. We now assume that each docu- 

ment in the corpus can be assigned to one and only one of k different thematic con- 

tents (or topics). Under this hypothesis, the entire corpus is probabilistically mod- 

eled as a finite mixture model written as the following hierarchical specification 

based on the Multinomial likelihood: 

ind. 

yi|β, zi ∼ Multinomialp(βj), i = 1, 2, … , n, (3) 

 

ind 

zi|ß ∼ Multinoullik (ß), i = 1, 2, … , n, 

 

β |ϴ
in
∼

d.
Dirichlet (1 ϴ), j = 1, 2, … , k, 

(4) 

 

(5) 
 

ß|a ∼ Dirichletk (1 a), (6) 

where 𝛼, 𝜃 > 0 are strictly positive real numbers and denotes a vector of all ones. 

The Multinomial parameters are combined into a matrix β ∈ ℝk×p: 

β = {βjl }, j = 1, 2, … , k, l = 1, 2, … , p, (7) 

where each row of the β matrix is a discrete probability distribution βj ∈ ℝp repre- 

senting a topic, i.e., a probability distribution of the vocabulary of terms V, since 
different documents may have different thematic content in the sense that terms that 

occur frequently in one document may be of little importance in another. A priori, 

we do not know the thematic content of each document, or in other words, we do not 

know what βj distribution determines the probability of occurrence of words. This 

means that for a given document, the row index j that selects the corresponding dis- 

tribution from the β matrix is a latent variable, which can be modeled with the latent 

indicator vector zi ∈ ℝk such that zij = 1 and zijf = 0 for jf ≠ j, while ß ∈ ℝk denotes 

the mixture weights (Robert 2007). 

We assume that the hyperparameters ϴ and are fixed and known. Since they 

are used to fully specify the highest level of the hierarchical structure, it is com- 

mon to choose a non-informative (or otherwise weakly informative) setting, such as 

ϴ = 1. With this choice, the prior distribution (5) is uniform over the k-dimensional 

simplex. Of course, this is not the only possible setting. For example, Wallach et al. 

(2009) consider the possibility of using an asymmetric Dirichlet prior (where the 

hyperparameters vary across the components) and discuss the advantages of this 

choice. In this case, a mixed variational/empirical Bayes procedure can be used 

for parameter estimation. Although this situation is not the focus of this paper, we 

will discuss this possibility in more detail in Sect. 7. It is also worth noting that a 

symmetric Dirichlet prior corresponds to an exchangeable prior over the Multino- 

mial parameters, which implicitly gives the data more weight in updating the pos- 

terior distribution of each βj with an appropriate (weakly informative) choice of the 
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concentration parameter ϴ. This model is minimal in the sense that it can provide a 

baseline specification to illustrate our framework for Bayesian posterior inference, a 

specification that can be enriched with better structured and informed priors, as dis- 

cussed in more detail in Sect. 7. 

The unnormalized posterior distribution of the model parameters can be factored 

as follows: 

p(β, z, ß|y, ϴ, a )∝  p(y|z, β, ß, ϴ, a)p(β, z, ß|ϴ, a) = 

= p(y|β, z)p(z|ß)p(β|ϴ)p(ß|a), 

 
(8) 

where y = (y1, y2, … , yn). The graphical representation of this dependence structure 
between random variables can be seen in Fig. 1. As mentioned above, the hyperpa- 

rameters ϴ and  are fixed, but we still use them explicitly in the notation. 

Taking advantage of the conditional independence between the marginal com- 

ponents of the likelihood and the prior distributions of the model parameters, the 

marginal likelihood of the model is: 

p(y|ϴ, a)=
  

J 

, 
p(yi|β, zi)p(zi|ß)p(β|ϴ)p(ß|a)dßdβ, 

 
(9) 

 

which is clearly intractable. Therefore, the unnormalized posterior distribution (8) is 

not available in closed form, and we must resort to appropriate numerical methods 

for Bayesian estimation of the model parameters. 

Equally interesting is the finding that the variance of each class-conditional 

likelihood exhibits overdispersion compared to the standard Multinomial dis- 

tribution, as a consequence of explicitly accounting for the variability of the 

 

 

 

Fig. 1 Directed acyclic graph (DAG) representation of the hierarchical Dirichlet-multinomial multino- 

mial mixture model. Circles represent stochastic nodes that may be observed (data) or unobserved (latent 

variables); arrows denote stochastic dependence. The number of conditionally independent components 

of each stochastic node (except ß, which has only one component) is given in the bottom-right corner of 

the enclosing plates. The hyperparameters ϴ, a ∈ ℝ enclosed in a square are fixed and known 



  

 

 

Multinomial probabilities across topics. We give further details on this phenom- 

enon in the Appendix 1. 

 

 

 

3 Approximate posterior inference 

To achieve our goals, we propose an optimization-based algorithm for the pos- 

terior parameter estimation of our hierarchical Dirichlet-Multinomial mixture 

model. To address the problem of analytic intractability of the marginal distri- 

bution (9), we will use an approach known in the literature as variational infer- 

ence (Jordan et al. 1999; Blei et al. 2017). The starting point is to approximate 

the posterior distribution p(β, z, ß|y, ϴ, a) by a variational distribution q(β, z, ß|v), 

which itself depends on the variational parameters  . Our optimization problem 

is: 

𝜈⋆ = argmin KL(q(𝛽, z, 𝜆|𝜈)||p(𝛽, z, 𝜆|y, 𝜃, 𝛼)), 
𝜈 

(10) 

where the variational objective is the reverse Kullback–Leibler (KL) divergence 

between the posterior distribution and the variational distribution (Murphy 2012). 

The solution of (10) provides the best possible approximation to the intractable pos- 

terior distribution with respect to the KL-divergence, and the optimized variational 

distribution q(𝛽, z, 𝜆|𝜈⋆) is used to approximate the posterior inference of the model 

parameters. In this way, the posterior inference is treated as an optimization problem 

rather than a Monte Carlo sampling problem (Ghahramani 2015). 

The search for the optimal approximating distribution can be greatly simpli- 

fied if we define the Evidence Lower Bound (ELBO) as follows: 

ELBO(q)= Eq

 
log p(y, z, β, ß|ϴ, a)

 
− Eq

 
log q(β, z, ß|v)

 
, (11) 

which is a functional of the variational distribution q. By making explicit the expres- 

sion of the expected values in (11), the ELBO is a function of both the variational 

parameters and the hyperparameters ϴ and . It can then be shown that (Zhang et al. 

2019; Tran et al. 2021): 

log p(y|ϴ, a)= ELBO(q)+ KL(q(β, z, ß|v)||p(β, z, ß|y, ϴ, a)). (12) 

Since the KL-term is always positive, minimizing the KL-divergence with respect to 

the variational parameters is equivalent to maximizing the ELBO with respect to the 

variational parameters, and: 

log p(y|ϴ, a) ≥ ELBO(q), 

i.e., the ELBO is a lower bound on the marginal log-likelihood. Therefore, minimiz- 

ing (10) with respect to the variational parameters is equivalent to determining the 

tightest possible lower bound on the marginal log-likelihood. 
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3.1 Mean‑field variational inference 

 
To implement variational inference, we chose to specify the variational distribu- 

tion q(β, z, ß|v) using a classical mean-field approximation with independent com- 

ponents (Wainwright and Jordan 2007; Blei et al. 2017): 
 

k n 

q(β, z, ß|v) =
   

q(βj|øj)×
   

q(zi| i)× q(ß|η), 

 

where øj ∈ ℝp, i, η ∈ ℝk, and: 

ind. 

j=1 i=1 

βj|øj ∼ Dirichletp(øj), j = 1, 2, … , k (13) 

 

ind 

zi| i ∼ Multinoullik ( i), i = 1, 2, … , n 

ß|η ∼ Dirichlet (η). 

(14) 

 

(15) 

 

In this specification, the variational parameters i are probability distributions, 

while øj and η satisfy the only constraint that their components must be positive. 

The graphical representation of this collection of distributions, shown in Fig. 2, 

shows how the latent indicator variable z and the mixture weights ß are decoupled 

in the variational distribution q (unlike in the hierarchical model formulation). 

Moreover, each latent indicator variable has a specific variational parameter, 

since we want to approximate the posterior distribution of each marginal compo- 

nent of the latent vector z. 

