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A B S T R A C T   

The production of biopeptides from food waste through microbial fermentation faces challenges arising from the 
diverse proteolytic abilities of microorganisms and substrate variability, impacting both the quality and yield of 
generated biopeptides. To address these challenges, preliminary in-silico bioinformatics analyses play a crucial 
role in evaluating suitable substrates and proteases for the fermentation process. However, existing tools lack 
comprehensive predictive capabilities for relevant proteases, substrate performance assessment, and final bio-
peptide family characterization. To overcome these limitations, we developed FEEDS (Food wastE biopEptiDe 
claSsifier), a novel biopeptide prediction and classification tool. FEEDS predicts biopeptide families based on 
microbial genome protease profiles and substrate composition during proteolysis. The tool also employs a ma-
chine learning approach for functional biopeptide classification. Results from testing on 1000 microbial genomes 
demonstrate the effectiveness of biopeptide classification, particularly in categorizing peptides derived from 
substrates like Hordeum vulgare and Vitis vinifera seed storage proteins. In addition to biopeptide classification, 
our study delves into the distinctive protease profiles of bacteria and yeast genomes. Bacterial genomes exhibited 
60 to 100 proteases across 40–55 families. Contrastingly, yeast genomes displayed a more evenly distributed 
pattern with 150 to 160 protease-encoding genes across 60 to 67 families, surpassing bacterial counts. 
Remarkably, a substantial portion of yeast proteases (~66 %) was secreted. Moreover, our integration of a 
machine learning methodology within the FEEDS pipeline proved highly effective, achieving over 80 % accuracy 
in predicting the function of peptides derived from seed storage proteins. Notably, longer peptide sequences 
exceeding 20 amino acids consistently displayed a higher probability of correct assignment compared to shorter 
counterparts.   

Introduction 

Biopeptides are short chains of amino acids that occur naturally in 
living organisms or are generated through fermentation processes. 
These small molecules have many applications and are used in various 
fields (Zaky et al., 2022). They have been found to exhibit various 
pharmacological activities such as antimicrobial, anti-inflammatory, 
antioxidant, and antihypertensive effects (Zaky et al., 2022; Chatterjee 
et al., 2018). Biopeptides have gained popularity due to their multiple 
functions, including flavor enhancement, food preservation, and due to 

their physiological effects, such as improving digestion and lowering 
cholesterol levels (Chatterjee et al., 2018; Peighambardoust et al., 
2021). In agriculture, biopeptides are used as plant growth promoters 
and biopesticides, which are safer alternatives to traditional compounds 
obtained through chemical synthesis (Zhang et al., 2023). Biopeptides 
have also been utilized in cosmetics as active ingredients in anti-aging 
creams and other skincare products due to their ability to stimulate 
collagen and elastin synthesis, reduce the appearance of wrinkles, and 
improve skin hydration (Aguilar-Toalá et al., 2019). Overall, the 
versatility of biopeptides makes them valuable in many different fields 
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and their potential applications are still being explored. 
Microbial fermentation has emerged as an innovative method for 

biopeptide production. This approach harnesses the metabolic capabil-
ities of microorganisms to synthesize biopeptides efficiently. The sig-
nificance of microbial fermentation lies in its scalability, cost- 
effectiveness, and the ability to tailor the production process for spe-
cific biopeptide sequences. This novel production method not only en-
hances the yield and purity of biopeptides, but also opens avenues for 
exploring new bioactive compounds with diverse applications (Zaky 
et al., 2022; Peighambardoust et al., 2021; Mirzaei et al., 2021). 
Expanding beyond biopeptides, microbial fermentation of food waste 
and byproducts involves microorganisms like bacteria and yeasts. These 
microorganisms utilize byproducts as growth substrates, digesting 
organic matter and producing enzymes that break down complex mol-
ecules. This comprehensive process underscores the versatility of mi-
crobial fermentation in transforming various substrates into valuable 
end products such as biofuels, bioplastics, and enzymes (Mirzaei et al., 
2021). The fermentation process can occur in a batch or in continuous 
mode and can be performed under various conditions, such as aerobic or 
anaerobic, and at different pH and temperature ranges (Bajić et al., 
2022). The selection of fermentation conditions depends on the specific 
microorganisms used and on the target compounds to be produced. 
Some microbial species of the genera Lactobacillus; Bacillus, Strepto-
coccus, Saccharomyces and Candida have been found to produce bio-
peptides with various bioactive properties, including antimicrobial, 
antifungal, antioxidant, and immunomodulatory activities (Mirzaei 
et al., 2021; Ying et al., 2021). 

