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Abstract

We provide regularity, existence and non existence results for the semilinear subellip-
tic problem with critical growth −∆Gu = ψα |u|2

∗(α)−2u
d(ξ)α + λu in Ω, u = 0 on ∂Ω, where

∆G is a sublaplacian on a Carnot group G, 0 < α < 2, 2∗(α) = 2(Q − α)/(Q − 2), Ω is
a bounded domain of G, d is the natural gauge associated with the fundamental solution
of −∆G on G and ψ := |∇Gd|, ∇G being the subelliptic gradient associated to ∆G, λ is a
real parameter.
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1 Introduction

In this paper we study the critical semilinear boundary value problem



−∆Gu = ψα |u|2

∗(α)−2u

d(ξ)α
+ λu in Ω

u = 0 on ∂Ω
(1.1)

where ∆G is the Sublaplacian operator on a Carnot group G, d is the natural gauge associated
with the fundamental solution of −∆G on G, 0 < α < 2 and 2∗(α) = 2(Q − α)/(Q − 2) is
the corresponding critical exponent, Q being the homogeneous dimension of the space G.
Moreover, ψ is the weight function defined as ψ := |∇Gd|, where ∇G is the subelliptic
gradient associated to ∆G. Here, Ω is a bounded domain of G and λ is a real parameter.

We look for weak solutions of (1.1) in the Folland-Stein space S1
0(Ω), defined as the

completion of C∞
0 (Ω) with respect to the norm

‖u‖S1
0(Ω) :=

(∫

Ω
|∇Gu|2 dξ

)1/2

.
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When Ω = G, we shall simply denote S1(G) = S1
0(G).

In the past years, a great deal of interest has been paid to semilinear problems with
critical nonlinearities arising in the context of Stratified groups (see e.g. [20], [32], [33], [7],
[21], [3], [36]), the greatest part of this literature concerning autonomous nonlinearities.

On the other hand, in the Euclidean elliptic setting, singular nonlinear problems with
critical growth of the type (1.1), have been studied by many authors (see e.g. [26], [25], [5],
[16], [6], [27], just to cite the ones that are somehow related to the present one).

In this paper, we begin the study of Brezis-Nirenberg type singular problems in the context
of Carnot groups, starting from the case of interior singularity (i.e. 0 ∈ Ω).

The variational formulation of pb. (1.1) stands on the validity of the following subelliptic
Hardy-Sobolev type inequality, which holds in any Carnot group of homogeneous dimension
Q ≥ 3. Assume that 0 ≤ α < 2; then, there exists a positive constant C = C(α, Q) such that

∫

G
|∇Gu|2 dξ ≥ C

(∫

G
ψα |u|2

∗(α)

d(ξ)α
dξ

) Q−2
Q−α

, ∀u ∈ C∞
0 (G) (1.2)

where 2∗(α) = 2(Q−α)
Q−2 and ψ = |∇Gd|.

We emphasize that the weight function ψ appearing in the l.h.s. of (1.2) is constantly
equal to 1 in the Euclidean canonical case. The above inequality can be easily obtained
by combining the appropriate Sobolev and Hardy-type inequalities on Carnot groups (see
Section 2).

The main difficulty in facing nonlinear critical problems of type (1.1) is the lack of com-
pactness in the related Hardy-Sobolev embedding, due to the invariance of the norms in (1.2)
with respect to the following non compact group of rescalings

uλ(ξ) = λ
Q−2

2 u(δλ(ξ)), λ > 0, (1.3)

where δλ denotes the natural dilations of the group.
In this paper, we investigate existence and non existence of nonnegative weak solutions to

pb. (1.1) on bounded domains of G. To get non existence results, a deep regularity analysis
at 0 is performed.

First of all, we consider the case λ = 0. By means of suitable integral identities of
Pohozaev-type, we prove that, if G is a Carnot group of step two, then the critical problem




−∆Gu = ψα |u|2

∗(α)−2u

d(ξ)α
in Ω

u = 0 on ∂Ω
(1.4)

does not admit nonnegative nontrivial solutions, sufficiently regular up to the boundary, when
Ω is a bounded starshaped domain about the origin with respect to the dilations of the group.

We recall that Pohozaev-type identities in the Stratified subelliptic context were first
introduced by Lanconelli and Garofalo in [20] in the Heisenberg group Hn and extended by
Garofalo and Vassilev [21] to general Carnot groups. In the just cited papers, many non-
existence results were proved for Yamabe-type problems (i.e. for the case α = 0 in the above
equation), both on bounded and unbounded domains (see also [32], [33], [3]).

In the Euclidean context, Pohozaev identities for singular problems of the type (1.4) can
be found e.g. in [26], [16], [5], [27].
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In the present Carnot case, some additional difficulties arise in implementing Pohozaev
type results, in connection with the lack of regularity of solutions at 0.

As stated in Proposition 3.1, a weak solution u ∈ S1
0(Ω) to problem (1.4) satisfies

u ∈ Γ2,γ
loc (Ω \ {0}) ∩ Γβ

loc(Ω),

for some γ, β ∈ (0, 1), where the above spaces are the appropriate Folland-Stein spaces (see
Section 2 for definitions). For general 0 < α < 2, one cannot expect more than Hölder
regularity at the origin, as already pointed out in the Euclidean case.

Now, observe that, in the Carnot case, the infinitesimal generator Z of the dilations
{δλ}λ>0, by means of which the notion of starshapedness is defined (see Definition 4.2),
involves commutators up to maximum length of the vector fields Xj , such that ∇G =
(X1, . . . , Xm). Henceforth, summability properties of Zu at 0, being u ∈ S1

0(Ω) a weak
solution to our pb. (1.4), cannot be directly deduced by the condition |∇Gu| ∈ L2. So, we
are lead to study the behavior at 0 of the higher-layer derivatives of u.

This is the main technical difficulty with respect to the Euclidean case. To obtain the
needed estimates, we use a pointwise approach, inspired by the methods introduced by Lan-
conelli and Uguzzoni in [32], [33] in the non-singular case α = 0.

Our analysis is confined to Carnot groups of step two. In this context, denoted by
g = G1 ⊕ G2 the Lie algebra of G, where G1 = span{X1, . . . , Xm} and G2 = [G1,G1],
by means of a careful asymptotic analysis, we get that, if u is a weak solution of problem
(1.4), and Y ∈ G2, then

|Y u(ξ)| = O(d(ξ)−2), as d(ξ) → 0. (1.5)

A key ingredient in our analysis is to estimate the local behavior at 0 of Y w, where w = Γ∗f ,
Γ being the fundamental solution of ∆G and f = f(·, u) is the r.h.s. of equation (1.4), where
u is trivially extended outside of Ω. We remark that, for the function w, the sharp estimate
|Y w(ξ)| = O(d(ξ)−α), as d(ξ) → 0, is obtained.

Thus, by means of the technical information (1.5), we can implement Pohozaev-type
identities for our singular problem, in order to get non-existence of solutions.

Our main results are Theorem 4.5 and Theorem 4.6. In the first theorem, we prove non
existence of non trivial non-negative solutions for pb. (1.4), Γ2-regular up to the boundary
of Ω, when Ω is bounded and δλ-starshaped about the origin. In the second one, under the
hypothesis that Schauder type boundary estimates hold at non-characteristic points (as in the
case G = Hn), reasoning as in [21] we get non-existence results under the weaker assumptions
of boundedness of ∇Gu and Zu up to the boundary.

Next, we investigate the existence of solutions for problem (1.1) when λ > 0. The main
difficulty one encounters when dealing with the subelliptic singular problem (1.1) is that the
explicit form of the Hardy-Sobolev extremals in the Carnot setting is not known, even for
the Heisenberg group Hn. This lack of information seems to make the known techniques,
namely the Brezis-Nirenberg methods in [4], not applicable to our context. Nevertheless, as
already recognized by the author in [36], where the case α = 0 was studied, this difficulty
can be overcome, since the real ingredient which is needed to perform asymptotic espansions
of Brezis-Nirenberg type is the knowledge of the asymptotic behaviour of Hardy-Sobolev
minimizers at ∞.
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Now, in the case 0 < α < 2, by a suitable adaptation of Lions’ concentration-compactness
argument [35], the existence of Hardy-Sobolev extremals can be proved (see Section 3). More-
over, by the general asymptotic results in [37], we deduce that such extremals behave at ∞
exactly as the fundamental solution Γ of ∆G.

Thus, by using this facts, we can prove the following theorem, where λ1 denotes the first
eigenvalue of −∆G in Ω with Dirichlet boundary conditions.

Theorem 1.1. Let G be a Carnot group of homogeneous dimension Q > 3 and let Ω ⊂ G be a
bounded domain, 0 ∈ Ω. Then, problem (1.1) admits at least one positive solution u ∈ S1

0(Ω)
for any 0 < λ < λ1.