For the model we are dealing with, the ELBO has the following expression 

(the derivation of this expression is given in Appendix 1): 
 

 

 
 

 

 

Fig. 2 Graphical representation 

of the mean-field variational 

approximation used to approxi- 

mate the posterior distribution 

of the proposed model 
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,n 

ELBO(q)=  
,p ,k ,p 

yil ij Ψ(øjl )−Ψ  øjl + (16) 

i=1 l=1 j=1 l=1 

 

,n ,k 

+  ij Ψ(ηj)− Ψ 
,k 

ηj + (17) 

i=1 j=1 j=1 

+ k log Γ(pϴ)− kp log Γ(ϴ)+  

,k ,p  
,p 

 } 

+ 

j=1 l=1 

(ϴ − 1) Ψ(øjl )−  Ψ  
l=1 

øjl + (18) 

+ log Γ(ka)− k log Γ(a)+  

,k 
 
,k 

 } 

+ (a − 1) Ψ(η j)−Ψ ηj − 
j=1 j=1 

(19) 

 

,k 

– log Γ 
,p ,k 

øjl + 
,p 

log Γ(øjl )−  
j=1 

,k ,p 

l=1 j=1 l=1 
  } 
, 

(20) 

– 
j=1 l=1 

(øjl − 1) Ψ(øjl )−Ψ  
l=1 

øjl − 

 
n k 

− 
, ,

 ij log ij − 
i=1 j=1 

(21) 

 

– log Γ 

,k 

,k 

 

j=1 

ηj + 

  

,k 

 

j=1 

log Γ(ηj)−  

 
,k 

 } 

 

 
(22) 

– 
j=1 

(ηj − 1) Ψ(η j)−Ψ  ηj , 

j=1 

where Ψ(⋅) indicates the Digamma function (logarithmic derivative of the Gamma 

function): 

Ψ(z) = 
 d 

dz 

 

Γ(z) =  
Γf(z) 

. 
Γ(z) 

Note that the form of the class-conditional distributions is not used in computing 

the ELBO expression. Instead, Eqs. (16) to (19) reflect the terms of the hierarchical 

structure of the model, so that the computation of ELBO can be easily extended as 
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the model becomes more complex by adding new levels (the same holds for ELBO 

terms that depend on the variational distribution). 

 

 

4 Sampling‑based versus optimization‑based posterior inference 

To obtain the joint distribution of the data and latent variables, we can combine (3) 

and (4). Given the conditional independence assumptions, the joint distribution of 

data and latent indicators is: 
n n 

p(y, z|β, ß)=
   

p(yi, zi|β, ß)=
   

p(yi|β, zi)p(zi|ß)=  
i=1 
n k 

i=1 
n k (23) 

=
     

p(y | zij  
zij 

    
ß p(y |β )

 zij . 
  

To marginalize with respect to the latent variables, we need to sum with respect to 

all possible z configurations, leading to the familiar likelihood representation that 

does not rely on the introduction of latent indicators into the model: 

p(y |β, ß)= 
, 

p(y |β, z )p(z |ß)= 
, 

ß p(y |β )
 zis = 

i i i i 

zi 

k 

s i  s 

zi  s=1 
 

(24) 

= 
, 

ßjp(yi βj), 

j=1 

which is invariant for each of the k! possible permutations of the summands. If we 

assume an exchangeable prior over the parameters of (24), this invariance is inher- 

ited by the posterior distribution, which has k! symmetric modal regions correspond- 

ing to all possible permutations of the parameter labels. This phenomenon is known 

in the literature as ‘label-switching’ and causes considerable difficulty in exploring 

the posterior surface with MCMC sampling. Indeed, the MCMC sampler can jump 

between two different modes differing only in the ordering of the labels, making it 

impossible to compute ergodic averages to obtain posterior Monte Carlo estimates 

of the model parameters (Diebolt and Robert 1994). This fact reflects the impos- 

sibility of learning any feature of the distribution (24) that depends on the labels of 

the components. 

Among the many solutions proposed in the literature, the most common is to 
break the exchangeability of the prior distribution by imposing constraints in the 

parameter space, such as 𝜆1 < 𝜆2 < ⋯ < 𝜆k , which can be easily integrated into 

the MCMC sampler. However, there is no guarantee that these constraints can 
completely eliminate the symmetries in the posterior distribution. Other solutions 

work as post-processing algorithms of the MCMC output and generate a relabe- 

ling based on a suitable loss function (Celeux et al. 2000; Stephens 2000; Li and 

Fan 2016). It is generally accepted that these methods perform better than impos- 

ing constraints on the parameter space, since the resulting posterior marginal 

i=1 j=1 i=1 j=1 
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distributions of the parameters are often unimodal and well separated. However, 

they are computationally expensive and not fully justified from a theoretical point 

of view, since they implicitly impose constraints that are not part of the prior 

specification (Kunkel and Peruggia 2020). Many alternative algorithms for rela- 

beling have been proposed in the literature, but we do not know how they affect 

posterior inference and how to choose between them. 

In contrast, variational inference, like any optimization algorithm, depends on 

initial conditions and focuses on one of the possible k! modes of the posterior 

surface depending on those conditions. For the class of models we are concerned 

with, this is of course not a drawback, since we know that a single mode contains 

all the information for exploring latent groups and estimating parameters (Blei 

et al. 2017). 

 

 

 

5 A coordinate ascent variational inference (CAVI) algorithm 

A simple algorithm for maximizing the ELBO is based on a coordinate ascent 

scheme, where we maximize the ELBO for one parameter at a time while hold- 

ing all others constant and iteratively updating the estimates until convergence 

is achieved (Lee 2021). For our model, it can be shown that the updating equa- 

tions have a particularly simple expression. The updating equation of ij is, for 

i = 1, 2, … , n and j = 1, 2, … , k: 

 

 ij ∝ exp 

p 

 

l=1 

 

yil Eq

 
log βjl 

 

E
 

log ßj 

  

. 

 

 
(25) 

z ____________________   
xij 

 

The expected values under the variational distribution q appearing in (25) coincide 

with the expected values of the minimal sufficient statistics of the Dirichlet distribu- 

tion when represented as a natural exponential family in canonical form (Nielsen 

and Garcia 2009). Their explicit expression can be found in Appendix 1. Since for 

fixed i the set { ij; j = 1, 2, … , k} is a set of Multinational parameters that sum to 1, 

the proportionality sign in (25) indicates that the elements of this set must be nor- 

malized after the update is complete as follows: 

exp(xij) 
 ij = 

k 

s=1 

. 

exp(xis) 
(26) 

This normalization requires special attention because the first summand in (25) is 

usually a very large negative number that may cause an underflow when exponenti- 

ated. In this case, a common solution is to resort to the log-sum-exp trick, which 

transforms the normalized values (26) to a logarithmic scale (Blanchard et al. 2021): 

+ 



  

 

 

s=1 is 

s=1 is i 

k 

n 

n 

 

log ij = log 
exp(xij) 

∑k 
exp(x ) 

= 

�k 

= log exp(xij)− log 

�k 

 

s=1 
exp(xis)=  

= xij − log 

 

= xij − log 

 

s=1 

�k 

 
s=1 

exp(xis)=  

exp(xis) exp(Zi) exp(−Zi) = 

= xij − Zi − log 

� 

�
�k 

s=1 

� 

exp(xis − Zi) = 

� 

= log 
exp(xij − Zi) 

∑k 
exp(x − Z ) 

, 

and taking Zi = max{xi1, x12, … , xik } we have exp(xij − Zi) ≤ 1 and: 

, 
exp(xis − Zi) ≥ 1, 

s=1 

even though individual terms of the above summation may underflow to 0. 

The update equations of ηj, for j = 1, 2, … , k, and øjl, for j = 1, 2, … , k and 

l = 1, 2, … , p, are respectively: 

ηj = a + 
,
 ij, 

i=1 

 
(27) 

 

øjl = ϴ + 
, 

yil ij. 
i=1 

 
(28) 

Proof of these update equations can also be found in Appendix 1. For the conveni- 

ence of the reader, we report the pseudo-code of CAVI in Algorithm 1. In general, 

it can be shown that the ELBO is a concave function with respect to each of the 

arguments considered separately, holding all others constant (Plummer et al. 2020). 

Thus, the maximization of the ELBO for each parameter separately has only one 

solution that can be obtained with first partial derivatives without resorting to the 

computation of second partial derivatives or Hessian matrices. However, the ELBO 

is in general a non-concave function, and therefore CAVI only guarantees conver- 

gence to a local optimum that can be sensitive to the initial values (Blei et al. 2017). 

Results that guarantee convergence to a local maximum are known only in special 

cases that strongly depend on the model structure (as in the case of finite Gaussian 



  

 

 

mixtures, Titterington and Wang 2006, or LDA, Awasthi and Risteski 2015). For the 

proposed model, investigating the sensitivity to the initial values by monitoring the 

ELBO is a reasonable diagnostic to implement variational inference with the CAVI 

algorithm. 

 

 

The computational properties of the CAVI algorithm call into question the 

comparison with MCMC methods when the number of mixture components is 

very large. It is well known in the literature that MCMC algorithms have numer- 

ous structural difficulties when the number of k components is very large (Celeux 

et al. 2018b). In this case, the Metropolis-Hastings schemes are difficult to tune 

and are practically usable only for moderately sized mixtures (Frühwirth-Schnat- 

ter 2006). Gibbs sampling has been shown to be the only computationally feasible 

method for high-dimensional mixtures. However, several authors have noted that 

Gibbs sampling often fails to converge to a smaller number of nonempty clusters 

and promotes overfitting by providing solutions where we have many sparse clus- 

ters with only a few instances (Malsiner-Walli et al. 2016; Celeux et al. 2018b; 

Chandra et al. 2020). None of these problems occur with variational inference. 