While some studies have explored the use of food-derived proteins as 
a source of biopeptides (Chakrabarti et al., 2018; Karami and Akbari- 
adergani, 2019; Rutherfurd-Markwick, 2012), few have focused the 
attention on the production of biopeptides specifically from food waste 
and byproducts (Lu et al., 2022). One of the main advantages of using 
this matrix as a biopeptide source is that it represents a sustainable and 
low-cost alternative to traditional protein sources. According to a report 
by the United Nations Food and Agriculture Organization (FAO), the 
disposal of vegetable waste can substantially impact the environment 
since it has a substantial carbon footprint (Food wastage footprint, 
2013). Furthermore, FAO has estimated that approximately one-third of 
all food produced worldwide is wasted or lost, with a significant pro-
portion occurring in the fruit, vegetable, and seafood industries. Addi-
tionally, contaminants such as heavy metals and pesticides in some food 
waste streams can pose potential risks to human health and the envi-
ronment (Schleiffer and Speiser, 2022). This highlights the need for 
greater efforts to reduce food waste and increase global sustainability in 
food production and consumption practices. The recovery of food waste 
through the extraction of valuable compounds is an attractive approach, 
however, the generation of some products including biopeptides from 
food waste presents several challenges. For example, the composition of 
food waste can vary widely depending on the source, which can affect 
the quality and yield of the biopeptides produced. 

To help encounter these challenges, preliminary in-silico analyses 
can help the evaluation of what substrates and protease enzymes should 
be used in the fermentation process. These tools use bioinformatics 
techniques to screen protein databases and identify potential biopeptide 
candidates based on specific criteria such as sequence length, physico-
chemical properties, and known bioactive regions (Minkiewicz and 
Darewicz, 2019). One commonly used tool for biopeptide prediction is 
PeptideRanker, which uses machine learning techniques to predict the 
binding affinity of peptides to major histocompatibility complex (MHC) 
molecules (Qeli et al., 2014). Another tool is the food-derived bioactive 
peptides database (DFBP), which contains a comprehensive collection of 
experimentally validated bioactive peptides for peptidomics research 
(Qin et al., 2022). In addition to these tools, there are also several 
software and databases available for predicting and designing bio-
peptides with specific functions, such as antimicrobial or antitumor 
activity (Chaudhary et al., 2021; Ma et al., 2022; Minkiewicz et al., 

2022). However, none of these tools is able to combine a range of 
functions including prediction of proteases in microbial genomes, 
identification of their targets in the proteins of the substrate, and iden-
tification of the biopeptide families generated. Furthermore, all the 
available tools are online platforms with restrictions regarding the 
number of sequences for annotations. To address these limitations, we 
introduce FEEDS, a food biopeptide classifier tool capable of efficiently 
predicting the biopeptide families generated through the cleavage site 
profiles of proteases derived from microorganism genome annotations 
and the substrate proteins from food sources. 

Material and methods 

This section provides a detailed description of all the steps involved, 
while a summary of the FEEDS tool’s process is presented in the flow-
chart depicted in Fig. 1. The tool was developed using Python, and 
installation instructions, as well as all the features of the tool, can be 
accessed at the following link: https://github.com/vborincentur 
ion/feeds. 

Step1: Proteases annotation 

The first step involves annotation of protein files obtained from 
bacterial genomes and yeasts for proteases prediction. To achieve this, 
the protease sequences from the MEROPS database, which employs a 
hierarchical and structure-based classification system, were used to 
generate a database using the “makedb” function of Diamond v2.1.4 
(Buchfink et al., 2015). For bacteria, the protein-encoding sequences 

Fig. 1. Flowchart of FEEDS tool pipeline. Colors are used to highlight the 
three main functions of the tool: proteases characterization (purple), simulation 
of proteases activity (blue) and biopeptides classification (beige). The dashed 
chart step is optional. Output files are represented by arrows coming out of the 
chart. External tools implemented in FEEDS are reported on the left and rep-
resented by bullet points. 
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were recovered from genomes using Prodigal v2.6.3 (Hyatt et al., 2010). 
In the case of yeasts, users must provide the open reading frames (ORFs) 
prediction file since Prodigal is only applicable to prokaryotic genomes, 
and other tools like GeneMark (Brůna et al., 2020) can provide reliable 
predictions only for some yeast species. Moreover, ORF prediction for 
yeast requires a specific frame rule for each genus and lacks a compre-
hensive gene-finding tool (Luo et al., 2003), however FEEDS can flexibly 
incorporate predictions from new tools. Next, the “blastp” function of 
the Diamond tool was used with the parameters “–more-sensitive -k 1 -f 
6 qseqid sseqid pident –id 90 –query-cover 85 –subject-cover 85” to 
align the query sequences to the database previously generated using the 
sequences collected from MEROPS. The strict identity used in the 
alignment, and the coverage criteria, ensured that only those proteases 
with highly significant similarity levels were annotated. Starting from 
the alignment results obtained, the main proteases information, 
including function, family, and also the ID number of the cleavage site 
for the secreted enzymes obtained from the RapidPeptideGenerator 
(RPG) v2.0.0 (Maillet, 2020) were recovered using Pandas library. 