We explicitly remark that the existence result is not affected by the power α of the singu-
larity, since it only depends on the involved operator and the criticality of the pair (α, 2∗(α)).
Moreover, considering that, for Q ≤ 3, then G is necessarily the ordinary Euclidean space
(RN , +), we can observe that, except for the trivial case (R3, +), no critical dimensions in the
sense of Pucci and Serrin appear for this problem, i.e. there are no homogeneous space dimen-
sions for which problem (1.1) does not admit any non trivial solution in a right neighborhood
of λ = 0.

The paper is organized as follows. In Section 2, we recall the main features of the func-
tional setting of Carnot group and the main notations. Section 3 is devoted to regularity
results; in particular, we provide the estimates of the asymptotic behavior at 0 of the second-
layer derivatives of solutions, needed to implement Pohozaev identity, in the context of step
two Carnot groups. In Section 4 we prove non-existence results for our singular problem,
by means of Pohozaev-type arguments. In Section 5 we investigate qualitative properties of
Hardy-Sobolev extremals, which are needed in the existence result. Finally, in Section 6 we
prove Theorem 1.1.

2 The functional setting

We briefly recall the relevant definitions and notations related to the Carnot groups functional
setting. For a complete treatment, we refer to the wide monograph [2] and the classical papers
[17], [18].

A Carnot group (or Stratified group) (G, ◦) is a connected, simply connected nilpotent Lie
group, whose Lie algebra g admits a stratification, namely a decomposition g =

⊕r
j=1 Gj ,

such that [G1, Gj ] = Gj+1 for 1 ≤ j < r, and [G1,Gr] = {0}. The number r is called the
step of the group G. The integer Q =

∑r
i=1 idim(Gi) is called the homogeneous dimension

of G. We shall assume throughout that Q ≥ 3. Note that, if Q ≤ 3, then G is necessarily the
ordinary Euclidean space G = (RN , +).

By means of the natural identification of G with its Lie algebra via the exponential map
(which we shall assume throughout), it is not restrictive to suppose that G be a homogeneous
Lie group on RN = RN1 × RN2 × . . . × RNr , with Ni = dim(Gi), equipped with a family of
group-automorphisms (called dilations) δλ of the form

δλ(ξ) = (λ ξ(1), λ2 ξ(2), · · · , λr ξ(r)), (2.1)

where ξ(j) ∈ RNj for j = 1, . . . , r. Let m := N1 and let X1, . . . , Xm be the set of left invariant
vector fields of G1 that coincide at the origin with the first m partial derivatives. The second
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order differential operator

∆G =
m∑

i=1

X2
i

is called the canonical sub-Laplacian on G. We shall denote by

∇G = (X1, . . . , Xm) (2.2)

the related subelliptic gradient. Note that ∆G is left-translation invariant w.r.t. the group
action and δλ-homogeneous of degree two. In other words, ∆G(u ◦ τξ) = ∆Gu ◦ τξ, ∆G(u ◦
δλ) = λ2∆Gu ◦ δλ. Moreover, due to the stratification condition, the Lie algebra generated
by X1, . . . , Xm is the whole g, and therefore it is everywhere of rank N ; therefore, the
sublaplacian operator ∆G satisfies the well-known Hörmander’s hypoellipticity condition.

We recall that, if Ω ⊂ G is a smooth open set, the characteristic set of Ω with respect to
the system of vector fields (2.2) is defined as

Σ := {ξ ∈ ∂Ω |Xi(ξ) ∈ Tξ(∂Ω), i = 1, . . . , m}, (2.3)

where Tξ(∂Ω) denotes the tangent space to ∂Ω at the point ξ. For many examples and prop-
erties of the characteristic set, see e.g. [13, Chapter 3]. We shall deal with the characteristic
set of the domain Ω in Section 3 in connection with the problem of regularity of solutions up
to the boundary.

When Q ≥ 3, Carnot groups possess the following property: there exists a suitable
homogeneous norm d on G such that

Γ(ξ) =
C

d(ξ)Q−2
(2.4)

is a fundamental solution of −∆G with pole at 0, for a suitable constant C > 0 (see [17]). By
definition, a homogeneous norm on G is a continuous function d : G→ [0, +∞), smooth away
from the origin, such that d(δλ(ξ)) = λ d(ξ), for every λ > 0 and ξ ∈ G, d(ξ−1) = d(ξ) and
d(ξ) = 0 iff ξ = 0. Moreover, if we define d(ξ, η) := d(η−1 ◦ ξ), then d is a pseudo-distance on
G. In particular, d satisfies the pseudo-triangular inequality

d(ξ, η) ≤ β(d(ξ, ζ) + d(ζ, η)), ξ, η, ζ ∈ G, (2.5)

for a suitable constant β. Throughout the paper, we shall denote by d the homogeneous norm
associated to the fundamental solution of the sub-Laplacian by (2.4). We shall indicate by
Br(ξ) = Bd(ξ, r) the d-ball with center at ξ and radius r.

A fundamental rôle in the functional analysis on Carnot groups is played by the following
Sobolev-type inequality due to Folland and Stein [17]: there exists a positive constant S =
S(G) such that ∫

G
|∇Gu|2 dξ ≥ S

(∫

G
|u|2∗ dξ

)2/2∗

∀u ∈ C∞
0 (G), (2.6)

where 2∗ = 2Q/(Q− 2) is the critical exponent in this context.
Moreover, on any Carnot group G the following Hardy-type inequality holds:

∫

G
|∇Gu|2 dξ ≥

(
Q− 2

2

)2 ∫

G
ψ2 |u|2

d(ξ)2
dξ, ∀u ∈ C∞

0 (G), (2.7)
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where d is the gauge associated with the fundamental solution of ∆G on G and ψ = |∇Gd|.
The preceding inequality was firstly proved by Lanconelli and Garofalo in [19] for the Heisen-
berg group (see also [9]). Then, it has been extended to all Carnot groups (see e.g. [10]).
We recall that the constant in the r.h.s. of the formula (2.7) is sharp and it is never attained
(see e.g. [10]). We explicitly note that the weight function ψ appearing in the r.h.s. of (2.7)
is constant if and only if G is the Euclidean group (see [2, Prop. 9.8.9]). Moreover, ψ is
δλ-homogeneous of degree 0 and ψ2 is a smooth function out of the origin.

Now, if one is not interested in the best constant, by combining the above Hardy-type
inequality (2.7) with the Folland-Stein Sobolev inequality (2.6), one immediately gets the
Hardy-Sobolev inequality (1.2). For a deep treatment of Hardy-Sobolev inequalities in the
general context of Carnot-Caratheodory spaces, we refer to [14].

In what follows, we shall use the following spaces. For an open set Ω ⊂ G, we shall
denote by Γ2(Ω) the Folland-Stein space of all continuous functions u ∈ C(Ω) such that Xju,
XiXju ∈ C(Ω), for i, j = 1, . . . , m. Analogously we shall denote by Γk,β(Ω), 0 < β < 1,
k ∈ N ∪ {0}, the Folland-Stein Hölder spaces (see Folland [17]), and by Γk,β

loc (Ω) the space of
functions which belongs to Γk,β(D), for any compact subset D of Ω.

Moreover, Lp,∞, p ≥ 1, will denote the classical weak-Lp space and Lp′,1 its conjugate
space in the framework of Lorentz spaces (see e.g. [1], [23] for definitions and properties).

3 Some regularity results

In this section we provide some regularity properties of weak solutions to problem (1.4).
In particular, we estimate the asymptotic behaviour at 0 of the second-layer derivatives of
solutions, needed to implement Pohozaev identities. We shall use a suitable adaptation of
the techniques introduced by Lanconelli and Uguzzoni in [32], [33].

Throughout this section, Ω will be an arbitrary open subset of G. We begin by stating
the Hölder regularity properties of weak solutions. The starting point is the analysis of the
Lp-properties of solutions performed by the author in [37].

Proposition 3.1. Let G be a Carnot group and let Ω be an arbitrary open set of G, 0 ∈ Ω.
If u ∈ S1

0(Ω) is a weak solution of problem



−∆Gu = ψα |u|2

∗(α)−2u

d(ξ)α
in Ω

u = 0 on ∂Ω
(3.1)

then
u ∈ Γ2,γ

loc (Ω \ {0}) ∩ Γβ
loc(Ω),

for some γ, β ∈ (0, 1). Moreover, if Ω satisfies the following geometric condition

∃ δ, r0 > 0 : |Bd(ξ, r) \ Ω| ≥ δ|Bd(ξ, r)| ∀ ξ ∈ ∂Ω, ∀r ∈ (0, r0), (3.2)

then, u is Hölder continuos up to the boundary of Ω.