Each run of the algorithm converges to a single local maximum of the ELBO, so 

we can use multiple runs to find the optimal one. Of course, this procedure is not 

painless, since in the case of a high-dimensional mixture we need a large num- 

ber of runs, which obviously affects the total computation time. Moreover, the 

obtained solution may be suboptimal, since the local maxima explored may not 

contain the absolute maximum. 
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5.1 Additional considerations 

 
The CAVI algorithm outputs the marginal components of the optimized varia- 

tional distribution q(𝛽, z, 𝜆|𝜈⋆), which can be used to obtain approximate poste- rior 

estimates of the model parameters. In particular, exploiting the fact that the 
variational distribution of each βj is a Dirichlet: 

𝜙⋆ 
l 𝛽⋆ = ∑ , (29) 

jl p ⋆ 
l=1 jl 

and in the same way approximate posterior estimates of the mixing weights are 

given by: 

 

𝜆⋆ = ∑ 

𝜂⋆ 

k 

s=1 

 
. 

𝜂⋆ 

 

(30) 

Applying the same principle again, the approximate posterior estimate of the prob- 
ability of success associated with the marginal component zij of the indicator vari- 

able zi is calculated as follows: 

q(zij = 1|𝛾⋆)= E (z ij|𝛾⋆)= 𝛾⋆. (31) 
i q i ij 

The use of these probabilities becomes relevant for unsupervised classification. The 

decision rule is to assign the label j
MAP

 that satisfies the following condition: 

j
MAP

 = argmax q(z = 1|𝛾⋆). 
i ij i 

j 
(32) 

The use of (32) to decide how to partition the sample observations is obviously justi- 

fied from an intuitive point of view. Moreover, it is well known that the decision rule 

(32) minimizes the expected posterior loss if we use a 0/1 loss function to penalize 

incorrect allocations (Hastie et al. 2009). 

 

 

5.2 Computational complexity 

 
The analysis of the computational complexity of the algorithm allows us to make 

some quantitative considerations about its performance. In particular, looking 

at Algorithm 1, we can identify the following three subcomponents, for each of 

which we estimate the time complexity: 

• O(n ∗ k) for the block 2–7 (two nested for loops), having the dominant state- 

ments at lines 4 and 5; 
• O(k) for the block 8–10, having the dominant statement at line 9; 

• O(k ∗ p) for the block 11–14, having the dominant statement at line 13. 



  

 

 

The time complexity of all the three subcomponents have to be multiplied by the 

number of iterations of the while loop, which upper bound is maxiter (for exam- 

ple, maxiter = 50). Since it is a constant, it is asymptotically dominated by the 

other terms and does not affect the overall complexity. Therefore, the whole algo- 

rithm has the following time complexity: 

O(n ∗ k)+ O(k)+ O(k ∗ p )= O(n ∗ k )+ O(k ∗ p). (33) 

Therefore, it is clear that if the number of documents is greater than the number of 
terms, O(n ∗ k) dominates the whole time complexity (and, thus, the block 2–7 is 

dominant); otherwise, the term O(k ∗ p) dominates the whole time complexity (and, 

thus, the block 11–14 is dominant). The total time complexity can also be general- 

ized as: 

O(max(n, p)∗ k). (34) 

As explained in detail earlier, the run of the algorithm is repeated   times to 

explore multiple modes of the ELBO surface. For the same reasons given above, the 

asymptotic time complexity of the algorithm does not change, since  is a con- 

stant. We can also say that the running time is proportional to , i.e., it grows 

linearly with the number of runs. Thus, if n or p are not excessively large, Algo- 

rithm 1 remains computationally feasible even for high-dimensional mixtures, where 

a large number of modes will likely need to be explored to find the optimal solution. 

 

 

 

6 Experimental work 

6.1 Benchmark models 

 
Geometric clustering algorithms Geometric clustering procedures partition the fea- 

ture space into k disjoint subsets (clusters) based on the distance between any two 

data points. The classical algorithms used for comparisons fall into two classes (Xu 

and Tian 2015, is a useful survey): 

 
• Hierarchical agglomerative procedures. Simple, complete and average linkage; 

Ward method (in each step the method finds the pair of clusters that leads to a 

minimum increase in total variance within the clusters after merging); Centroid 

method (the distance between two clusters is the distance between the two mean 

vectors of the clusters). 

• Iterative method. Spherical k-means; Partitioning around medoids (PAM; unlike 

k-means, which uses centroids, PAM uses medoids, which are always actual 

points in the data set). 

 

We measured the distance between two documents using cosine dissimilarity to 

eliminate the confounding effect of variability in the number of terms in each docu- 

ment (Dhillon and Modha 2001; Hornik et al. 2012): 
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⟨yi, yj⟩ 
d(yi, y j)= 1 − cos( ŷi y j ) = 1 − 
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(35) 
i j 

The Anderlucci-Viroli (AV) model More parsimonious versions of our model that 

can be estimated without variational inference are indeed possible. For example, 

Anderlucci and Viroli (2020) propose the following specification: 

ind. 

yi|β, zi ∼ Multinomial (βj), i = 1, 2, … , n, (36) 

 

ind 

zi|ß ∼ Multinoullik (ß), i = 1, 2, … , n, (37) 

 

ind 

βj|ϴj ∼ Dirichletp(ϴj), j = 1, 2, … , k, (38) 

with ϴj ∈ ℝp, where the class-conditional parameters ϴj and the mixture weights ß 

are assumed to be fixed and unknown. For parameter estimation, the authors con- 
sider maximum likelihood estimation and propose a first-order iterative procedure 

based on gradient descent. The paper states that the proposed algorithm is efficient 

as it generally converges quickly in a few iterations. However, the dependence of the 

obtained solutions on the initial conditions was not further investigated, although 

there is a possibility that their algorithm converges to insensitive or spurious 

maxima or remains trapped in degeneracies of the likelihood surface (Baudry and 

Celeux 2015). More importantly, the proposed estimation procedure is essentially 

based on the fact that the class-conditional distributions are Dirichlet-Multinomials 

after integrating out the Multinomial parameters (see Appendix 1). We will discuss 

this crucial assumption in Sect. 7. 

Latent Dirichlet allocation (LDA) 

The specification of k probability distributions for the Multinomial param- 

eters in the proposed model suggests an obvious similarity to the generative 

structure of the Latent Dirichlet Allocation (LDA) model presented in Blei et al. 

(2003), in which we also have k probability distributions over the vocabulary of 

terms V. However, with the proposed hierarchical specification, each document 

can be hard-clustered to a single topic. In contrast, the LDA model is a mixed 

membership model (Airoldi et al. 2014), and its starting point is an uncollapsed 

product-Multinoulli likelihood over a stream of terms, with each word associ- 

ated with a latent topic. In other words, multiple topics can occur simultane- 

ously in each document in the corpus, and a general goal of interest is to find 

out which themes are predominant. This model has been used extensively for 

the analysis of textual data (and also for the analysis of biological data; see, 

e.g. Sankaran and Holmes 2019, for analysis of human microbiota data based on 

LDA). However, it does not automatically provide better results than the stand- 

ard mixture of Unigrams model and its extensions, especially for short texts or 

when the coexistence of multiple thematic contents is a difficult assumption to 

maintain. 



  

 

 

6.2 Binary clustering of short texts 

 
Unsupervised classification of short texts is often challenging when using tradi- 

tional BOW representations due to sparse text representation (Manning et al. 2008; 

Rakib et al. 2020). To consider a dataset affected by these issues, we used a subset 

of the Reuters 21578 collection (Apté et al. 1994) previously used by Anderlucci 

and Viroli (2020) to compare the results of frequentist estimation of their model 

described in Sect. 6.1. The authors showed how their mixture of Dirichlet-Multino- 

mials outperformed a number of standard competitors (including the Naïve Bayes 

mixture of Unigrams and, not surprisingly given the shortness of the texts, Latent 

Dirichlet Allocation). The corpus considered consists of n = 70 documents, 50 of 

which belong to the acq class and 20 to the crude class, with a clear imbalance 

between the two classes. 

The raw text data were analyzed with R 4.2.2 (R Core Team 2022) using the 

infrastructure provided by the library tm (Feinerer et al. 2008; Feinerer and Hornik 

2020). The following preprocessing steps were applied to each document in the order 

given: removal of extra white spaces, removal of punctuation and numbers, conver- 

sion to lowercase, removal of stop words, stemming to reduce inflectional forms to a 

common base form, successive recompletion using the most frequent match as com- 

pletion, tokenization into unigrams (single terms). The final result is the vocabulary 

of terms V and the term-document matrix, whose generic element yil represents the 

frequency of occurrence of the l-th term of V in the i-th document. Specifically, the 

dimension of the term-document matrix was 70 × 1518, with a sparsity of 96% and 

an average number of words per document of 54.79. 