Starting from the entire list of proteases identified, only those 
potentially secreted were considered for the next step, as they are those 
with the highest probability to act on the substrates and, for this reason, 
those having the highest biotechnological relevance (Cezairliyan and 
Ausubel, 2017; Razzaq et al., 2019). To identify the secreted proteases, 
all the proteins annotated as proteases from the Diamond output were 
clustered with CD-HIT v4.8.1 (Li et al., 2001) with a 90 % identity 
threshold. A single representative sequence from each cluster was 
analyzed with the BUSCA web server (https://busca.biocomp.unibo.it) 
(Savojardo et al., 2018), using the taxonomic selection of “Prokarya - 
Gram-positive” or “Eukarya - Fungi”. Only protease families including in 
their annotation the term “extracellular space” compartments were 
considered as secreted proteases and this result was associated to all the 
proteases in the cluster. Further details on protease families can be found 
in Supplementary material 1. 

Step2: Peptide sequence prediction 

For each family of secreted proteases the cleavage sites were recov-
ered from MEROPS database (https://www.ebi.ac.uk/merops/cg 
i-bin/protsearch.pl). After recovering all the cleavage sites, this infor-
mation was added (if not already present) to the RPG tool using the “rpg 
-a” function. Peptide predictions can be generated by using either the 
“sequential” or “concurrent” digestion mode of RPG. “Concurrent” mode 
simulates the substrate hydrolysis using all enzymes at once, while 
“sequential” mode performs the simulation utilizing all the enzymes one 
by one in a sequential order. The mode setting can be defined by setting 
the “-d” option in FEEDS. The protein substrate files used for RPG 
digestion are provided by the user as a file in the “substrate” folder. 
FEEDS has two filtering functions that enable the selection of the pre-
dicted peptide sequences generated based on their length or according to 
their molecular weight (-f_length and -f_mol, respectively). In the final 
part of this step, a table with the peptide length or molecular weight 
information is generated. Furthermore, Supplementary material 2 in-
cludes a list of all the secreted proteases potentially used by FEEDS in the 
simulated substrate proteolysis, the cleavage site counts, and the cor-
responding IDs to be imputed during the processing with the “-e” 
function of RPG. 

Step3: functional biopeptide classification 

The peptide sequences obtained in the previous step are classified 
using the CICERON tool (Bizzotto et al., 2023), a novel machine learning 
method to identify functions of biopeptides obtained from hydrolysis of 
food protein substrates. This tool employs various methods for the 
classification of biopeptides including similarity and motif search 
against a database focused on microbial peptides, and several machine 
learning methods such as Logistic Regression, Random Forest, K-Nearest 

Neighbour and Neural Networks. CICERON automatically selects the 
most accurate method for each of nine functional classes based on prior 
systematic benchmark evaluations, including peptides with positive ef-
fects on vascular circulation, antidiabetic, antihypertensive, antimicro-
bial, antioxidant, celiac-disease-associated, and immunomodulatory 
peptides, neuropeptides, and opioids (Bizzotto et al., 2023). The un-
derlying models were trained on peptides having a maximum length of 
100 amino acids (AA), hence, for optimal results it is highly advisable to 
utilize this value as maximum length. The different possible functional 
classification of biopeptides are reported in the Supplementary material 
3. 