Proof. By Proposition 4.4 in [37], we know that u ∈ Lp for any p ∈ (2∗
2 ,∞]. Then, if we

consider u as a solution of the equation −∆Gu = V u, with V = ψα |u|2∗(α)−2

dα , from u ∈ Lp for
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p > 2∗, and taking into account that ψ ∈ L∞, we get that

V ∈ Lp, for some p >
Q

2
. (3.3)

The summabity condition (3.3) on V ensures, by the classical results by Stampacchia [40],
suitably extended to the subelliptic context (see e.g. [8]), that u is locally Hölder continuous
in Ω, i.e.

u ∈ Γβ
loc(Ω), for some β ∈ (0, 1). (3.4)

Moreover, denoted by f the r.h.s. of the equation in (3.1), by (3.4) and being ψα, d−α locally
Hölder continuous out of the origin, it follows that f ∈ Γγ

loc(Ω \ {0}), for some γ ∈ (0, 1).
Henceforth, by Folland [17, Theor. 6.1], u ∈ Γ2,γ

loc (Ω \ {0}).
Finally, if Ω satisfies (3.2), the Hölder continuity up to the boundary can be proved by ap-

plying an analogue of Moser’s iteration technique (see e.g. [22], Chapter 8) suitably adapted
to the subelliptic case. We omit the details. ¤

In order to estimate the second layer derivatives of u at 0, we shall confine our analysis
to Carnot groups of step two. We recall that, in this case, the Lie algebra g of G admits the
stratification g = G1 ⊕G2, where G1 = span{X1, . . . , Xm} and G2 = [G1, G1]. Our result is
the following.

Theorem 3.2. Let G be a Carnot group of step two. Suppose that Ω ⊂ G is an open set,
0 ∈ Ω, and let u ∈ S1

0(Ω) be a weak solution of pb. (3.1). Then, for every Y ∈ G2, we have

|Y u(ξ)| = O(d(ξ)−2) as d(ξ) → 0.

In order to prove the above theorem, we shall need some preliminary results. Let us begin
by introducing some notations. If u ∈ S1

0(Ω) is a solution of pb. (3.1), and we set u to be 0
outside Ω, denoted by

f = ψα |u|2
∗(α)−2u

dα
, (3.5)

we define the function

w = Γ ∗ f : G→ R, w(ξ) =
∫

G
Γ(ξ, ξ′)f(ξ′) dξ′, (3.6)

where Γ denotes the fundamental solution of −∆G introduced in (2.4).
Note that, by ψ ∈ L∞, d−α ∈ LQ/α,∞, and being u ∈ L∞ and u = O(d−(Q−2)) at ∞ (see

[37]), (and so f = O(d−(Q+2−α)) at ∞), it follows that

f ∈ L1(G) ∩ LQ/α,∞(G). (3.7)

Therefore, since Γ ∈ L2∗/2,∞(G), by Young’s inequality for weak-Lp spaces (see e.g. [23]) we
deduce that

w ∈ L2∗/2,∞(G) ∩ L∞(G).

Indeed, from f ∈ L1(G) and Γ ∈ L2∗/2,∞(G), one gets Γ ∗ f ∈ L2∗/2,∞(G); moreover,
f ∈ LQ/α,∞(G)∩L1(G) implies, by interpolation, that f ∈ LQ/2,1(G) , hence Γ∗ f ∈ L∞ (see
[1], Remark 7.29). Moreover, w weakly solves

−∆Gw = f in G.
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Concerning the regularity of w, taking into account that u is locally Hölder continuous in Ω,
it follows that

f ∈ Γγ
loc(Ω \ {0}), (3.8)

for some γ ∈ (0, 1). Then, from Folland [17, Theor. 6.1], we deduce that w ∈ Γ2,γ
loc (Ω \ {0}).

Moreover, if Ω satisfies the geometric condition (3.2), then the trivial extension of u
is Hölder continuous in the whole G. Henceforth, in this case, f ∈ Γγ

loc(G \ {0}) and so
w ∈ Γ2,γ

loc (G \ {0}).
Now, in order to estimate the behavior of the second-layer derivatives of u at 0, we shall

first estimate such derivatives for the convolution function w, then we shall consider their
behaviour for the function

v = w − u, (3.9)

which satisfies

∆Gv = 0 in Ω \ {0}, v = w on ∂Ω.

To begin with, we prove the following general result, which we shall apply to represent
the derivatives of w in the set U = Ω \ {0}.
Lemma 3.3. Let G be a Carnot group of step two and U be an arbitrary open set of G. Let
f ∈ Lp(G), for some p ∈ [1, Q

2 [. Suppose moreover that f |U ∈ Γγ
loc(U) for some γ ∈ (0, 1). If

we set w = Γ ∗ f , then w|U ∈ Γ2,γ
loc (U) and for every Y ∈ G2

Y w(ξ0) =
∫

Bd(ξ0,r)
Y Γ(ξ0, ξ

′)(f(ξ′)− f(ξ0)) dξ′ +
∫

G\Bd(ξ0,r)
Y Γ(ξ0, ξ

′)f(ξ′) dξ′, (3.10)

for any ξ0 ∈ U and r > 0 such that Bd(ξ0, r) b U .

Proof. We shall follow the line of the proof given in [32], [33]. We stress that, in the just
cited papers, being f Hölder continuous in the whole G, the above representation formula
holds for any ξ0 ∈ G and without any restriction on the radius r.

The regularity of w follows by Folland [17, Theorem 5.13]. Let ξ0 ∈ U and r > 0 such
that Bd(ξ0, r) b U . We define

B0 = Bd (ξ0, r) , B = Bd

(
ξ0,

r

2β

)

f0 = fχB0 , f1 = f − f0,

where β is the constant appearing in the pseudo-triangular inequality (2.5) and χB0 is the
characteristic function of the set B0. Let η ∈ C∞(R, [0, 1]) be such that η ≡ 0 in [0, 1],
η ≡ 1 in [2,+∞[, and for every ε > 0 let us set ηε = η(d/ε) ∈ C∞(G); moreover, let
ηε(ξ, ξ′) = ηε(ξ′

−1 ◦ ξ). We set

w0 = Γ ∗ f0, w1 = Γ ∗ f1, w0,ε = (Γηε) ∗ f0.

Note that, since f ∈ L∞(B), it is immediate to verify that

lim
ε→0

w0,ε = w0 uniformly on the compact sets ofB. (3.11)
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Moreover, w0,ε ∈ C∞(B). Taking into account that, in a group of step two, for any regular
function g, we have

Yξ(g(ξ′−1 ◦ ξ) = −Yξ′(g(ξ′−1 ◦ ξ)),

for every ξ ∈ B and ε < r/(4β), we get

Y w0,ε(ξ) =
∫

B0

Yξ

(
Γηε (ξ, ξ′)

)
f0(ξ′) dξ′

=
∫

B0

Yξ

(
Γηε (ξ, ξ′)

)
(f0(ξ′)− f0(ξ)) dξ′ − f0(ξ)

∫

B0

Yξ′
(
Γηε (ξ, ξ′)

)
dξ′

=
∫

B0

Y
(
Γηε (ξ, ξ′)

)
(f0(ξ′)− f0(ξ)) dξ′ − f0(ξ)

∫

∂B0

Γ(ξ, ξ′) <Y (ξ′), ν(ξ′)> dσ(ξ′).

Let us define w0 : B → R as

w0(ξ) :=
∫

B0

Y Γ(ξ, ξ′)(f0(ξ′)− f0(ξ)) dξ′ − f0(ξ)
∫

∂B0

Γ(ξ, ξ′) <Y (ξ′), ν(ξ′)> dσ(ξ′).

We claim that w0 is well-posed on B and that

lim
ε→0

Y w0,ε = w0 uniformly on the compact sets ofB. (3.12)

Indeed, taking into account that f is locally Hölder continuous in U , and using the estimate
|Y Γ| ≤ cd−Q (which holds since Γ is δλ-homogeneous of degree 2−Q and Y ∈ G2), we get

∫

B0

|Y Γ(ξ, ξ′)(f0(ξ′)− f0(ξ))| dξ′ ≤ c0

∫

B0

d(ξ, ξ′)γ−Q < +∞,

for a suitable positive constant c0 = c0(B0). Moreover,

|w0(ξ)− Y w0,ε(ξ)| =
∣∣∣∣∣
∫

Bd(ξ,2ε)
Y (Γ(1− ηε))(ξ, ξ′)(f0(ξ′)− f0(ξ)) dξ′

∣∣∣∣∣

≤ c0

∫

Bd(ξ,2ε)

(|Y Γ(ξ, ξ′)|+ Γ(ξ, ξ′)‖η̇‖∞|Y d(ξ, ξ′)|ε−1
)
dγ(ξ, ξ′) dξ′

≤ c0

∫

Bd(ξ,2ε)
(d(ξ, ξ′)γ−Q + ε−1d(ξ, ξ′)γ+1−Q) dξ′ = c̃0ε

γ ,

for every ξ ∈ B and ε < r/(4β), where we have used that Y d and Y Γ are δλ-homogeneous
functions of degree −1 and −Q, respectively. From (3.11) and (3.12) we have that

Y w0 = w0 in B.