Next, we applied our model with k = 2 and used the default values a = 1 and 

ϴ = 5∕k. This choice is neutral with respect to and weakly informative with respect 

to ϴ: in the absence of additional information on which to base another choice, i.e., a 

convincing external validation showing that a different setting has a decisive impact 

on the clustering process, they appear reasonable, leaving most of the responsibility 

for updating the posterior distribution to the data. It is also important to remem- 

ber that the components of the posterior distribution are decoupled in variational 

inference. For example, we can change the value of  without affecting the shape 

of the posterior distribution of β and vice versa (see also the update equations in 

Algorithm 1). 

We applied the CAVI algorithm implemented in R 4.2.2 with nruns=100, start- 

ing from randomly chosen initial values, and for each of these runs we alternated 

between the update equations (25), (27) and (28) with maxiter=50. As an exam- 

ple, in Fig. 3 we show a subset of the trajectories of the CAVI algorithm. In general, 

the convergence is very fast, and it is obvious that each run reaches a different sta- 

tionary point since we have many different local maxima in the ELBO. Better local 

optima lead to a variational approximation closer to the exact posterior. Since the 

ELBO is guaranteed to increase monotonically across CAVI iterations, any behavior 

of the trajectories that does not satisfy this requirement indicates a programming 

error in the code. 

The results obtained were accuracy = 95.71% and ARI = 82.92 (Adjusted Rand 

Index), versus accuracy = 97.14% (ARI = 88.39) obtained by Anderlucci and Viroli 



  

 

 

 

 

Fig. 3 Some trajectories of the CAVI algorithm applied to Reuters 21578 data (k = 2) 

 

(2020). However, we repeated the numerical experiment nruns = 500 times and 

obtained accuracy = 98.57% (ARI = 94.08) as the optimal result, with only one doc- 

ument of class crude incorrectly labeled as acq. This result suggests that there 

are local maxima in the ELBO surface that are not easily explored and that pro- 

vide an almost exact approximation to the posterior distribution using the variational 

approximation. To explore these modes, we need to run the algorithm a sufficiently 

large number of times. However, this strategy is not computationally infeasible 

because, as mentioned earlier, the total computation time increases linearly as the 

number of runs increases. 

 

6.3 Multiclass clustering 

 
For this specific experiment, we adopted the dataset BBCSport, which is part of a 

larger collection provided for use as a benchmark for machine learning and text min- 

ing research (Greene and Cunningham 2006; Kaggle 2022). The corpus consists of 

n = 737 documents from the BBC Sport website corresponding to sports news arti- 

cles in five topical areas from 2004 to 2005: 

 

• athletics (101 documents, 13.70%) 

• cricket (124 documents, 16.82%) 

• football (265 documents, 35.96%) 

• rugby (147 documents, 19.95%) 

• tennis (100 documents, 13.57%) 

 

The documents in the 5 classes show a considerable degree of semantic similarity, 

because although they refer to different sports, they clearly fall under the general the- 

matic content of news published by a sports newsroom. Also in this case, the corpus 

was subjected to the same preprocessing steps as in the previous example, resulting 

in a large matrix 737 × 7883 with an extreme sparsity level of 98.58%. Therefore, 

we removed all terms that occurred less frequently, i.e., all terms t ∈ V for which 
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DF < 0.05 × n, where DF indicates the document frequency of t ∈ V . The result- 

ing matrix was 737 × 207 with an overall sparsity of 82%. Also in this case, we ran 

the CAVI algorithm with k = 5, with nruns=100 and maxiter=100, a = 1 and 

ϴ = 5∕k. A subset of the trajectories is shown in Fig. 4, which confirms the impres- 
sion of an extremely fast convergence to local maxima. 

Unlike the previous example, where it was a simple task to assign the correct 
labels to the partitions created by the clustering algorithm, in this case accuracy was 

defined based on the best match between the true labels ci ∈ {1, 2, … , k} and the 

cluster labels c ̂i as follows: 

accuracy = max 
1 , 

1
 
c = p(ĉ )

 
, 

 
(39) 

p∈P n 
i i 

i=1 

where P is the set of all permutations in {1, 2, … , k}. To solve the optimization 

problems in (39) in polynomial time, we used the Hungarian solver from the pack- 

age RcppHungarian (Silverman 2022) to maximize the sum of diagonal ele- 

ments of the confusion matrix with respect to all permutations of rows or columns. 

The results obtained are shown in Table 1, where all calculations were performed 

with k = 5 groups for comparison (k = 5 topics in the case of the LDA model). For 

the two algorithms whose results depend on the choice of initial conditions (spheri- 

cal k-means and LDA), we performed 50 runs with different initial seeds, showing 

the best result in terms of accuracy. 

The poor performance of purely geometric hierarchical methods, which cannot 

take into account the semantics of the problem, is of course no surprise, with some 

exceptions such as Ward’s method, which relies on directly minimizing the total 

variance within each cluster, and the PAM algorithm, which iteratively assigns each 

document to the nearest medoid to form clusters. The best non-probabilistic method 

is the spherical k-means algorithm (Hornik et al. 2012), which achieves comparable 

performance to the analysis originally presented in Dhillon and Modha (2001). The 

LDA model also performs poorly, due to the aforementioned fact that each docu- 

ment cannot be considered a mixture of well-separated topics. 

 

 

Fig. 4 Some trajectories of the CAVI algorithm applied to BBCSport data (k = 5) 
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Table 1 Adjusted Rand Index (ARI) and accuracy expressed as percentage (accuracy) for different clus- 

tering methods applied to BBCSport data 

Algorithm ARI Accuracy (%) 

Hierarchical-single linkage with cosine dissimilarity 0.00 35.96 

Hierarchical-complete linkage with cosine dissimilarity – 0.03 32.43 

Hierarchical-average linkage with cosine dissimilarity 0.00 36.23 

Hierarchical-Ward’s method with cosine dissimilarity 0.37 58.07 

Hierarchical-centroid method with cosine dissimilarity 0.00 35.96 

Partitioning around medoids (PAM) with cosine dissimilarity 0.32 64.45 

Spherical k-means with cosine dissimilarity 0.49 70.56 

Latent Dirichlet allocation (LDA) with k = 5 topics 0.21 51.70 

Hierarchical mixtures of Dirichlet-multinomials (CAVI) 0.58 74.22 

 

Apart from the fact that the proposed model works most accurately on this data- 

set, it should also be noted that, unlike geometric methods, it provides estimates of βj 

distributions (the topics) that can provide interesting clues for interpreting clusters. 
In Fig. 5, we provided estimates of the probability of occurrence of the top 10 terms 

sorting the rows of the estimated β by the estimated weights 𝜆⋆ of each component. 

For example, the first distribution contains terms such as chelsea and foot- 

ball, which immediately point to football as the thematic content of these news 

(note also the estimated weight, 𝜆⋆ = 32.71% versus ß2 = 35.96%). The third com- 
ponent is clearly related to athletics, given the presence of terms such as race and 

olympiad (𝜆⋆ = 13.84% versus ß4 = 13.70%). For the other three distributions, 

 

 

 
Fig. 5 Top-10 terms for each row of the estimated β matrix. The rows of β have been sorted by the esti- 

mated weights 𝜆⋆ ( j = 1, 2, … , k) of each component 



  

 

 

although the estimated weights essentially reflect the actual weights (which are not 

known in real applications), we have considerable difficulty in assigning the docu- 

ments classified in these groups to a well-defined thematic content. This is reflected 

in the classification accuracy achieved (not greater than 75%), which in turn reflects 

the considerable overlap we can find between news about cricket and news about 

rugby. Tennis, of course, has its own specific terminology, but the terms that have 

high discriminatory power (e.g., serve, let, ace, fault) are rarely mentioned in the 

published news. They are often brief and generally serve only to inform about the 

result of the match and the statements of the participants in the post-match press 

release. 

 

 

6.4 Model determination 

 
In the previous examples we assumed that the number of components k was known. 

However, this is almost never the case, and an important question, both theoreti- 

cally and practically relevant, is whether the unknown number of components k 

can be estimated from the output of the CAVI algorithm. The marginal likelihood 

is intractable in principle for our model, but could be replaced by the final value of 

ELBO, which is a tight lower bound for the log-marginal likelihood (as proposed, 

e.g., in Blei et al. 2017). However, there are some problematic issues in this con- 

text that require further discussion. First, the ELBO is certainly a lower bound on 

model evidence, but the variational gap varies between different models, so ELBO 

comparisons can be misleading. Second, for the reasons outlined in Sect. 5, it makes 

sense to examine only one modal region of the posterior distribution if our goal is to 

estimate the parameters, although this may not be sufficient if our goal is to examine 

the entire density surface of the marginal likelihood. This problem is known to occur 

with sampling-based methods, as the literature describes that traditional MCMC 

algorithms often do not mix appropriately and do not explore the entire support of 

the target distribution. Marginal likelihood estimates obtained from draws of poorly 

mixed samples are prone to bias (Frühwirth-Schnatter 2004; Marin and Robert 

2008). These considerations also apply to variational inference, since the algorithm 

approximates the volume occupied by the posterior distribution of parameters by 

only one of the possible k! modes. In Murphy (2012) a possible correction is pro- 

posed, but the extent of bias reduction is not well understood. 