In vitro experiments for validation of FEEDS 

FEEDS was validated comparing the results with those obtained in a 
“real” fermentation process performed using brewer spent grains (Hor-
deum vulgare) as substrate. In this experiment peptides were identified 
using mass spectrometry. Prior to inoculation and fermentation, the 
substrates underwent UV treatment to reduce the contaminating mi-
crobial load. This approach was preferred over thermal treatments to 
avoid damage and denaturation of the proteins. The selected microor-
ganisms for the test were Enterococcus faecalis AVEL13, Lactococcus lactis 
WSL2, Schizosaccharomyces pombe J13151G1 and Saccharomyces cer-
evisiae KFAY3 and the fermentation time was set to 72 h. Peptides with a 
molecular weight lower than less than 90 kDa (~ 90 AA) and containing 
more than 6 AA were selected for UHPLC/HR-MS2 (UHPLC Ultimate 
3000, Thermo Scientific, San Jose, CA, USA; Q Exactive Hybrid 
Quadrupole-Orbitrap Mass Spectrometer, Thermo Scientific, San Jose, 
CA, USA) equipped with a C18 column (Acquity UPLC-C18 Reversed- 
phase, 2.1 × 100 mm, 1.8 µm particle size, Waters Corporation, Milford, 
MA, USA) mass spectrometry (MS) analysis conducted after 72 h apart 
from fermentation using the label-free quantification method. Peptides 
with fewer than 6 amino acids were excluded from this analysis due to 
limitations of software and a high-confidence peptide threshold from 
Proteome Discover 2.3 (Thermo Fisher Scientific, Dreieich, Germany). 
Based on the ion intensity, in-vitro peptides sequences were predicted 
using Proteome Discoverer 2.3 coupled with Matrix software (Matrix 
Science, Boston, MA, USA) for peptide sequencing and identification. 
The main parameters used for the identification process were: enzyme, 
no-enzyme; peptide mass tolerance, ±5 ppm; fragment mass tolerance, 
±0.1 Da; variable modification, Demetilation (NQ), oxidation (M) and 
phosphorylation (ST). Peptide and protein identification results were 
exported after filtering with the Peptide and Protein Validator to achieve 
a false discovery rate (FDR) below 0.01. The obtained in-vitro proteins 
were subjected to in-silico digestion using sequential mode of RPG tool 
and the following microorganisms: Enterococcus faecalis strain AT22, 
Lactococcus lactis subsp. lactis LEY7, Saccharomyces cerevisiae YJM984, 
and Schizosaccharomyces pombe 972 h-. The comparison between the 
peptides obtained and those predicted using FEEDS was performed using 
Diamond, with the in-vitro peptide sequences serving as the database 
and the predicted in-silico peptide sequences as the queries. A minimum 
threshold of 90 % identity (±4 mismatches) was applied, and the aligned 
sequences were considered as true matches. The in-silico and in-vitro 
peptides match sequences can be checked in the Supplementary mate-
rial 7. 

Results and discussion 

To gain insights into the most common protease families involved in 
biopeptide production, we selected 1,182 complete genomes of gram- 
positive bacteria from the RefSeq database (O’Leary et al., 2016). For 
yeasts, 157 genomes having associated protein sequence files in the 
GenBank database were included (Clark et al., 2016). The bacterial 
genera selected were Enterococcus; Fructobacillus, Lactobacillus, Lacto-
coccus, Leuconostoc, Pediococcus, and Streptococcus, all belonging to the 
Firmicutes phylum. The yeasts genera included were Candida, 
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Debaryomyces, Hanseniaspora, Kazachstania, Metschnikowia, Pichia, 
Saccharomyces, Schizosaccharomyces, and Zygosaccharomyces, all 
belonging to the Ascomycota phylum, with Rhodotorula being the only 
genus from the Basidiomycota phylum. In the next sections these fungal 
genera will be reported simply as “yeasts”. To test FEEDS, the seed 
storage glutelin, legumin, vicilin, cruciferin, globulin and albumin 
proteins of Vitis vinifera, and the seed storage avenin, B-D-Y hordein, and 
glutelin proteins of Hordeum vulgare were used as substrates. Additional 
information on all the species, strains and protein substrates can be 
found in Supplementary material 3. 

Bacteria and yeasts proteases profiles 

Most of the selected bacterial genomes encoded from 60 to 100 
different proteases, while the number of protease families ranged from 
40 to 55 (Fig. 2). Regarding the secreted proteases, most genomes 
encoded from 30 to 60 genes, which were included into 15 to 25 fam-
ilies. The genera with the higher number of proteases were Lactobacillus 
and Enterococcus, which are extensively used in the production of bio-
peptides (Singh and Vij, 2017; Worsztynowicz et al., 2020). In yeasts, 
the number of proteases-encoding genes was more evenly distributed 
and ranging from 150 to 160, while the protease families ranged from 60 
to 67 (Fig. 2). The number of protease-encoding genes in yeasts was 
higher than in bacteria, and ranged between 100 and 110 proteases and 
60 to 67 protease families, with ~66 % of them being secreted. Ac-
cording to these findings, despite the yeasts genera considered in the 
analysis were more distantly related than those of bacteria, some have a 
similar number of proteases. As asserted by Mirzaei et al. (2021), few 
studies have reported the use of yeasts as pure culture or in co-culture 
with bacteria to produce biopeptides. The high number of proteases, 

most of them secreted, makes yeast a more suitable candidate for bio-
peptides production than bacteria, however, other relevant aspects 
should be considered during the selection of the microbial species, 
including the range of biologically active peptides generated and the 
intra-species variability of the proteolytic activities. The number of 
proteases is directly correlated with the number of proteases families, 
and the results obtained for bacteria and yeasts were similar (R2 between 
0.93 and 0.97), while considering the secreted proteases the correlation 
was slightly lower (R2 between 0.85 and 0.96) (Fig. 2). Secreted pro-
teases often play specific roles in extracellular environments, including 
nutrient acquisition and cell communication (Cezairliyan and Ausubel, 
2017). The slightly lower correlation may be reflective among secreted 
proteases compared to the broader spectrum of intracellular and 
membrane-associated proteases. 