On the other hand, from f ∈ Lp(G), differentiating under the integral sign, we get

Y w1(ξ) =
∫

G\B0

Y Γ(ξ, ξ′)f1(ξ′) dξ′, ξ ∈ B.

Then, taking ξ = ξ0 we get

Y w(ξ0) = Y (w0 + w1)(ξ0) = w0(ξ0) + Y (w1)(ξ0)

=
∫

B0

Y Γ(ξ0, ξ
′)(f(ξ′)− f(ξ0)) dξ′ +

∫

G\B0

Y Γ(ξ0, ξ
′)f(ξ′) dξ′,
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where we have used that
∫

∂B0

Γ(ξ0, ξ
′) <Y (ξ′), ν(ξ′)> dσ(ξ′) = cr2−Q

∫

∂B0

<Y (ξ′), ν(ξ′)> dσ(ξ′)

= cr2−Q

∫

B0

Y (1) dξ′ = 0.

This completes the proof. ¤

In the following proposition, by using the representation formula provided by Lemma 3.3,
we get the following asymptotic estimate at 0 for the derivatives of the function w in (3.6).

Proposition 3.4. Let G be a Carnot group of step two. If w is the function defined in (3.6)
and Y ∈ G2 is a Lie derivative of order two, then

|Y w(ξ)| = O(d(ξ)−α) as d(ξ) → 0. (3.13)

Proof. Due to (3.7) and (3.8), Lemma 3.3 applies to w in the set U = Ω \ {0}. Now, let
ξ ∈ Ω \ {0} with sufficiently small d(ξ) such that B(ξ, d(ξ)/2) b Ω \ {0} and let us use
the representation formula (3.10) with r = d(ξ)/2. Taking into account that Y Γ is a δλ-
homogeneous function of degree −Q, by (3.10) we get

|Y w(ξ)| ≤ c

∫

Bd(ξ,r)
d(ξ, ξ′)−Q|f(ξ′)− f(ξ)| dξ′ + c

∫

G\Bd(ξ,r)
d(ξ, ξ′)−Q|f(ξ′)| dξ′

:= cI1(ξ) + cI2(ξ).
(3.14)

Let us begin by estimating the term I1(ξ) in (3.14). Denoted by g := |u|2∗(α)−2u, we get, for
ξ′ ∈ Bd(ξ, r)

|f(ξ′)− f(ξ)| =
∣∣∣∣ψα(ξ′)

g(ξ′)
d(ξ′)α

− ψα(ξ)
g(ξ)
d(ξ)α

∣∣∣∣

≤ c

∣∣∣∣
1

d(ξ′)α
− 1

d(ξ)α

∣∣∣∣ +
c

d(ξ)α
|g(ξ′)− g(ξ)|+ c

d(ξ)α
|ψα(ξ′)− ψα(ξ)|

(3.15)

where we have used the boundedness of ψ and g.
Now, we shall use the following inequality, whose Euclidean proof can be found e.g. in

[34, Chapter 10] (see also [38], p. 574, where it is used in the Euclidean elliptic context)
∣∣∣d(ξ, η)−δ − d(ξ′, η)−δ

∣∣∣ ≤ cγd(ξ, ξ′)γ
(
d(ξ, η)−δ−γ + d(ξ′, η)−δ−γ

)

where δ > 0 and 0 < γ < 1.
By the above inequality, and using the fact that d(ξ)/2 ≤ d(ξ′) ≤ 3/2d(ξ) for ξ′ ∈ Bd(ξ, r),

we get for the first term in the r.h.s. of (3.15)
∣∣∣∣

1
d(ξ′)α

− 1
d(ξ)α

∣∣∣∣ ≤ cγd(ξ, ξ′)γ

(
1

d(ξ′)α+γ
+

1
d(ξ)α+γ

)
≤ cγ

d(ξ)α+γ
d(ξ, ξ′)γ , (3.16)

for any fixed γ ∈ (0, 1). Moreover, if we let φ := |∇Gd|2, we get

|ψα(ξ′)− ψα(ξ)| = |φα/2(ξ′)− φα/2(ξ)| ≤ |φ(ξ′)− φ(ξ)|α/2, (3.17)
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where we have used that 0 < α/2 < 1.
Now, since φ is smooth out of the origin, by applying the Stratified Lagrange mean value

theorem (see [2, Theor. 20.3.1]), we get

|φ(ξ′)− φ(ξ)| ≤ c sup
{ζ :d(ζ,ξ)≤b d(ξ′,ξ)}

|∇Gφ(ζ)|d(ξ, ξ′) (3.18)

where c and b are absolute constants depending only on the Carnot group and the homoge-
neous norm d. Hence, by (3.17) and (3.18), and taking into account that, since φ is smooth
out of the origin and δλ-homogeneous of degree 0, it holds |∇Gφ| ≤ cd−1, we have

|ψα(ξ′)− ψα(ξ)| ≤ c

d(ξ)α/2
d(ξ, ξ′)α/2. (3.19)

Hence, taking into account (3.16), (3.19) and the Hölder continuity of g, by (3.15) we get

|f(ξ′)− f(ξ)| ≤ c

d(ξ)α+γ
d(ξ, ξ′)γ +

c

d(ξ)α
d(ξ, ξ′)β, for all ξ′ ∈ Bd(ξ, r), (3.20)

for γ = α/2 and a suitable β ∈ (0, 1) . Hence

I1(ξ) ≤ c

d(ξ)α+γ

∫

Bd(ξ,r)
d(ξ, ξ′)γ−Q dξ′ +

c

d(ξ)α

∫

Bd(ξ,r)
d(ξ, ξ′)β−Q dξ′

≤ c

d(ξ)α+γ

∫ r

0
ργ−QρQ−1 dρ +

c

d(ξ)α

∫ r

0
ρβ−QρQ−1 dρ

=
c

d(ξ)α+γ
rγ +

c

d(ξ)α
rβ,

that is, letting r = d(ξ)/2,
I1(ξ) ≤ cd(ξ)−α + cd(ξ)−α+β. (3.21)

Now, let us estimate the term I2(ξ) in (3.14). We observe that, being f ∈ L
Q
α

,∞, by
applying Hölder’s inequality for Lorentz spaces (see e.g. [23]), we obtain

I2(ξ) ≤ c‖d−Q‖
L

Q
Q−α

,1
(G\Bd(0,r))

‖f‖
L

Q
α ,∞(G)

(3.22)

Moreover, by direct calculation, one can see that ‖d−Q‖
L

Q
Q−α

,1
(G\Bd(0,r))

≤ cr−α. Hence, by

(3.22) and remembering that r = d(ξ)/2, we get

I2(ξ) ≤ cd(ξ)−α. (3.23)

Finally, by using (3.21) and (3.23) in (3.14), the thesis follows. ¤

Now, let us estimate the behavior at 0 of the second layer derivatives of the function v in
(3.9). We shall apply the following estimate for the Lie derivatives of a general ∆G-harmonic
function, proved in [3]. Hereafter, we call ∆G-harmonic function on an open set U ⊂ G any
smooth function v such that ∆Gv = 0 in U .
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Lemma 3.5. ([3, Prop. 3.7]) Let G be a Carnot group and let Y ∈ Gk be a Lie derivative
of order k. If U is an arbitrary open set of G and v is a ∆G-harmonic function on U , then
there exists a positive constant c such that

|Y v(ξ)| ≤ cr−k sup
Bd(ξ,r)

|v|, (3.24)

for every Bd(ξ, r) b U . The constant c only depends on Y (and the structure of G) and not
on v, r > 0 or ξ ∈ U .