Another potential problem arises from the fact that the components of the 

approximated posterior distribution are assumed to be conditionally independent. 

Thus, the ELBO is an objective function that can be written as a linear sum of 

terms (which greatly simplifies the calculations). However, the first term (16), 

which is directly related to the Multinomial likelihood is very small on the loga- 

rithmic scale and dominates the other summands. Consequently, using ELBO to 

select k often leads to overfitting and promotes sparsity of component weights, 

as the optimized value of ELBO as a function of k slowly increases with increas- 

ing k, while new and poorly identified components whose mixing weights are 

very close to zero enter the model and increase the relative importance of the 

other summands. This effect is well documented in the literature dealing with 



  

 

 

k 

j 

j j 

variational inference for Multinomial likelihood and is not mitigated even when 

we compute the predictive likelihoods on held-out data (Blei et al. 2003; Nikita 

2020). 

A popular alternative for model determination is the Bayesian Information Cri- 

terion (BIC; Celeux et al. 2018a), which approximates the marginal likelihood by 

ignoring the impact of the prior: 

BIC = −2l⋆ + P log(n), (40) 
k k k 

where l⋆ denotes the log-likelihood evaluated in the approximate parameter esti- 

mates obtained by the variational algorithm, while Pk = k(p − 1)+ (k − 1)= kp − 1 
is the total number of free parameters of the likelihood. The BIC assumes that the 

data generating process is within the model collection, and it has been shown to be 

consistent when the probability distribution of the mixture components is bounded 

and satisfies mild regularity conditions (Keribin 2000). We can legitimately replace 

the standard maximum likelihood estimates with the variational Maximum a Poste- 

riori (MAP) estimates and maintain the same asymptotic validity for BIC conver- 

gence. It should also be noted that, for reasons of numerical stability, it is preferable 

to compute the individual terms of the log-likelihood on a logarithmic scale, again 

by resorting to a numerical trick of the log-sum-exp type: 

n k 

l⋆ = log p(y|𝛽⋆, 𝜆⋆)= log
 , 

𝜆⋆p(yi|𝛽⋆)=  
k j j 

i=1 j=1 
n k n k 

= 
, 

log 
, 
𝜆⋆p(yi|𝛽⋆)= 

, 
log 

, 
exp(log(𝜆⋆p(yi|𝛽⋆)) = (41) 

i=1 

n 

j 

j=1 
k 

j 

i=1 

j j 

j=1 

= 
, 

log 
, 

exp(log 𝜆⋆ + log p(yi|𝛽⋆)). 

However, given the limited precision available for standard floating-point arithmetic, 

it is not uncommon for the term log p(yi|𝛽⋆) to get into underflow, making numerical 

computation infeasible. In this case, the only possible solution is trade off efficiency 

for accuracy, by performing the computations with a library that implements float- 

ing-point arithmetic with arbitrary precision (such as Rpmfr; Maechler 2022). 

Figure 6 shows an example related to the dataset BBCSport. As can be seen, the 

ELBO grows slowly and stabilizes only for k ≥ 9, resulting in an overparameteriza- 

tion corresponding to an unparsimonious representation of the data. Conversely, the 

BIC strongly penalizes the number of components, leading to a slight under-para- 

metrization with respect to the true value k = 5. 

To further explore the model selection problem and highlight the differences 

between the two criteria (ELBO and BIC), we created a set of synthetic corpora 

obtained by subsampling the BBCSport dataset. The actual number of topics k var- 

ied in the set {3, 4, 5}, while the number of documents d in each synthetic corpus 

varied in the set {20, 50, 100}. For each possible pair (k, d), we created 50 corpora in 

the following way: 

i=1 j=1 



  

 

 

 

 
 

Fig. 6 Optimized ELBOs and variational estimates of the Bayesian Information Criterion (BIC) variation 

as a function of k (see the text for details). The dataset used is BBCSport 

 
• To create each of the 50 corpora, we randomly extracted, without repetition, 

k integers between 1 and 5 (in the case k = 5, of course, we did no extraction, 

since each label appears in each corpus). 

• Next, for each of the sampled labels, d documents were sampled without repe- 

tition, so that each synthetic corpus contained exactly n = k × d documents (of 
course, the topical areas of each of the 50 synthetic corpora may be different, 

except in the case k = 5). 

 

For each corpus, the same preprocessing scheme was used to extract the document 

term matrix, closely following the scheme used for the entire BBCSport dataset. 

The document term matrix was created from only those terms that appeared in at 

least 90% of the documents. As can be easily seen in Table 2 from the relation- 

ship between pavg and n, with this choice the average sparsity increases signifi- 

cantly with increasing k and d, so the results of the simulations are not too posi- 

tively affected as the amount of information increases with increasing n. 

 

For each (k, d) pair, we calculated the variational ELBO and the variational 

version of the BIC criterion for each of the 50 corpora (setting both the Dirichlet 

hyperparameters equal to 1; in this way the variational MAP estimate and the 

maximum likelihood estimates do not differ excessively). The results presented 

in Table 2 confirm what we have already highlighted using purely theoretical 

considerations. With ELBO, we obtain an overparameterization that actually 

increases with increasing n. For example, for k = 5 and n = 500 in 68% of the 
cases, the number of components is estimated to be k⋆ = 8. Also, for k = 3 and 

n = 60 we have k⋆ = 8 in 10% of the cases, a percentage that increases to 28% 

when n = 300. Conversely, the BIC criterion shows a clear tendency toward a 

slight under-parameterization. The extent of this under-parameterization tends to 

decrease as n increases. For example, at k = 5 we have k⋆ = 2 in 100% of cases 



 

 

 
Table 2 Distribution of the number of k⋆ components (for k⋆ varying between 3 and 8) estimated using either the optimized ELBO or the variational estimate of the BIC 

criterion. To estimate this distribution, a series of 50 synthetic corpora were drawn from BBCSports, each consisting of n = k × d documents, with d = 20, 50, 100 and 
k = 3, 4, 5 (see text for details) 

 

k n pavg M k⋆ = 2 (%) k⋆ = 3 (%) k⋆ = 4 (%) k⋆ = 5 (%) k⋆ = 6 (%) k⋆ = 7 (%) k⋆ = 8 (%) 

3 60 272.94 ELBO 0 16 20 22 24 8 10 

 150 232.86  0 0 4 28 28 24 16 

 300 219.66  0 0 2 6 18 46 28 

3 60 272.94 BIC 100 0 0 0 0 0 0 

 150 232.86  90 10 0 0 0 0 0 

 300 219.66  22 76 2 0 0 0 0 

4 80 249.68 ELBO 0 14 14 28 20 12 12 

 200 221.82  0 0 0 6 30 30 34 

 400 214.56  0 0 0 0 12 28 60 

4 80 249.68 BIC 100 0 0 0 0 0 0 

 200 221.82  78 22 0 0 0 0 0 

 400 214.56  4 50 46 0 0 0 0 

5 100 235.62 ELBO 0 4 16 12 22 22 24 

 250 213.02  0 0 0 0 18 40 42 

 500 205.98  0 0 0 0 0 32 68 

5 100 235.62 BIC 100 0 0 0 0 0 0 

 250 213.02  90 10 0 0 0 0 0 

 500 205.98  0 44 34 22 0 0 0 

k: Actual number of class labels used to resample the textual data. 

n : Total number of documents in each of the 50 corpora created by subsampling the BBCSport dataset. For each label, the same number of documents was randomly 

selected (e.g., for k = 4 and n = 80, we have d = 20 documents for each topical area). 

pavg: average number of terms in the document-term matrices of each of the 50 resampled corpora 
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with n = 100, while at n = 500 the number of components is correctly set to 

k⋆ = 5 in 22% of cases. 
From a theoretical point of view, we know that the BIC criterion can be inter- 

preted as a penalized estimate of the log-marginal likelihood (Murphy 2012). Also 

with the ELBO, the first term (16) represents an expected value of the log-likeli- 

hood (with respect to the variational distribution). The net sum of the other terms 

thus represents an expected penalty, which plays the same role as in the definition 

of the BIC criterion (41). However, this penalty is too weak compared to that of the 

BIC criterion, and for fixed k the importance of the first term on the logarithmic 

scale increases as n increases. This behavior is a consequence of the particular linear 

approximation of the log-marginal likelihood operated by variational inference. We 

will discuss these results in more detail in the next section. 

 

 

7 Discussion and conclusions 

Variational inference for the proposed model requires special attention, as shown in 

this paper. Thus, one might wonder what the real advantages of such an approach 

are. 