The most widely distributed bacterial secreted protease was gamma- 
glutamyl transferase (C26), which is a conserved enzyme found in 
bacteria, yeasts, plants, and animals (Fig. 3 A, B). In Bacillus, it is 
involved in the degradation of poly γ-glutamic acid (PGA) into gluta-
mate during nutrient starvation (Hsueh et al., 2017). For yeasts, the 
most widely distributed protease was represented by the eukaryotic 
ubiquitin proteasome system (UPS; T01A) which is related to the 
Archaeal proteasome (Fig. 3C) (Maupin-Furlow, 2013). T01A is a highly 
conserved peptidase that regulates protein homeostasis (Wendler and 
Enenkel, 2019). Pepsin A (A01A) emerges as one of the most common 
secreted proteases in the examined yeasts (Fig. 3 D); this family of 
proteins plays a crucial role in numerous physiological processes of 
S. cerevisiae, including the response to nutritional stress, regulation of 
the sporulation process, and growth under vegetative conditions (Zhang 
et al., 2009). 

Fig. 2. Proteases distribution in bacteria and yeasts. Scatterplots showing the Pearson correlation between the number of proteases and protease families in 
bacteria (blue) and yeasts (green). A and C show the trends for the total number of proteases, while in B and D the analysis was focused only on secreted proteases. 
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In-silico generation of peptides 

Functional foods offer additional health benefits beyond their basic 
nutritional value and their additional health benefits are often attributed 
to specific bioactive compounds, including biopeptides, or they can be 
fermented to reduce the allergenicity level (Jain, 2023). Due to the great 
relevance for human health of the products obtained from the fermen-
tation, highly abundant proteins present in seeds were used to test the 
FEEDS peptide prediction tool in an attempt to characterize the presence 
of bioactive peptides in the final product. The test was performed with 
five different genera of bacteria and yeasts taking into account the 

number, families and frequency of secreted proteases identified in the 
previous section. The two modes of the RPG tool (concurrent and 
sequential) were used to determine differences in the peptide length 
distribution, and all the results were reported in Supplementary material 
5. The results obtained evidenced that most of the peptides generated by 
Enterococcus faecalis AT22 using the “concurrent mode” were shorter 
than 20 amino acids and were matching the expected length of func-
tional biopeptides (Bell et al., 2009) (Fig. 4 A, B), suggesting that this 
species has a higher potential in generating bioactive peptides. In 
literature, Enterococcus faecalis strains were previously reported to pro-
duce ACE-inhibitory peptides from bovine skim milk (Ramakrishna 

Fig. 3. Number of intracellular and secreted proteases in the genomes. The barplot illustrates the number of intracellular and secreted protease families 
identified in all the bacterial (A, B) and yeast species (C, D) under investigation. Family names are derived from the MEROPS database and can be verified in 
Supplementary material 1. 
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et al., 2017). Enterococcus faecalis AT22 is distinct from the other species 
under investigation due to the presence of enzymes similar to thermo-
lysin metallopeptidase M04 family (Supplementary material 5). One 
example of thermolysin M04 enzyme is the gelatinase, a protease 
responsible for biofilm formations (Del Papa et al., 2007). According to 
the MEROPS database, thermolysin M04 family has a larger number of 
cleavage sites in comparison to other families, and this likely explains 
the higher number of peptides produced during the simulation per-
formed with Enterococcus faecalis AT22. All the other bacterial species 
tested generated similar profiles, more specifically the number of pep-
tides generated was lower and, as a consequence, length distribution 
was ranging from 21 to 100 amino acids (Fig. 4). 

The simulations performed revealed that the peptides generated 
from different yeast species were more closely related than those ob-
tained from different bacteria (Supplementary material 5); as a confir-
mation, the comparison of the length profiles of the peptides obtained 
using different yeast species did not reveal significant differences 
(Fig. 4). However, Debaryomyces hansenii CBS767 analyzed in the con-
current mode showed a slightly higher number of short peptides with 
length between 1 and 4 AA. The shorter average length obtained is 
related to the presence of a glutamyl transpeptidase S01 serine family 
protease in Debaryomyces hansenii CBS767. This enzyme, similarly to the 
bacterial thermolysin, and according to the MEROPS database, can 
recognize a high number of cleavage sites. According to the literature, 
Debaryomyces hansenii is one of the most prevalent yeast species in dairy 
foods and, as previously reported, it can produce antihypertensive bio-
peptides from casein (García-Tejedor et al., 2015). 

