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of stable and discriminative radiomic features derived from cardiac computed
tomography (CCT) to differentiate them.
Methods: Forty-two patients were included in the study. For each patient, 107
radiomics features were extracted and evaluated by means of geometrical
transformations (translations) to the region of interests (ROIs), and ICC (intra class
correlation coefficient) computation. A stratified 7-fold cross validation (k=7) was
performed to split data into learning, validation and test set. Three features selection
methods (Wilcoxon signed rank-based method and/or LASSO regression) and five
machine learning classifiers Results: Ninety radiomic features satisfied the robustness
criteria and 10 were kept after feature selection. The best results were obtained using
the logistic regression classifier, combined with Wilcoxon signed rank and LASSO
regression, obtaining an accuracy of 95% ± 7% and sensitivity and specificity both
equal to 95% ± 12% in the test set. 
Conclusions: In this study, radiomics has shown promising results in distinguishing left
ventricle hypertrophy caused by CA from AS and might be used as non-invasive tool
able to support clinical decision making.
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TOC Summary 

 

Cardiac amyloidosis (CA) and aortic stenosis (AS) present phenotypical common features 

and differentiating them represents a challenge to properly assess patient prognosis and 

therapy. In this study, a set of robust radiomic features is derived from cardiac computed 

tomography to build a machine learning model to distinguish CA from AS patients. An overall 

diagnostic accuracy of 95% is reached. These promising results show that radiomics might 

be used as non-invasive tool able to support clinical decision making. 
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Abstract  

Background: Cardiac amyloidosis (CA) is an increasingly diagnosed pathology sharing 

several phenotypical features with aortic stenosis (AS). As diagnosing the two diseases has 

important prognostic and therapeutic implications, this study aims to identify a set of stable 

and discriminative radiomic features derived from cardiac computed tomography (CCT) to 

differentiate them. 

Methods: Forty-two patients were included in the study. For each patient, 107 radiomics 

features were extracted and evaluated by means of geometrical transformations 

(translations) to the region of interests (ROIs), and ICC (intra class correlation coefficient) 

computation. A stratified 7-fold cross validation (k=7) was performed to split data into 

learning, validation and test set. Three features selection methods (Wilcoxon signed rank-

based method and/or LASSO regression) and five machine learning classifiers (k-nearest 

neighbors, support vector classifier, decision tree, logistic regression and gradient boosting) 

were tested.  

Results: Ninety radiomic features satisfied the robustness criteria and 10 were kept after 

feature selection. The best results were obtained using the logistic regression classifier, 

combined with Wilcoxon signed rank and LASSO regression, obtaining an accuracy of 95% 

 7% and sensitivity and specificity both equal to 95%  12% in the test set.   

Conclusions: In this study, radiomics has shown promising results in distinguishing left 

ventricle hypertrophy caused by CA from AS and might be used as non-invasive tool able 

to support clinical decision making. 

 

Keywords:  

Cardiac amyloidosis  Aortic stenosis  Radiomics  Radiomic feature stability  Cardiac 

computed tomography  
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Abbreviations: 

AL: amyloid light chain 

AS: aortic stenoses 

ATTR: amyloid transthyretin 

CA: cardiac amyloidosis 

CCT: cardiac computed tomography 

EACVI: European association cardiovascular imaging 

ECG: electrocardiogram 

ECV: extracellular volume 

IBSI: Image Biomarker Standardization Initiative 

ICC: intraclass correlation coefficient 

LASSO: Least Absolute Shrinkage and Selection Operator 

LVEDV: left ventricle end-diastolic volume 

LVEF: left ventricle ejection fraction 

LVESV: left ventricle end-systolic volume 

ML: machine learning 

NGTDM: neighbouring gray tone difference matrix 

wtATTR: wild type amyloid transthyretin 

vATTR: variable amyloid transthyretin 

ROI: region of interest 

TAVI: transaortic valve implantation 

TTE: transthoracic echocardiography 

KNN: k-nearest neighbor 

SVC: support vector classifier 

DT: decision tree 

LR: logistic regression  
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GB: gradient boosting 

ROC: receiver operating characteristic 
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1. Introduction 

Cardiac amyloidosis (CA) is an increasingly diagnosed condition caused by conformational 

changes in amyloidogenic proteins leading to amyloid fibril deposition in the heart 1. The two 

predominant amyloid proteins found in the heart are immunoglobulin light chain (AL) and 

transthyretin (ATTR) 2. ATTR-CA occurs in two most common forms: wild-type, or senile, 

transthyretin (wtATTR), more prevalent in elderly people, and hereditary or variable TTR 

(vATTR), genetic autosomal dominant disease 3. Clinical presentation associated to cardiac 

amyloidosis shows an increased biventricular wall thickness, myocardial stiffening and 

restrictive physiology of the left and right ventricles 2 caused by amyloid fibril deposition in 

the extracellular myocardial space. 