Proposition 3.6. Let G be a Carnot group and let Y ∈ G2 be a Lie derivative of order two.
Let v be the function defined in (3.9). Then,

|Y v(ξ)| = O(d(ξ)−2), as d(ξ) → 0. (3.25)

Proof. We apply the result of Lemma 3.5 to the function v in the open set U = Ω \ {0}.
Hence, for any ξ ∈ Ω \ {0} with sufficiently small d(ξ), by choosing r = d(ξ)/2 in (3.24) and
taking into account that v ∈ L∞, we get |Y v(ξ)| ≤ cd(ξ)−2, with c not depending on ξ. ¤
Proof of Theorem 3.2. By (3.13) and (3.25), and recalling that v = w − u, the desired
estimate follows. ¤
Remark 3.7. We finally remark that the regularity and asymptotic estimates on second layer
derivatives proved in this section can be extended to weak solutions u ∈ S1

0(Ω) of general
singular equations of the type

−∆Gu = ψβ g

dα
, in Ω ⊂ G, 0 ∈ Ω, (3.26)

where 0 < α < 2, β ≥ 0 and g ∈ Γγ
loc(Ω)∩Ls(Ω), for s = 2Q

Q+2−2α . Only observe that here the
summability exponent s is chosen to ensure that the r.h.s. of equation (3.26) belong to the
space S−1(Ω), i.e. the dual space of S1

0(Ω), allowing the weak formulation of the problem.

Indeed, from d−α ∈ L
Q
α

,∞ and g ∈ L
2Q

Q+2−2α , by Hölder’s inequality for weak Lp-spaces, it
follows that ψβ g

dα
∈ L

2Q
Q+2

, 2Q
Q+2−2α = L(2∗)′,q′ for a suitable q ≥ 1. Henceforth, for any test

function ϕ ∈ S1
0(Ω), ψβ g

dα
ϕ ∈ L1,1(Ω) = L1(Ω), where we have used that, if ϕ ∈ S1

0(Ω), then

ϕ ∈ L2∗,q(Ω) for any q ≥ 1 (see [37, Prop. 3.3]).

4 Pohozaev-identity and non-existence results

In this section, we provide some non existence results for solutions to pb. (1.4), sufficiently
regular up to the boundary, in domains that are starshaped about the origin with respect
to the dilations (2.1). To this aim, we shall use Pohozaev-type identities, modelled on the
geometry of Carnot groups.

We quote that the original Pohozaev identity for the semilinear Poisson equation [39]
was extended to the stratified context by Garofalo-Lanconelli [20] and Garofalo-Vassilev [21],
respectively for the Heisenberg and the general Carnot case. As observed in these papers, the
implementation of such identities in the subelliptic context turns out to be a very delicate
task, due to the possible loss of regularity of solutions near the characteristic set of the
boundary (see the definition 2.3 in Section 2).
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Moreover, in the present case, new difficulties occur, due to the lack of regularity of the
solutions at the origin.

Our treatment will be confined to Carnot groups of step two.
We begin by recalling some remarkable integral identities, which hold for regular functions

up to the boundary (see e.g. [20], [21]). In what follows, dσ will denote the Hausdorff (N−1)-
dimensional measure on ∂Ω.

Proposition 4.1. Let G be a Carnot group of step two and let Ω ⊂ G be a C1 bounded open
set with outer normal ν. For u ∈ Γ2(Ω), it holds

∫

Ω
(−∆Gu)Y u dξ = −1

2

∫

Ω
divY |∇Gu|2 dξ +

m∑

i=1

∫

Ω
Xiu[Xi, Y ]udξ

+
1
2

∫

∂Ω
|∇Gu|2 <Y, ν > dσ −

∫

∂Ω

m∑

i=1

Xiu <Xi, ν > Y udσ

(4.1)

where Y is any smooth vector field.

Let us specify the preceding identity by choosing Y = Z, where Z denotes the infinitesimal
generator of the one-parameter group of dilations δλ, i.e. the vector field such that

[
d

dλ
u(δλ(ξ))

]

λ=1

= Zu. (4.2)

Note that, for a generic Carnot group of step r, Z has the following expression

Z =
r∑

i=1

Ni∑

j=1

i ξ
(i)
j

∂

∂ξ
(i)
j

.

We recall that Z is characterized by the property that a function u : G→ R is homogeneous
of degree k with respect to δλ, i.e. u(δλ(ξ)) = λku(ξ), if and only if Zu = ku. Moreover, the
following properties hold for Z (see e.g. [12], [21]):

[Xi, Z] = Xi, ∀i = 1, . . . ,m, divZ = Q. (4.3)

By choosing Y = Z in (4.1) and exploiting the above properties (4.3), we get the following
identity.

Corollary 4.2. Let G be a Carnot group of step two and let Ω ⊂ G be a C1 bounded open
set. For u ∈ Γ2(Ω), it holds

∫

Ω
(−∆Gu)Zu dξ = −Q− 2

2

∫

Ω
|∇Gu|2dξ

+
1
2

∫

∂Ω
|∇Gu|2 <Z, ν > dσ −

∫

∂Ω

m∑

i=1

Xiu <Xi, ν > Zudσ.
(4.4)

Moreover, if in addition u = 0 on ∂Ω, identity (4.4) can be rewritten as follows.

Corollary 4.3. Let u ∈ Γ2(Ω) and assume that u = 0 on ∂Ω. There holds
∫

Ω
(−∆Gu)Zudξ = −Q− 2

2

∫

Ω
|∇Gu|2dξ − 1

2

∫

∂Ω
|∇Gu|2 <Z, ν > d σ. (4.5)
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Proof. Since u = 0 on ∂Ω, then ∇u =
∂u

∂ν
ν on ∂Ω. This gives

m∑

i=1

Xiu <Xi, ν > Zu =
∂u

∂ν

m∑

i=1

Xiu <Xi, ν ><Z, ν >= |∇Gu|2 <Z, ν > on ∂Ω.

Substituting the above relation in (4.4), the thesis follows. ¤

Let us now recall the definition of δλ-starshaped domain.

Definition 4.4. Let Ω ⊂ G be a C1 connected open set, containing 0 at its interior. We say
that Ω is δλ-starshaped with respect to the origin if

<Z, ν > (ξ) ≥ 0 ∀ξ ∈ ∂Ω.

Now we prove a non-existence result for nonnegative weak solutions to pb. (1.4) assuming
a priori Γ2-regularity (out of the origin) up to the boundary of Ω.

Theorem 4.5. Let G be a Carnot group of step two. Let Ω ⊂ G be a smooth connected
bounded domain, δλ-starshaped about the origin. Then, the problem

−∆Gu = ψα u2∗(α)−1

d(ξ)α
in Ω, u = 0 on ∂Ω (4.6)

has no nontrivial nonnegative weak solutions u ∈ S1
0(Ω) ∩ Γ2(Ω \ {0}).

Proof. Let u be a weak solution of (4.6) satisfying the regularity assumptions of the Theorem.
We shall begin by considering approximating domains Ω\Brn(0), for an appropriate sequence
of radii rn → 0. To this aim, observe that from Federer’s coarea formula (see [15]), if BR(0)
is a d-ball centered at 0 contained in Ω, then

∫ R

0
ds

∫

∂Bs(0)

(
ψα u2∗(α)

dα
+ |∇Gu|2

)
1

|∇d|dσ =
∫

BR(0)

(
ψα u2∗(α)

dα
+ |∇Gu|2

)
dξ. (4.7)

Moreover, from u ∈ S1
0(Ω) and by the Hardy-Sobolev inequality (1.2), the integral in the

r.h.s. of (4.7) is finite. This implies that there exists a sequence rn → 0 such that

rn

∫

∂Brn(0)

(
ψα u2∗(α)

dα
+ |∇Gu|2

)
1

|∇d|dσ −→ 0, as n →∞. (4.8)

Let Ωrn := Ω \Brn(0). By assumption, u ∈ Γ2(Ωrn). Hence, identity (4.4) holds for u in Ωrn .
On the other hand, denoted by

f(ξ, u) := ψα(ξ)
u2∗(α)−1

d(ξ)α
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the r.h.s. of the equation in (4.6) and letting F (ξ, u) =
∫ u
0 f(ξ, t)dt, multiplying the equation

by Zu and integrating by parts, we get
∫

Ωrn

(−∆Gu) Zu dξ =
∫

Ωrn

f(ξ, u)Zu dξ

=
∫

Ωrn

Z(F (ξ, u)) dξ −
∫

Ωrn

Z · ∇ξF (ξ, u) dξ

=−
∫

Ωrn

divZ F (ξ, u) dξ +
∫

∂Ωrn

F (ξ, u) < Z, ν > dσ

−
∫

Ωrn

Z · ∇ξF (ξ, u) dξ

(4.9)

Hence, combining (4.4) and (4.9), and taking into account that divZ = Q, we obtain

Q

∫

Ωrn

F (ξ, u) dξ +
∫

Ωrn

Z · ∇ξF (ξ, u) dξ − Q− 2
2

∫

Ωrn

|∇Gu|2 dξ

=
∫

∂Ωrn

m∑

i=1

Xiu < Xi, ν > Zudσ − 1
2

∫

∂Ωrn

|∇Gu|2 < Z, ν > dσ

+
∫

∂Ωrn

F (ξ, u) < Z, ν > dσ.