The lack of detailed information regarding the proteases cleavage 
sites in some species can result in a high similarity of the peptides 
pattern identified from different yeast species and this can limit the 
quality of the results obtained from FEEDS. Since the tool is strongly 
influenced by the quality of the information recovered from MEROPS, it 
should be used with caution when analysis data from poorly 

characterized species, but it can still provide a first glimpse on the 
digestion peptide predictions for each enzyme family and help to select 
among a range of different microorganism species. The quality of the 
predictions will certainly increase with the addition of new details 
regarding the proteases cleavage sites in yeasts. 

Machine learning functional prediction of biopeptides 

Biopeptides generated by the hydrolytic activity of fungal and bac-
terial species described in the previous section were examined with 
machine learning approaches in order to predict their potential function. 
Since the machine learning models were trained using 100 AA as 
maximum peptide length, this was also set as the maximum threshold for 
the next analyses. According to the probability of correct functional 
prediction probability, the peptides were assigned to three classes: 
biopeptides with a low probability of functional classification (lower 
than 50 %), those with medium probability (between 50 and 70 %), and 
those with a high probability (>70 %). The peptides with low proba-
bility of classification were discarded. Only the biopeptides with me-
dium and high were considered for further analyses (Supplementary 
material 6). 

The results showed that the five bacterial species considered pro-
duced a panel of biopeptides characteristic for each microbial species, 
with only a fraction of identical sequences among species ranging from 
0.3 (concurrent mode) to 1.6 % (sequential mode) (Supplementary 
material 4 – Fig. S1). The low percentage of identical peptides obtained 
in the comparison among the species is primarily attributed to Entero-
coccus faecalis AT22, which exhibited more than 80 % specific bio-
peptides. Since the bioactive peptides tend to be highly different among 
bacterial species, the possibility to apply a preliminary bioinformatic 
screening can facilitate the species selection and provide a prediction of 
the process potentially related to the production of biopeptides with 
characteristic functions. As previously mentioned, some enzymes may 

Fig. 4. Length distribution of peptides generated from simulated hydrolysis. Number of peptides and length distribution obtained from in-silico tests performed 
with bacteria (A, B) and yeast strains (C, D) in concurrent (A, C) and sequential (B, D) mode. Two different protein substrates were used in the tests, one from 
Hordeum vulgare and one from Vitis vinifera. The first mix of proteins used as protein substrate included avenin, B1 hordein, B3 hordein, D hordein, type 1 glutelin, 
type 2 glutelin, Y1 hordein, and Y3 hordein from Hordeum vulgare. The second mix included 2S albumin, Cruciferin, 11S globulin, D1 glutelin, A3 glutelin, A legumin 
and Vicilin from Vitis vinifera. 
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Table 1 
Functional annotation of biopeptides. Functional annotation of biopeptides produced from bacteria and fungi and shorter than 100 AA. Results were obtained using 
the “concurrent” and “sequential” modes and were separated according to the “medium (medium pr.)” or “high (high pr.)” probability of functional assignment.  

Bacteria Yeast 
Streptococcus thermophilus strain SMQ-301 Schizosaccharomyces pombe 972 h- 
Biopeptide Family Digestion Mode Biopeptide Function Digestion Mode  

Concurrent Sequential  Concurrent Sequential  

Medium pr. High pr. Medium pr. High pr.  Medium pr. High pr. Medium pr. High pr. 

Antimicrobial 6 31 6 28 Antimicrobial 8 3 36 99 
Opioid 0 0 0 0 Opioid 0 0 0 0 
Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0 
Antihypertensive 9 1 9 1 Antihypertensive 144 15 154 17 
Antioxidant 9 2 8 1 Antioxidant 248 20 251 19 
Cardiovascular 2 0 1 0 Cardiovascular 2 1 13 2 
Celiac 2 10 1 10 Celiac 31 6 11 60 
Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1 
Neuropeptides 0 0 0 0 Neuropeptides 0 1 0 1 
Total 29 44 26 40 Total 435 47 470 199 
% 37.18 56.41 39.39 60.61 % 77.26 8.35 59.12 25.03  