The first obvious comparison is with the AV model presented in Sect. 6.1. As 

mentioned earlier, the estimation algorithm used for this model depends crucially 

on the fact that the class-conditional distribution are Dirichlet-Multinomials. In con- 

trast, variational posterior inference is much more general, in that it does not in any 

way exploit the fact that the class-conditional distributions are Dirichlet-Multino- 

mials. The ELBO is a linear sum of terms, with the Multinomial likelihood affect- 

ing only the expression of the first term. Any meaningful extension of the proposed 

hierarchical model is equivalent to adding new summands to the ELBO and partially 

reusing the existing ones. This feature is extremely important as it allows the devel- 

opment of new algorithms by extension and the structural complexity of the model 

can be easily scaled by the variational approach. Moreover, the derivation of the new 

update equations would not be particularly complicated, since variational inference 

is a first-order method that requires only partial first-order derivatives. From this 

point of view, we can outline several possible future research directions. 

First, (5) and (6) are symmetric Dirichlet distributions with suitably specified 

concentration hyperparameters that give the data the responsibility of updating 

the posterior. In this way, unlike the classical EM algorithm, we do not have a 

true M-step, since the algorithm only needs to iterate along the update equations. 

A first obvious extension is to estimate the concentration hyperparameters ϴ and 

directly from the data. In this case, the ELBO also depends on ϴ and , and the 

CAVI algorithm alternately updates the variational parameters as a function of 

the current value of the hyperparameters and the hyperparameters as a function of 

the current value of the variational parameters. The expression of the ELBO we 

derived remains unchanged. In this way, we have a variational EM algorithm in 

the sense of the algorithm originally proposed by Blei et al. (2003) for the LDA 

model, where the final output contains both the optimized value of the ELBO 
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and the Empirical Bayes estimates of ϴ and . Of course, in this case, the effect 

on the sparsity of the mixing weight distribution as the number of k components 

increases must be carefully considered, and in some cases the solution of estimat- 

ing  based on the data may not be appropriate. 

Another interesting possibility is to introduce the mixing weights into a Multi- 

nomial logistic regression model ( j = 1, 2, … , k): 

exp(uj) 
ßj = 

k 

s=1 

, 

exp(us) 
(42) 

where one of the uj-values is set equal to zero for identifiability. The idea of structur- 

ing the weights of a mixture as in (42) first appeared in the literature in Dayton and 

Macready (1988) and was considered from a Bayesian perspective in Pollice and 

Bilancia (2000) using a generic and inefficient Gibbs sampler. Thus, the computa- 

tional advantages of variational inference can be easily applied to such a model. Fur- 

thermore, if we write u = ( ũ,  0) and separate the zero component from the others, 

the values ũj  are unbounded and we can fit them into the hierarchical structure by 
imposing a multivariate Gaussian prior on them, as in the correlated topic model 

proposed in Blei and Lafferty (2007). Alternatively, we can introduce individual- 

specific weights ßij as a function of a vector of concurrent variables (such as meta- 

data) via the linear predictor uij = v ̃⊤xi, where ṽj is a vector of document-specific 

coefficients. Our model can also be easily transformed into a supervised classifica- 

tion algorithm following the hierarchical structure of the supervised LDA model 

(Zhang and Kjellström 2015). 

As for the aspect of determining the number of components, the preliminary 

results obtained in Sect. 6.4 cast a shadow on whether ELBO can be a valid 

approximation to the log marginal likelihood for this purpose. Most likely, the 

net effect of overparameterization on the estimation is negligible, since numer- 

ous poorly identified components are introduced that have little overall weight. 

However, the effect on total computation time is not negligible if k⋆ becomes very 

high. In contrast, the BIC criterion shows a better approximation to the actual 

number of components, albeit with a tendency to slightly under-parameterize. 

Of course, these results are preliminary, and further simulations are needed, also 

to test other criteria showing interesting empirical performance (e.g., the Slope 

Heuristics, see Baudry et al. 2012). The problem of determining the number of 

components in a mixture in the context of variational inference remains a largely 

open problem. Pending further developments, a recommended empirical solution 

is to compare the results of the BIC criterion with those obtained by advanced 

dimensionality reduction methods, such as the t-distributed stochastic neigh- 

bor embedding algorithm (t-SNE; van der Maaten and Hinton 2008), which has 

shown particularly interesting properties in identifying the number of groups in 

multidimensional data. 

In summary, the use of variational inference for posterior parameter estimation 

paves the way for a number of noteworthy developments that can be implemented 

with little additional effort and could greatly expand the set of tools available to 
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the analyst for the study of discrete multivariate data and unsupervised classifica- 

tion of text data. 

 

Appendix A The Dirichlet‑multinomial distribution 

The j-th class-conditional distribution of the proposed hierarchical model can be 

written in closed form by integrating out the Multinomial parameters (in what fol- 

lows zi = j): 

p(yi|zi, ϴ )= 
J 

p(yi, β|zi, ϴ)dβ = 
J 

p(yi|β, zi)p(β|ϴ)dβ = 
 

= 
J 

p(yi βj) p(βs ϴ)dβs = 

s=1 

= 
J 

p(yi βj)p(βj ϴ)dβj J 
p(β−j ϴ)dβ−j = 

−j 

z ___________   
1 

 

= 
yi+ 

yi 

p 

 

l=1 

p 

yil 
Γ(pϴ) 

jl Γ(ϴ)p 

βϴ−1dβjl = 

= 
yi+ 

yi 

Γ(pϴ) 

Γ(ϴ)p 
c−1 

J 

 

c 
l=1 

β
yil +ϴ−1

dβjl , 

z ____________   
1 

where the inverse of the normalization constant c has expression: 
∏ 

Γ
�
yil + ϴ

� 

c−1 = l=1 
p 

l=1 

�
yil + ϴ 

��. 

Using the standard notation for the multivariate Beta function: 

 
B(x)= B(x , x , … , x )=  

p 

l=1 � 
Γ(xl ) � , 

1  2 p 
 

l=1 
xl 

the class-conditional likelihood can be rewritten as: 

p(y |z , ϴ )=

  
yi+

  
B(yi + ϴ) 

. 

 
This probability mass function (pmf) defines the Dirichlet-Multinomial distribution. 

It was studied, among others, by Mosimann (1962), who showed that the variance of 

each marginal component of the j-th class-conditional distributions is given by: 

p 
l=1 
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, 
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, 
| 

il i i+ jl jl 
1 + pϴ 

i=1 i=1 j=1 

Var(y z , ϴ )= y E(β )E(1 − β )

 
yi+ + pϴ

  

, 

 
Thus, the variance of each class-conditional marginal likelihood exhibits overdis- 

persion with respect to the standard Multinomial distribution. The magnitude of 

this overdispersion, which depends on the semantic heterogeneity of the underlying 

documents, is controlled by the term pϴ, with higher values corresponding to lower 

overdispersion. 

 

Appendix B Calculating the ELBO in explicit form 

We begin by writing the joint distribution of the latent variables and model parameters 

that appears in the first term of the ELBO (11): 

n n k 

p(y, β, z, ß|ϴ, a) =
   

p(yi|β, z i)×
   

p(zi|ß)×
   

p(βj|ϴ)× p(ß|a) 

that is: 

log p(y, β, z, ß)=  
n 

= log p(yi β, zi)+  
i=1 

n 

+ log p(zi ß)+  
i=1 

k 

+ log p(βj ϴ)+  
j=1 

+ log p(ß|a) 

We calculate the expected values of these quantities. 

By definition, yi|β, zi ∼ Multinomialp(βs), where the index s corresponds to 

the index of the only component of the vector zi that is equal to 1. It follows that: 
p p 

log p(y |β, z )∝  log
  

βyil = 
, 

y log β , 

 

 

and that: 

i i sl 
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A4 
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,n 

Eq log p(yi|β, zi)  = E 
,n ,p 

yil log βsl = 
i=1 i=1 l=1 

,n ,p 

= 
    

yil Eq log βsl = 
i=1 l=1 

,n ,p ,k 

= 
    

yil ijEq log βjl , 

i=1 l=1 j=1 

given (14), since the term Eq

 
log βjl is a function of the random variable zi through 

the index s. We now observe that the variational distribution of βj can be written as: 

 

q(βj|øj)= exp 
,p 

 

l=1 

 

(øjl − 1) log βjl − 
,p 

 

l=1 

 

log Γ(øjl )−  log Γ 
,p 

 

l=1 

 

 

øjl , 

which is a multiparametric exponential family with: 

• log βjl: minimal sufficient statistics for l = 1, 2, … , p. 

• ujl = øjl − 1: natural (or canonical) parameters for l = 1, 2, … , p. 
 