(4.10)

Now, let rn → 0 in the identity (4.10). Taking into account that

F (ξ, u) =
1

2∗(α)
ψα(ξ)

u2∗(α)

d(ξ)α
(4.11)

and due to the integrability of the functions F (ξ, u) and |∇Gu|2, we get

Q

∫

Ωrn

F (ξ, u) dξ − Q− 2
2

∫

Ωrn

|∇Gu|2dξ −→ Q

∫

Ω
F (ξ, u) dξ − Q− 2

2

∫

Ω
|∇Gu|2dξ (4.12)

as rn → 0. Moreover, computing the second integral in the l.h.s of (4.10), we get

∫

Ωrn

Z · ∇ξF (ξ, u) dξ =
1

2∗(α)

∫

Ωrn

Zψα u2∗(α)

dα
dξ − α

2∗(α)

∫

Ωrn

ψαd−α−1Zd u2∗(α) dξ

= − α

2∗(α)

∫

Ωrn

ψα u2∗(α)

dα
dξ,

where we have used that Zψ = 0 and Zd = d, since they are δλ-homogeneous functions,
respectively of degree zero and one. Therefore, again from the integrability of the function

ψα u2∗(α)

dα
, we have

∫

Ωrn

Z · ∇ξF (ξ, u) dξ −→
∫

Ω
Z · ∇ξF (ξ, u) dξ, as rn → 0. (4.13)
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Let us now prove that the boundary integrals in (4.10) vanish on ∂Brn , as rn → 0. Observe

that, since ν = − ∇d

|∇d| on ∂Brn(0), then <Z, ν >= − Zd

|∇d| = − d

|∇d| on ∂Brn(0). From this,

and using (4.8), we have
∫

∂Brn

(
F (ξ, u)− 1

2
|∇Gu|2

)
| <Z, ν > | dσ

= rn

∫

∂Brn

(
1

2∗(α)
ψα u2∗(α)

dα
− 1

2
|∇Gu|2

)
1

|∇d| dσ −→ 0, as rn → 0.

(4.14)

Concerning the remaining boundary integral
∫
∂Brn

∑m
i=1 Xiu < Xi, ν > Zudσ, let us begin

by observing that, since ν = − ∇d
|∇d| on ∂Brn and |∇Gd| is bounded, then

|Xiu < Xi, ν > | ≤ |Xiu ·Xid|
|∇d| ≤ c

|∇Gu|
|∇d| on ∂Brn . (4.15)

Moreover, since G is a step two Carnot group, denoted by n the dimension of the second
layer of the group and by ξ = (x, t) ∈ Rm × Rn any point of G, we have

|Zu| =
∣∣∣∣∣∣

m∑

j=1

xj
∂u

∂xj
+

n∑

j=1

2tj
∂u

∂tj

∣∣∣∣∣∣
≤ c

(
d|∇Gu|+ d2|∇tu|

)
in Ω \ {0}. (4.16)

Here we have used that the vector fields Xj ’s have the form Xj = ∂xj +
1
2

∑n
k=1

∑m
i=1 B

(k)
j,i xi∂tk ,

where the B(k)’s are linearly independent skew-symmetric m×m matrices (see e.g. [2, Chapter
3]). Hence, taking into account that the functions xj and tj are smooth and δλ-homogeneous,
respectively of degree one and two, the estimate (4.16) follows.

Now, by Theorem 3.2 we know that

|∇tu(ξ)| = O(d(ξ)−2) as d(ξ) → 0. (4.17)

Hence, by (4.15) and (4.16), and taking into account estimate (4.17), we get
∣∣∣∣∣
∫

∂Brn

m∑

i=1

Xiu <Xi, ν > Zudσ

∣∣∣∣∣ ≤ c

(∫

∂Brn

d|∇Gu|2
|∇d| dσ +

∫

∂Brn

|∇Gu|
|∇d| dσ

)

≤ crn

∫

∂Brn

|∇Gu|2
|∇d| dσ + c

(∫

∂Brn

|∇Gu|
|∇d| dσ

)1/2 (∫

∂Brn

dσ

|∇d|

)1/2

.

(4.18)

By Federer’s co-area formula [15], we know that, for r > 0,
∫

∂Br

dσ

|∇d| = cQrQ−1. (4.19)

Hence, using (4.8) and (4.19) in the r.h.s. of (4.18), we have
∣∣∣∣∣
∫

∂Brn

m∑

i=1

Xiu <Xi, ν > Zudσ

∣∣∣∣∣ ≤ o(1) + o(r
− 1

2
n )r

Q−1
2

n

= o(1), as rn → 0.

(4.20)
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So, taking into account (4.12), (4.13), (4.14), (4.20), and remembering that, since u = 0 on
∂Ω, then F (ξ, u) = 0 on ∂Ω and

∫
∂Ω

∑m
i=1 Xiu < Xi, ν > Zudσ =

∫
∂Ω |∇Gu|2 < Z, ν > dσ,

from (4.10) we get the following identity on the whole Ω

Q

∫

Ω
F (ξ, u) dξ +

∫

Ω
Z · ∇ξF (ξ, u) dξ − Q− 2

2

∫

Ω
|∇Gu|2 dξ =

1
2

∫

∂Ω
|∇Gu|2 <Z, ν > dσ

(4.21)

that is, substituting the explicit expressions of each term (see (4.11) and (4))

Q− α

2∗(α)

∫

Ω
ψα u2∗(α)

dα
dξ − Q− 2

2

∫

Ω
|∇Gu|2dξ =

1
2

∫

∂Ω
|∇Gu|2 <Z, ν > dσ. (4.22)

On the other hand, by using u as a test function in (4.6), we have
∫

Ω
|∇Gu|2 dξ =

∫

Ω
ψα u2∗(α)

dα
dξ. (4.23)

Hence, substituting (4.23) in (4.22), and taking into account that Q−α
2∗(α) − Q−2

2 = 0, we obtain
∫

∂Ω
|∇Gu|2 <Z, ν > dσ = 0. (4.24)

Then, by means of a subelliptic unique continuation result (see Corollary A.1 in [20] and
Corollary 10.7 in [21]), whose application requires u to be nonnegative, we can conclude that
u ≡ 0 in Ω. We refer for the details to the analogous proofs in [20], [21]. ¤

Now, let us observe that, as stated in Proposition 3.1, weak solutions to pb. (1.4) fulfill
the interior regularity required in Theorem 4.5. The issue of boundary regularity is, instead,
more delicate, as already pointed out in the non-singular case (see [20], [21], [41]).

Indeed, unlike the Euclidean case, even for C∞ domains, solutions to subelliptic bound-
ary value problems can present a loss of regularity near the boundary, due to the presence
of characteristic points. This phenomenon was firstly observed by Jerison in [29]. Hence,
the assumption of Γ2-regularity up to the boundary in Theorem 4.5 is actually a strong
requirement.

On the other hand, concerning non-characteristic points, Jerison [28] proved the following
assertion, when G = Hn:

Let Ω ⊂ G be a smooth bounded domain and let f ∈ Γj,α
loc (Ω), j ∈ N. For every

x0 ∈ ∂Ω not belonging to the characteristic set of Ω, there exists a neighborhood U
of x0 such that a solution u to ∆Gu = f in Ω, u = 0 on ∂Ω, belongs to Γj+2,α(Ω∩U).

(4.25)

An analogous result is not available for arbitrary Carnot groups, since a corresponding
Schauder theory at non-characteristic points is presently lacking. However, it is reasonable
to conjecture that it holds true, as observed in [21]. Hence, following analogous assumptions
in [21] (see hypotesis 2.8) and [3], we shall assume its validity in what follows.

Under this hypothesis, in the next theorem we weaken the regularity assumptions of
Theorem 4.5, by only requiring a priori boundedness of ∇Gu and Zu (out of the origin) up
to the boundary, as in [21, Theorem 3.7].
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Theorem 4.6. Let G be a Carnot group of step two and let Ω ⊂ G be a connected smooth
bounded domain, δλ-starshaped with respect to the origin, and satisfying (3.2). Assume that
(4.25) holds. Then, problem (1.4) has no nontrivial nonnegative solutions u ∈ S1

0(Ω) such
that ∇Gu,Zu ∈ L∞loc(Ω \ {0}).
Proof. Let Σ denote the characteristic set of Ω. Recall that Σ is a compact set. Arguing as in
[21], we can construct a family of exhaustion domains by means of C∞ connected, open sets
Ωε ↗ Ω, as ε → 0, such that ∂Ωε = γ1

ε ∪ γ2
ε , with γ1

ε ⊂ ∂Ω \Σ, γ1
ε ↗ ∂Ω \Σ, HN−1(γ2

ε ) → 0.
We claim that u ∈ Γ2(Ωε). Indeed, by condition (3.2), u ∈ Γβ(Ω). Moreover, the

nonlinearity f(ξ, u) = ψα(ξ)
u2∗(α)−1

d(ξ)α
is Γγ

loc(Ω \ {0}) in its arguments, for some γ ∈ (0, 1).