Lactobacillus sp. D1501 Debaryomyces hansenii CBS767 

Antimicrobial 7 48 7 49 Antimicrobial 2 2 63 180 
Opioid 0 0 0 0 Opioid 0 0 0 0 
Antidiabetic 1 0 1 0 Antidiabetic 0 2 5 0 
Antihypertensive 10 1 10 1 Antihypertensive 157 19 178 20 
Antioxidant 10 2 8 2 Antioxidant 293 19 309 31 
Cardiovascular 2 0 1 0 Cardiovascular 2 1 20 2 
Celiac 4 18 2 15 Celiac 7 31 13 86 
Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 1 1 
Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1 
Total 34 69 29 67 Total 461 76 590 321 
% 30.91 62.73 32.95 76.14 % 74.60 12.30 52.91 28.79  

Leuconostoc mesenteroides FDAARGOS_1033 Rhodotorula toruloides NP11 

Antimicrobial 4 30 4 23 Antimicrobial 3 2 47 170 
Opioid 0 0 0 0 Opioid 0 0 0 0 
Antidiabetic 0 0 0 0 Antidiabetic 2 0 4 0 
Antihypertensive 6 0 7 0 Antihypertensive 157 19 173 22 
Antioxidant 6 1 3 1 Antioxidant 289 19 273 19 
Cardiovascular 3 0 1 0 Cardiovascular 2 1 20 2 
Celiac 0 3 1 2 Celiac 7 31 17 108 
Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1 
Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1 
Total 19 34 16 26 Total 460 74 535 323 
% 34.55 61.82 39.02 63.41 % 74.92 12.05 53.93 32.56  

Lactococcus lactis subsp. lactis LEY7 Zygosaccharomyces rouxii 110957 

Antimicrobial 5 42 7 47 Antimicrobial 8 3 33 129 
Opioid 0 0 0 0 Opioid 0 0 0 0 
Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0 
Antihypertensive 12 1 12 1 Antihypertensive 147 16 150 17 
Antioxidant 13 3 8 2 Antioxidant 252 19 247 18 
Cardiovascular 2 0 1 0 Cardiovascular 2 1 16 2 
Celiac 2 15 2 12 Celiac 6 31 12 66 
Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1 
Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1 
Total 35 61 31 62 Total 417 72 464 234 
% 31.82 55.45 34.83 69.66 % 73.81 12.74 56.24 28.36  

Enterococcus faecalis strain AT22 Saccharomyces pastorianus CBS_1483 

Antimicrobial 3 4 37 83 Antimicrobial 8 3 36 138 
Opioid 0 0 0 0 Opioid 0 0 0 0 
Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0 
Antihypertensive 182 33 187 30 Antihypertensive 145 16 160 19 
Antioxidant 358 30 327 44 Antioxidant 252 18 265 19 
Cardiovascular 3 4 10 5 Cardiovascular 2 1 15 1 
Celiac 11 36 9 60 Celiac 6 31 13 66 
Immunomodulatory 1 1 2 1 Immunomodulatory 0 1 0 1 
Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1 
Total 559 108 573 223 Total 415 71 495 245 
% 84.57 16.34 65.26 25.40 % 73.84 12.63 56.00 27.71  
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contain additional information from the cleavage site, leading to 
redundant results. According to the simulations, the use of unicellular 
fungi for the simulated proteolysis lead to a higher fraction of identical 
peptides among species (ranging from ~54 to 61 %). This is obviously 
due to the similarity in protease profiles among the fungal species 
investigated. Despite the high fraction of identical peptides, when 
setting the “sequential mode” Debaryomyces hansenii CBS767 exhibits 
~17 % of specific sequences compared to the other strains. 

The machine learning approach implemented in the FEEDS pipeline 
was able to predict the function of over 80 % of the peptides derived 
from seed storage proteins with a probability of correct assignment 
higher than 50 % (Table 1). It was observed peptide sequences longer 
than 20 AA frequently had a higher probability of correct assignment in 
comparison to the short ones. This trend is evident in analyzing the re-
sults obtained from Enterococcus faecalis AT22, which tends to produce 
short peptides (Fig. 4) compared to the other species (Table 1). On 
contrary, many peptides produced by Lactobacillus sp. D1501, Leuco-
nostoc mesenteroides FDAARGOS_1033, and Streptococcus thermophilus 
SMQ-301 were longer than 21 AA and were classified with high confi-
dence as antimicrobials, a class of biopeptides frequently composed by 
long sequences (Bizzotto et al., 2023). 