By defining: 
 

 

,p 

A(uj)=  
l=1 

 

 

log Γ(ujl + 1)− log Γ 

 

,p 

 

l=1 

 

 

ujl + 1 , 

it is well known that (in what follows øj − 1 ≡ uj componentwise): 

  
Eq log βjl 

6A(uj) 
= 

6ujl 

6A(uj) 
= = 

6øjl 

6øjl 
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6ujl 
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log Γ ø = 
6øjl 6øjl 

    
, 

jh 

l=1 

= Ψ(øjl )−  Ψ 
l=1 

øjl  . 

Putting everything together, we get the summand (16) of ELBO. ◻ 
Using the independence between the latent indicator variables zi and ß under 

the variational distribution, and exploiting the representation of the variational 
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, 

distribution of ß as a multiparametric exponential family, we easily obtain the term 

(17): 

,n 

Eq log p(zi|ß)  = E 
,n ,k 

 

zij log ßj  = 
i=1 i=1 j=1 

,n ,k 

= 

             

Eq zij Eq log ßj  = 
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From βj|ϴ ∼ Dirichlet (1 ϴ) it readily follows that: 
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and: 

log p(βj ϴ)= log Γ(pϴ)− p log Γ(ϴ)+ 
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(ϴ − 1) log βjl , 

l=1 

 

,k 

E 
q 

j=1 

 

log p(βj|ϴ) = 

  

 
 
 
 

 

,k ,p 

= Eq k log Γ(pϴ)− kp log Γ(ϴ)+  
j=1 l=1 

(ϴ − 1) log βjl = 

,k 

= k log Γ(pϴ)− kp log Γ(ϴ)+  
,p 

(ϴ − 1)E 
  

log βjl = 
j=1 l=1 

,k 

= k log Γ(pϴ)− kp log Γ(ϴ)+  
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 } 

øjl , 

j=1 l=1 l=1 

that is the expression in (18). ◻ 
As in the previous point, from ß|a ∼ Dirichlet (1 a) we have: 

k  k 

k 

log p(ß a )= log Γ(ka)− k log Γ(a)+ (a − 1) log ßj, 

j=1 

from which (19) follows that: 
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◻ 
If we consider the second addend of the ELBO we have the following 

factorization: 

k n 

q(β, z, ß|v) =
   

q(βj|øj)×
   

q(zi| i)× q(ß|η), 
  

 

that is:  

log q(β, z, ß|v)=  

= 
, 

log q(βj øj)+  

j=1 
n 

+ log q(zi i)+  
i=1 

+ log q(ß|η) 

If we compute the expected value of log q(β, z, ß|v) with respect to the variational 

distribution q, using a simple algebra and the representation of the Dirichlet distri- 

bution as a multiparametric exponential family, which we have already seen, we find 

that the expected values with respect to q of , 

(21) and (22) except the sign, respectively. 

 

 

Appendix C Maximizing the ELBO 

and correspond to (20), 

 

Since we need to maximize each term individually, holding all others constant, 

we first isolate the terms in the ELBO that depend on the parameter that is being 

updated, and then compute the maximum point. 

(i = 1, 2, … , n, j = 1, 2, … , k). It appears in (16), (17), and (21). We isolate 

the factors containing ij and add a Lagrangian to the objective function to account 

for the condition that such Multinomial parameters sum to 1 for fixed i: 
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We take the partial derivatives to ij and set them equal to zero: 
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which must be normalized to 1 for each fixed i according to (26). ◻ 

( j = 1, 2, … , k ). Isolating ηj , which appears in (17), (19) and (22), we have: ηj 
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As above, taking the partial derivatives with respect to ηj and setting them to 0, we 

have: 
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which is equivalent to the following equation in ηj: 
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For positive arguments, the Digamma function has exactly one root, so it is obvious 
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cannot be simultaneously zero. Therefore, this equation 

admits a unique solution if and only if: 
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( j = 1, 2, … , k, l = 1, 2, … , p). Isolating øjl in (16), (18) and (20): 
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which, as in the previous case, it has a unique solution in øjl given by: 

 



 

 

n 

øjl = ϴ + 
, 

yil ij. 
i=1 

 

Acknowledgements We wish to thank the Associate Editor for his help and support and the two anony- 

mous referees for their careful and constructive reviews. 

Author contributions The authors contributed to the manuscript equally. 

 

Funding This research received no specific grant from any funding agency in the public, commercial, or 

not-for-profit sectors. 

Data availability Available on the websites referenced in the article. 

 

Code availability Upon request. 

 

Declarations 

Conflict of interest The authors have no conflict of interest to disclose. 

 
 

 

References 

Aggarwal CC, Zhai C (2012) Mining text data. Springer, New York. https://doi.org/10.1007/ 

978-1-4614-3223-4 

Airoldi EM, Blei D, Erosheva EA et al (2014) Handbook of mixed membership models and their applica- 

tions. Chapman and Hall, Boca Raton. https://doi.org/10.1201/b17520 

Anastasiu DC, Tagarelli A, Karypis G (2014) Document clustering: the next frontier. In: Aggarwal CC, 

Reddy CK (eds) Data clustering: algorithms and applications. Chapman & Hall, Boca Raton, pp 

305–338 

Anderlucci L, Viroli C (2020) Mixtures of Dirichlet-multinomial distributions for supervised and unsu- 

pervised classification of short text data. Adv Data Anal Classif 14:759–770. https://doi.org/10. 

1007/s11634-020-00399-3 

Andrews N, Fox E (2007) Recent developments in document clustering. http://hdl.handle.net/10919/ 

19473, Virginia Tech computer science technical report, TR-07-35 

Apté C, Damerau F, Weiss SM (1994) Automated learning of decision rules for text categorization. ACM 

Trans Inf Syst 12:233–251. https://doi.org/10.1145/183422.183423 

Awasthi P, Risteski A (2015) On some provably correct cases of variational inference for topic models. 

In: Cortes C, Lawrence N, Lee D et al (eds) Advances in neural information processing systems, vol 

28. Curran Associates, Inc., New York 

Baudry JP, Celeux G (2015) EM for mixtures. Inizialiation requires special care. Stat Comput 25:713– 

726. https://doi.org/10.1007/s11222-015-9561-x 

Baudry JP, Maugis C, Michel B (2012) Slope heuristics: overview and implementation. Stat Comput 

22:455–470. https://doi.org/10.1007/s11222-011-9236-1 

Blanchard P, Higham DJ, Higham NJ (2021) Accurately computing the log-sum-exp and softmax func- 

tions. IMA J Numer Anal 41:2311–2330. https://doi.org/10.1093/imanum/draa038 

Blei DM (2012) Probabilistic topic models. Commun ACM 55:77–84. https://doi.org/10.1145/2133806. 

2133826 

Blei DM, Lafferty JD (2007) A correlated topic model of science. Ann Appl Stat. https://doi.org/10.1214/ 

07-AOAS114 

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022 

Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians. J Am Stat 

Assoc 112:859–877. https://doi.org/10.1080/01621459.2017.1285773 

https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1201/b17520
https://doi.org/10.1007/s11634-020-00399-3
https://doi.org/10.1007/s11634-020-00399-3
http://hdl.handle.net/10919/19473
http://hdl.handle.net/10919/19473
https://doi.org/10.1145/183422.183423
https://doi.org/10.1007/s11222-015-9561-x
https://doi.org/10.1007/s11222-011-9236-1
https://doi.org/10.1093/imanum/draa038
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1214/07-AOAS114
https://doi.org/10.1214/07-AOAS114
https://doi.org/10.1080/01621459.2017.1285773


 

 

Celeux G, Hurn M, Robert CP (2000) Computational and inferential difficulties with mixture posterior 

distributions. J Am Stat Assoc 95:957–970. https://doi.org/10.1080/01621459.2000.10474285 

Celeux G, Früwirth-Schnatter S, Robert CP (2018a) Model selection for mixture models—perspectives 

and strategies. In: Frühwirth-Schnatter S, Celeux G, Robert CP (eds) Handbook of mixture analysis. 

Chapmann & Hall, New York, pp 118–154. https://doi.org/10.1201/9780429055911 

Celeux G, Kamary K, Malsiner-Walli G et al (2018b) Computational solutions for Bayesian inference in 

mixture models. In: Frühwirth-Schnatter S, Celeux G, Robert CP (eds) Handbook of mixture analy- 

sis. Chapmann & Hall, New York, pp 73–115. https://doi.org/10.1201/9780429055911 

Chandra NK, Canale A, Dunson DB (2020) Escaping the curse of dimensionality in Bayesian model 

based clustering. arxiv:2006.02700 

Dayton CM, Macready GB (1988) Concomitant-variable latent-class models. J Am Stat Assoc 83:173. 

https://doi.org/10.2307/2288938 

Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach 

Learn 42:143–175. https://doi.org/10.1023/A:1007612920971 

Diebolt J, Robert CP (1994) Estimation of finite mixture distributions through Bayesian sampling. J R 

Stat Soc Ser B (Methodol) 56:363–375. https://doi.org/10.1111/j.2517-6161.1994.tb01985.x 

Feinerer I, Hornik K, Meyer D (2008) Text mining infrastructure in R. J Stati Softw. https://doi.org/10. 