Then, by the assumption (4.25), for any non characteristic point ξ0 ∈ ∂Ω, one has u ∈
Γ2,γ(Ωε ∩ U) for a suitable neighborhood U of ξ0. Then, the claim follows.

Now, reasoning as in Theorem 4.5, on each domain Ωε the following identity holds

Q− α

2∗(α)

∫

Ωε

ψα u2∗(α)

dα
dξ − Q− 2

2

∫

Ωε

|∇Gu|2 dξ − 1
2

∫

γ1
ε

|∇Gu|2 < Z, ν > dσ

=
∫

γ2
ε

m∑

i=1

Xiu < Xi, ν > Zudσ − 1
2

∫

γ2
ε

|∇Gu|2 < Z, ν > dσ

+
∫

γ2
ε

ψα u2∗(α)

dα
< Z, ν > dσ,

(4.26)

where we have split the boundary terms on γ1
ε and γ2

ε and we have used that u = 0 on γ1
ε .

By the boundedness of ∇Gu and Zu near the characteristic boundary and from the fact
that HN−1(γ2

ε ) → 0, we get that the boundary integrals in the r.h.s. of (4.26) tend to zero,
as ε → 0.

In view of the starshapedness of Ω, the monotone convergence theorem yields
∫

γ1
ε

|∇Gu|2 <Z, ν > dσ −−−→
ε→0

∫

∂Ω
|∇Gu|2 <Z, ν > dσ (4.27)

Moreover

Q− α

2∗(α)

∫

Ωε

ψα u2∗(α)

dα
dξ − Q− 2

2

∫

Ωε

|∇Gu|2dξ −−−→
ε→0

Q− α

2∗(α)

∫

Ω
ψα u2∗(α)

dα
dξ − Q− 2

2

∫

Ω
|∇Gu|2dξ.

(4.28)

Therefore, by letting ε → 0 in (4.26), by (4.27) and (4.28) and taking into account that the
r.h.s. of (4.28) is equal to 0, we obtain as before that

∫

∂Ω
|∇Gu|2 <Z, ν > dσ = 0

At this point, we can conclude as in Theorem 4.5. ¤
Remark 4.7. In the non-singular case α = 0, geometric conditions on the domain Ω ensuring
the boundedness of ∇Gu and Zu up to the boundary for solutions of problem (1.4) have been
provided by Garofalo and Vassilev in [21] (see Theorems 4.6, 4.7). In addition to condition
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(3.2), such domains have to be uniformly δλ-starshaped (i.e. <Z, ν > (ξ) ≥ β, for all ξ ∈ ∂Ω,
for some positive constant β) and they have to satisfy a suitable convexity condition near the
characteristic set Σ, which can be stated as follows. Let ρ ∈ C∞(G) be a defining function
for Ω, i.e.

Ω = {ξ ∈ G | ρ(ξ) < R}
for some R > 0. Denoted by ξ = (x, t) ∈ Rm × Rn any point of a step-two Carnot group G
and by Ψ(ξ) := |x|2, the defining function ρ is required to satisfy the differential inequality

∆Gρ ≥ c〈∇Gρ,∇GΨ〉 (4.29)

in a neighborhood U of the characteristic set Σ, for some constant c > 0.
The above geometric conditions are satisfied, for instance, in the Heisenberg group Hn

by the level sets of Folland’s fundamental solution, i.e. the balls defined by the gauge d(ξ) =
(|x|4+t2)1/4, and also by the level sets of Jerison-Lee minimizers [30], which are not functions
of the gauge d. More generally, in a Carnot group of step two, they are satisfied by the d-
balls defined by the homogeneous norm d(ξ) = (|x|4 + 16|t|2)1/4, which is the gauge realizing
Kaplan’s fundamental solution in the case of H-type groups.

We note that such geometric conditions ensuring the boundedness of ∇Gu and Zu near
the boundary for a solution to pb. (1.4) in the case α = 0 also work for the singular case
0 < α < 2, thanks to the interior Γ2-regularity of solutions away from the origin. Therefore,
extending Theorem 1.2 in [21], we can state the following.

Theorem 4.8. Let G be a Carnot group of step two. For any R > 0, the function u ≡ 0 is
the only nonnegative weak solution of (1.4) in the d-ball Bd(0, R) defined by the homogeneous
norm d(ξ) = (|x|4 + 16|t|2)1/4.

5 Qualitative properties of Hardy-Sobolev extremals

For any open set Ω ⊂ G, let

Sα(Ω) := inf
u∈S1

0(Ω)

∫
Ω |∇Gu|2 dξ

(∫
Ω ψα |u|2∗(α)

d(ξ)α dξ
)2/2∗(α)

. (5.1)

Thanks to the Hardy-Sobolev inequality (1.2), the value Sα(Ω) turns out to be positive.
Moreover, due to the dilation invariance of the ratio in (5.1) with respect to the rescalings
(1.3), if 0 ∈ Ω, then Sα(Ω) is independent of Ω and Sα(Ω) = Sα(G). In the sequel the best
constant Sα(G) will be simply denoted by Sα.

Let us now discuss the existence of minimizers for the best constant Sα = Sα(G), namely
the existence of extremal functions for the Hardy Sobolev inequality (1.2).

In the case α = 0, the existence of Sobolev extremals in the general Carnot case has
been obtained by Garofalo and Vassilev [21] by means of a suitable adaptation of Lions’
concentration compactness method [35] (recall that such extremals are explicitly known only
in the Heisenberg group case, where they have been computed by Jerison and Lee in [27]).
We also quote that Lions’ method has been used by Vassilev [41] to get existence of Sobolev
extremals in the quasilinear Carnot case.

19



In the singular case, i.e. when 0 < α < 2, the existence of Hardy-Sobolev extremals has
been proved by Han and Niu in [24], in the general quasilinear case, for the subclass of the
H-type groups. We extend this result for general Carnot groups in the semiliner case under
consideration.

Theorem 5.1. Let G be a Carnot group, Q > 2. Then, the infimum in the extremal problem

Sα = inf

{∫

G
|∇Gu|2 dξ

∣∣∣u ∈ S1(G),
∫

G
ψα |u|2

∗(α)

d(ξ)α
dξ = 1, 0 ≤ α < 2

}
(5.2)

is attained at some function u ∈ S1(G).

We omit the details of the proof since it is a straightforward generalization of the argu-
ments in [24]. We only quote here the two compactness lemmas which are the main ingredients
of the proof.

Lemma 5.2. (The first Concentration-Compactness Lemma). Let {un} ⊂ S1(G) be a mini-
mizing sequence for (5.2), namely

∫

G
|∇Gun|2 dξ −→ Sα,

∫

G
ψα |un|2∗(α)

d(ξ)α
dξ = 1.

Then, there exists a subsequence (still denoted by {un}) such that one of the following three
alternatives holds:

(i) (Compactness) For all ε > 0, there exists Rε > 0 and nε ≥ 1 such that

∫

BR(0)
ψα |un|2∗(α)

d(ξ)α
dξ ≥ 1− ε, ∀R > Rε, ∀n > nε ;

(ii) (Vanishing) For all R > 0,

lim
n→∞

∫

BR(0)
ψα |un|2∗(α)

d(ξ)α
dξ = 0;

(iii) (Dichotomy) There exists γ ∈ (0, 1) such that for all ε > 0 there exists Rε > 0, a
sequence of positive numbers Rn → +∞ and nε ≥ 1 such that

∣∣∣∣∣
∫

BRε (0)
ψα |un|2∗(α)

d(ξ)α
dξ − γ

∣∣∣∣∣ < ε,

∣∣∣∣∣
∫

G\BRn (0)
ψα |un|2∗(α)

d(ξ)α
dξ − (1− γ)

∣∣∣∣∣ < ε,

∫

BRn(0)\BRε (0)
ψα |un|2∗(α)

d(ξ)α
dξ < ε

for any n > nε.
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Lemma 5.3. (The second Concentration-Compactness Lemma). Let {un} ⊂ S1(G) be a se-
quence satisfying the following condition: there exist two Radon measures µ, ν and a function
u ∈ S1(G) such that

(i) un ⇀ u weakly in S1(G);

(ii) νn = ψα |un|2∗(α)

d(ξ)α
dξ ⇀ ν weakly in the sense of measures;

(iii) µn = |∇Gun|2 dξ ⇀ µ weakly in the sense of measures.