In addition to antimicrobial peptides, antihypertensive, antioxidant, 
and celiac peptides were frequently predicted (Table 1). Previous ana-
lyses performed using trypsin hydrolysis on Hordeum vulgare B-C-D 
hordein and globulin proteins (Tok et al., 2021) revealed also the 
presence of biopeptides having antihypertensive and antioxidant func-
tions. Opioid, immunomodulatory and neuropeptides presented only 
one or any sequence, however, it should be noted that these peptide 
families were found to be associated with precursor proteins families not 
included in the present analysis, such as gliadin, and cliotide (Pavlicevic 
et al., 2022), as well as proteins from Zea mays, Glycine max (Pavlicevic 
et al., 2022), and insect proteins (Quah et al., 2023). 

In-silico peptide sequence prediction validation 

To validate the in-silico step of protein digestion, an in-vitro 
fermentation of brewer spent grains (Hordeum vulgare) was conducted 
in batch reactors and performing four independent tests using Entero-
coccus faecalis AVEL13, Lactococcus lactis WSL2, Schizosaccharomyces 
pombe J13151G1 and Saccharomyces cerevisiae KFAY3. 

Peptides obtained from the fermentation were analyzed using mass 
spectrometry as described in the materials and methods and the results 
were compared with those obtained in-silico with FEEDS. The in-vitro 
analysis performed using the same four species yielded from 441 to 
494 peptide sequences. In contrast to the in-silico analysis of protein 

sequence digestion, the in-vitro peptide sequences exhibited remarkable 
consistency among microorganism species, with approximately 20 % of 
the peptide sequences being unique to each species (Supplementary 
material 4 – Fig. S2). Furthermore, the number of peptides generated for 
each species remained consistent, on average 466 distinct peptides 
produced by each microorganism. In-vitro studies involving the 
fermentation of goat milks utilizing Lactiplantibacillus, Lactobacillus, and 
Streptococcus and quantified by ultra-high performance liquid 
chromatography-quadrupole-time-of-flight tandem mass spectrometry 
(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography- 
ion trap (HPLC-IT-MS/MS) provided similar results and evidenced 
similar profiles of peptide production between different genera of bac-
teria (Moreno-Montoro et al., 2018). 

Comparative analysis between in-silico and in-vitro protein digestion 
revealed that 2.9 % of in-silico sequences matched with those obtained 
in-vitro (Table 2). The low percentage can be due to the fact that in-vitro 
protein fermentation experiments are conducted under specific labora-
tory conditions, which may vary from study to study. Factors such as pH, 
temperature, microbial strains, and fermentation time can all influence 
the outcomes of the experiment. Certain peptide bonds could be resis-
tant to cleavage due to their specific amino acid sequence or structural 
context, leading to missed cleavage events (Aki and Okamura, 2016). In 
contrast, FEEDS in-silico simulations use fixed parameters or assump-
tions, which may not align with the specific conditions of a particular in- 
vitro study. 

To investigate the missed cleavage sites, we performed an in-silico 
digestion using eight enzymes and a variable percentage of miss cleav-
age events was set (Supplementary material 7). The findings demon-
strated that when the in-silico analysis incorporated a 30 % miss 
cleavage rate, there was an increased number of matches (3.7 %) with 
the in-vitro digestion results (Table 2) suggesting that this can be an 
important parameter to consider in the future development of the tool. 

Conclusions 

It was demonstrated here the possibility to develop a tool for the 
prediction of biopeptides composition and function by means of a 
simulated proteolytic digestion performed on protein sequences pro-
vided by the user. The results demonstrated that the predicted bio-
peptides show distinctive characteristics depending on the microbial 
species, while some proteases have the potential of providing more 
specificity to the generated profile. It was also demonstrated the capa-
bility of classifying the majority of peptides derived from seed storage 
proteins of Hordeum vulgare and Vitis vinifera. However, the authors 
envisage that further studies on bacterial and yeast protease cleavage 
sites will provide valuable information to enhance the reliability of the 
in-silico protein digestion step. The FEEDS tool is user-friendly, fast, and 
not only categorizes the formed peptides, but can also be utilized for the 
classification of proteases within the genomes of bacteria and yeasts. 
Furthermore, users can easily add new cleavage rules through the rapid 
peptide generator integrated into the tool. The tool has the potential to 
be developed to reinforce its capabilities, for example by incorporating a 
learning mechanism to refine its predictions based on user-generated 
data and false predictions. This adaptive approach holds promise for 
enhancing FEEDS’ accuracy, particularly in scenarios involving complex 
food waste compositions with varied protein sources and non-protein 
materials. The possibility of performing bioinformatics pre-screening 
could pave the way to a faster and cheaper analysis of the most prom-
ising microbial candidates and protein substrates to be used for bio-
peptides production. Moreover, the FEEDS tool will allow a prediction of 
the potential bioactive compounds, leading to new approaches for 
mining valuable compounds in food waste. 
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