18637/jss.v025.i05 

Feinerer I, Hornik K (2020) tm: text mining package. https://CRAN.R-project.org/package=tm, R pack- 

age version 0.7-8 

Frühwirth-Schnatter S (2004) Estimating marginal likelihoods for mixture and Markov switching models 

using bridge sampling techniques. Econom J 7:143–167. https://doi.org/10.1111/j.1368-423X.2004. 

00125.x 

Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, New York. https:// 

doi.org/10.1007/978-0-387-35768-3 

Gelman A, Carlin J, Stern H et al (2013) Bayesian data analysis, 3rd edn. Chapman and Hall, Boca Raton 

Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459. 

https://doi.org/10.1038/nature14541 

Greene D, Cunningham P (2006) Practical solutions to the problem of diagonal dominance in kernel 

document clustering. In: Proceedings of the 23rd international conference on machine learning 

(ICML’06). ACM Press, pp 377–384 

Harris ZS (1954) Distributional structure. WORD 10:146–162. https://doi.org/10.1080/00437956.1954. 

11659520 

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New 

York. https://doi.org/10.1007/978-0-387-84858-7 

Hornik K, Feinerer I, Kober M et al (2012) Spherical k-means clustering. J Stat Softw. https://doi.org/10. 

18637/jss.v050.i10 

Jordan MI, Ghahramani Z, Jaakkola TS et al (1999) An introduction to variational methods for graphical 

models. Mach Learn 37:183–233. https://doi.org/10.1023/A:1007665907178 

Kaggle (2022) Sports dataset(bbc). https://www.kaggle.com/datasets/maneesh99/sports-datasetbbc. 

Accessed 04 Nov 2022 

Keribin C (2000) Consistent estimation of the order of mixture models. Sankhyā Indian J Stat Ser A 

(1961–2002) 62:49–66 

Kunkel D, Peruggia M (2020) Anchored Bayesian Gaussian mixture models. Electron J Stat. https://doi. 

org/10.1214/20-EJS1756 

Lee SY (2021) Gibbs sampler and coordinate ascent variational inference: a set-theoretical review. Com- 

mun Stat Theory Methods. https://doi.org/10.1080/03610926.2021.1921214 

Li H, Fan X (2016) A pivotal allocation-based algorithm for solving the label-switching problem in 

Bayesian mixture models. J Comput Graph Stat 25:266–283. https://doi.org/10.1080/10618600. 

2014.983643 

Maechler M (2022) Rmpfr: R mpfr—multiple precision floating-point reliable. https://cran.r-project.org/ 

package=Rmpfr, R package version 0.8-9 

Malsiner-Walli G, Frühwirth-Schnatter S, Grün B (2016) Model-based clustering based on sparse finite 

Gaussian mixtures. Stat Comput 26:303–324. https://doi.org/10.1007/s11222-014-9500-2 

Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University 

Press, Cambridge 

Marin JM, Robert C (2008) Approximating the marginal likelihood in mixture models. Indian Bayesian 

Soc Newslett 5:2–7 

https://doi.org/10.1080/01621459.2000.10474285
https://doi.org/10.1201/9780429055911
https://doi.org/10.1201/9780429055911
http://arxiv.org/abs/2006.02700
https://doi.org/10.2307/2288938
https://doi.org/10.1111/j.2517-6161.1994.tb01985.x
https://doi.org/10.18637/jss.v025.i05
https://doi.org/10.18637/jss.v025.i05
https://cran.r-project.org/package%3Dtm
https://doi.org/10.1111/j.1368-423X.2004.00125.x
https://doi.org/10.1111/j.1368-423X.2004.00125.x
https://doi.org/10.1007/978-0-387-35768-3
https://doi.org/10.1007/978-0-387-35768-3
https://doi.org/10.1038/nature14541
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.18637/jss.v050.i10
https://doi.org/10.18637/jss.v050.i10
https://www.kaggle.com/datasets/maneesh99/sports-datasetbbc
https://doi.org/10.1214/20-EJS1756
https://doi.org/10.1214/20-EJS1756
https://doi.org/10.1080/03610926.2021.1921214
https://doi.org/10.1080/10618600.2014.983643
https://doi.org/10.1080/10618600.2014.983643
https://cran.r-project.org/package%3DRmpfr
https://cran.r-project.org/package%3DRmpfr
https://doi.org/10.1007/s11222-014-9500-2


 

 

Mosimann JE (1962) On the compound multinomial distribution, the multivariate Beta-distribution, and 

correlations among proportions. Biometrika 49:65–82. https://doi.org/10.1093/biomet/49.1-2.65 

Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, Cambridge 

Nielsen F, Garcia V (2009) Statistical exponential families: a digest with flash cards. arXiv:0911.4863 

Nigam K, Mccallum AK, Thrun S et al (2000) Text classification from labeled and unlabeled documents 

using EM. Mach Learn 39:103–134. https://doi.org/10.1023/A:1007692713085 

Nikita M (2020) ldatuning: tuning of the latent Dirichlet allocation models parameters. https://CRAN.R- 

project.org/package=ldatuning, R package version 1.0.2 

Plummer S, Pati D, Bhattacharya A (2020) Dynamics of coordinate ascent variational inference: a case 

study in 2D Ising models. Entropy 22:1263. https://doi.org/10.3390/e22111263 

Pollice A, Bilancia M (2000) A hierarchical finite mixture model for Bayesian classification in the pres- 

ence of auxiliary information. Metron Int J Stat LVIII:109–131 

R Core Team (2022) R: a language and environment for statistical computing. https://www.R-project.org/ 

Rakib MRH, Zeh N, Jankowska M et al (2020) Enhancement of short text clustering by iterative classifi- 

cation. In: Métais E, Meziane F, Horacek H et al (eds) Natural language processing and information 

systems. Springer, Berlin, pp 105–117. https://doi.org/10.1007/978-3-030-51310-8_10 

Robert CP (2007) The Bayesian choice. Springer, New York. https://doi.org/10.1007/0-387-71599-1 

Sankaran K, Holmes SP (2019) Latent variable modeling for the microbiome. Biostatistics 20:599–614. 

https://doi.org/10.1093/biostatistics/kxy018 

Silverman J (2022) RcppHungarian: solves minimum cost bipartite matching problems. https://CRAN.R- 

project.org/package=RcppHungarian, R package version 0.2 

Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc Ser B (Stat Methodol) 

62:795–809. https://doi.org/10.1111/1467-9868.00265 

Titterington DM, Wang B (2006) Convergence properties of a general algorithm for calculating vari- 

ational Bayesian estimates for a Normal mixture model. Bayesian Anal. https://doi.org/10.1214/ 

06-BA121 

Tran MN, Nguyen TN, Dao VH (2021) A practical tutorial on variational Bayes. arXiv:2103.01327 

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605 

Wainwright MJ, Jordan MI (2007) Graphical models, exponential families, and variational inference. 

Found Trends® Mach Learn 1:1–305. https://doi.org/10.1561/2200000001 

Wallach H, Mimno D, McCallum A (2009) Rethinking LDA: why priors matter. In: Bengio Y, Schuur- 

mans D, Lafferty J et al (eds) Advances in neural information processing systems, vol 22. Curran 

Associates Inc., New York 

Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2:165–193. https:// 

doi.org/10.1007/s40745-015-0040-1 

Zhang C, Butepage J, Kjellstrom H et al (2019) Advances in variational inference. IEEE Trans Pattern 

Anal Mach Intell 41:2008–2026. https://doi.org/10.1109/TPAMI.2018.2889774 

Zhang C, Kjellström H (2015) How to supervise topic models. In: Agapito L, Bronstein MM, Rother C 

(eds) Computer vision—ECCv 2014 workshops. Springer, Cham, pp 500–515. https://doi.org/10. 

1007/978-3-319-16181-5_39 

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 

and institutional affiliations. 

 

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 

a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 

manuscript version of this article is solely governed by the terms of such publishing agreement and 

applicable law. 

https://doi.org/10.1093/biomet/49.1-2.65
http://arxiv.org/abs/0911.4863
https://cran.r-project.org/package%3Dldatuning
https://cran.r-project.org/package%3Dldatuning
https://doi.org/10.3390/e22111263
https://www.r-project.org/
https://doi.org/10.1007/978-3-030-51310-8_10
https://doi.org/10.1007/0-387-71599-1
https://doi.org/10.1093/biostatistics/kxy018
https://cran.r-project.org/package%3DRcppHungarian
https://cran.r-project.org/package%3DRcppHungarian
https://doi.org/10.1111/1467-9868.00265
https://doi.org/10.1214/06-BA121
https://doi.org/10.1214/06-BA121
http://arxiv.org/abs/2103.01327
https://doi.org/10.1561/2200000001
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1007/978-3-319-16181-5_39
https://doi.org/10.1007/978-3-319-16181-5_39