Then we have

ν = ψα |u|2
∗(α)

d(ξ)α
dξ + aδ(0), µ ≥ |∇Gu|2dξ + bδ(0), b ≥ Sαa

2
2∗(α) ,

where a, b are non-negative numbers and δ(0) is the Dirac measure with pole at 0.

We point out that the explicit form of the Hardy-Sobolev extremals is not known in any
Carnot group, except for the trivial Euclidean case, where they have the form

uC,ε(x) =
C

(ε + |x|2−α)
n−2
2−α

, x ∈ Rn,

for any C, ε > 0.
However, in the general Carnot case, we can state qualitative properties of such extremals,

as we know that they are positive solutions, up to multiplicative constants, of the limit problem
on the whole G

−∆Gu = ψα u2∗(α)−1

d(ξ)α
, u ∈ S1(G). (5.3)

Since the coefficient of the nonlinearity a(ξ) = ψ(ξ)α

d(ξ)α belongs to the weak space L
Q
α

,∞, this
problem fits in the general class of singular nonlinear problems studied by the author in [37].
In the following proposition we summarize the Lp-regularity and asymptotic properties of
Hardy-Sobolev extremals we can deduce from the results in [37].

Proposition 5.4. Let u ∈ S1(G) be an extremal function for problem (5.2). Then, up to a
change of sign, u is positive. Moreover

i) u ∈ L
2∗
2

,∞(G) ∩ L∞(G); hence, by interpolation, u ∈ Lp(G), ∀p ∈ (2∗/2, +∞];

ii) u(ξ) ' d(ξ)2−Q as d(ξ) →∞.

We only remark that the positivity property of the Hardy-Sobolev extremals follows by
observing that, if u is a minimizer for Sα, then also |u| is a minimizer; moreover, as a
minimizer for Sα, |u| is a non trivial nonnegative weak solution, up to a stretching constant,
of problem (5.3). Hence, by the representation formula provided by Theorem 3.2 in [11], it
follows that |u| > 0.

We finally emphasize that the fact that the Hardy-Sobolev extremals behave at infinity
like the fundamental solution Γ of the sub-Laplacian operator is the main ingredient in the
following existence proof.
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6 Proof of the existence result

Let U > 0 be a fixed minimizer for the Hardy-Sobolev inequality (1.2) and consider, for
ε > 0, the family of rescaled functions

Uε(ξ) = ε
2−Q

2 U(δ 1
ε
(ξ)).

The functions Uε are solutions, up to multiplicative constants, of the equation −∆Gu =

ψα u2∗(α)−1

d(ξ)α
in G. Moreover, they satisfy

∫

G
|∇GUε|2dξ =

∫

G
ψα U

2∗(α)
ε

d(ξ)α
dξ = S

Q−α
2−α

α , for all ε > 0. (6.1)

Let R > 0 be such that Bd(0, R) ⊂ Ω and let ϕ ∈ C∞
0 (Bd(0, R)), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in

Bd(0, R/2). We define
uε(ξ) = ϕ(ξ)Uε(ξ). (6.2)

Lemma 6.1. The functions uε satisfy the following estimates, as ε → 0:
∫

Ω
|∇Guε|2 dξ = S

Q−α
2−α

α + O(εQ−2) (6.3)

∫

Ω
ψα u

2∗(α)
ε

d(ξ)α
dξ = S

Q−α
2−α

α + O(εQ−α) (6.4)

∫

Ω
u2

ε dξ =

{
c ε2 + O(εQ−2) if Q > 4
c ε2| ln ε| + O(ε2) if Q = 4.

(6.5)

Proof. Taking into account the exact asymptotic behavior of Hardy-Sobolev extremals (see
Prop. 5.4), the proof reduces to compute integrals of functions which only depend on the
homogeneous distance d. Let us begin to compute

∫

Ω
|∇Guε|2dξ =

∫

Ω
<∇GUε,∇G(ϕ2Uε)> dξ +

∫

Ω
|∇Gϕ|2U2

ε dξ

=
∫

Ω
ϕ2ψα U

2∗(α)
ε

d(ξ)α
dξ +

∫

Ω
|∇Gϕ|2U2

ε dξ

=
∫

G
ψα U

2∗(α)
ε

d(ξ)α
dξ +

∫

Ω
|∇Gϕ|2U2

ε dξ + σ(ϕ, ε), (6.6)

where

σ(ϕ, ε) = −
∫

ΩC

ψα U
2∗(α)
ε

d(ξ)α
dξ +

∫

Ω
(ϕ2 − 1)ψα U

2∗(α)
ε

d(ξ)α
dξ.

For the second integral in the r.h.s. of (6.6), taking into account that ϕ ≡ 1 on BR/2(0) =
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Bd(0, R/2) and ϕ ≡ 0 outside of BR(0) = Bd(0, R), we get
∫

Ω
|∇Gϕ|2U2

ε dξ ≤ c

∫

BR(0)\BR/2(0)
U2

ε (ξ) dξ = c

∫

BR(0)\BR/2(0)
ε2−Q U2(δ 1

ε
ξ) dξ

= cε2

∫

BR/ε(0)\BR/2ε(0)
U2(η)dη

≤ cε2

∫

BR/ε(0)\BR/2ε(0)

1
d(η)2Q−4

dη

= cε2

∫ R/ε

R/2ε

1
ρQ−3

dρ

= O(εQ−2).

(6.7)

Moreover, it is easily seen that σ(ϕ, ε) = O(εQ−α). Indeed,

0 ≤
∫

Ω

(
1− ϕ2

)
ψα U

2∗(α)
ε

d(ξ)α
dξ ≤

∫

BR(0)C

ψα U
2∗(α)
ε

d(ξ)α
dξ =

∫

BR/ε(0)C

ψα U2∗(α)

d(ξ)α
dξ

≤ c

∫

BR/ε(0)C

1
d(ξ)2Q−α

dξ = c

∫ +∞

R/ε

1
ρQ−α+1

dρ

= O(εQ−α),

(6.8)

and an analogous estimate holds for the other term in σ(ϕ, ε). So, from (6.6), by taking into
account (6.1), (6.7), (6.8), the estimate (6.3) follows.
Next, we have

∫

Ω
ψα u

2∗(α)
ε

d(ξ)α
dξ =

∫

Ω
ψα U

2∗(α)
ε

d(ξ)α
dξ +

∫

Ω
(ϕ2∗(α) − 1)ψα U

2∗(α)
ε

d(ξ)α
dξ

=
∫

G
ψα U

2∗(α)
ε

d(ξ)α
dξ −

∫

ΩC

ψα U
2∗(α)
ε

d(ξ)α
dξ +

∫

Ω
(ϕ2∗(α) − 1)ψα U

2∗(α)
ε

d(ξ)α
dξ

= Sα

Q−α
2−α + O(εQ−α),

that is, estimate (6.4). Finally, we compute
∫

Ω
u2

ε dξ =
∫

Ω
ϕ2U2

ε dξ ≥
∫

BR/2(0)
U2

ε dξ = ε2

∫

BR/2ε(0)
U2 dξ

= ε2

(∫

B1(0)
U2dξ +

∫

BR/2ε(0)\B1(0)
U2dξ

)

≥ cε2

(
1 +

∫ R/2ε

1

1
ρQ−3

dρ

)

=

{
c ε2 + O(εQ−2) if Q > 4
c ε2| ln ε| + O(ε2) if Q = 4,

hence (6.5) is proved. This concludes the proof of the Lemma. ¤
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Proof of Theorem 1.1. Following the arguments in [4], we know that a sufficient con-
dition for the existence of a positive solution to (1.1) when 0 < λ < λ1 is that

Sλ,α := inf
u∈S1

0(Ω)
Qλ(u) = inf

u∈S1
0(Ω)

∫
Ω(|∇Gu|2 − λu2) dξ

(∫
Ω ψα |u|2∗(α)

d(ξ)α dξ
)2/2∗(α)

< Sα, (6.9)

since this ensures that Sλ,α is achieved. In order to prove (6.9), let us compute the ratio
Qλ(u) on the family of Sobolev concentrating functions uε introduced in (6.2).

From the preceding lemma, if Q > 4 we get

Qλ(uε) ≤

(
S

Q−α
2−α

α − cλε2 + O(εQ−2)
)

(
S

Q−α
2−α

α + O(εQ−α)
)2/2∗(α)

= Sα − cλε2 + O(εQ−2) < Sα,

for any λ > 0 and ε > 0 sufficiently small. Similarly, if Q = 4 we have

Qλ(uε) ≤

(
S

Q−α
2−α

α − cλε2| log ε|+ O(ε2)
)

(
S

Q−α
2−α

α + O(εQ−α)
)2/2∗(α)

= Sα − cλε2| log ε| + O(ε2) < Sα.

This concludes the proof. ¤
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