Similar myocardial remodeling processes affect the heart of patients with aortic stenosis 

(AS). AS is the most common cause of valvular heart disease 4. It is characterized by a 

progressive aortic valve narrowing leading to an increase in afterload and wall stress, 

compensated with a gradual hypertrophy of left ventricle 5.  

Therefore, as CA shares several common phenotypical features with AS and considering 

the high prevalence of subclinical CA among AS undergoing TAVI, the differential diagnosis 

of these two entities has important prognostic and therapeutic implications. 

In this framework, radiomics can be a non-invasive tool useful to perform differential 

diagnosis starting from medical images such as cardiac computed tomography (CCT) 

usually used for interventional planning of AS patients undergoing TAVI. Radiomics is an 

emerging research field aimed to improve diagnosis, characterization, and prognosis using 

quantitative features extracted from medical images. Radiomics is widely employed in 

oncology for tumors characterization 6,7, treatment response 8,9,10 and overall survival 

analysis 11,12. Recently, it has been proposed in the cardiovascular field to improve 

diagnostic accuracy, patients cardiac risk prediction and stratification 13,14,15,16,17,18,19,20,21,22. 
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As radiomics generates hundreds of features, a crucial step of radiomic workflow is selecting 

features according to their relevance with respect to the clinical question of interest. 

Assessing features robustness is a necessary preliminary step in the process of feature 

selection 23. The most applied techniques to evaluate features reliability are test-retest and 

multiple delineations of the ROI 15,17,18, methods affected by a time-consuming intrinsic limit: 

test-retest requires multiple scan acquisitions, whereas multiple delineations require several 

ROI segmentations. To overcome these problems, in the current study, for the first time in 

CCT, features robustness was assessed performing geometrical transformations of the 

ROIs  23. To mimic multiple manual delineations, small ROI transformations are applied to 

simulate errors due to manual delineation thus assessing feature stability. In addition, large 

ROI transformations are performed to assess feature discrimination capacity. The 

underlying hypothesis is that robust features need to be stable, i.e., similar for small 

transformations, and discriminative, i.e., different, for large transformations. Studies on 

feature robustness already exist in oncological field 23,24,25, whereas a very limited research 

is available in cardiovascular radiomics 26,15. 

The aim of this study is to identify a set of stable and discriminative radiomic features derived 

from CCT to differentiate left ventricle hypertrophy due to CA versus AS. 

 

2. Methods 

2.1. Study population and baseline characteristics 

Twenty-one patients with CA (Mean age and interquartile range: 74 [67-76]; frequency of 

male: 67%) were randomly extracted by our database.  

ATTR patients underwent bone scintigraphy using 3,3-diphosphono-1,2-

propanodicarboxylicacid (DPD), whereas AL patients also underwent SAP scintigraphy. For 

ATTR, cardiac amyloidosis was defined by presence of ATTR amyloid in a myocardial 

biopsy (Congo red and immunohistochemical staining) or positive DPD scintigraphy. All 
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ATTR patients also underwent sequencing of exons 2, 3, and 4 of the TTR gene. For AL, 

systemic AL amyloidosis was proven with biopsies from non-cardiac tissues.  

As for CA patients, we randomly extracted a population of 21 AS patients (Mean age and 

interquartile range: 82 [78-84]; Male: 53%) from a cohort of consecutive patients with severe 

AS referred to CCT for TAVI planning. The concomitant presence of CA was excluded by 

bone scintigraphy and/or cardiac magnetic resonance. 

All patients underwent comprehensive evaluation with transthoracic echocardiography 

using commercially available equipment (iE33 or Epiq, Philips Medical System, or Vivid-9, 

GE Healthcare) measuring LV end-diastolic (LVEDV) and end-systolic (LVESV) volumes 

indexed for body surface area and LV ejection fraction (LVEF).  

The institutional Ethical Committee approved the study, and all the patients signed the 

informed consent. 

 

2.2. CCT scan protocol 

CCT examinations were performed using 256-slices (Revolution CT; GE Healthcare, 

Milwaukee, WI) or 320-slices wide volume coverage CT scanner (Aquilion ONE VisionTM; 

Canon Medical Systems Corp., Tokyo, Japan). No premedication with beta-blockers or 

nitrates was added before CT acquisition. Revolution CT scans were acquired using the 

following parameters: peak tube voltage, 100 kV; Detector collimation: 160 mm using 256 

rows by 0.625 mm on Z axis. Detector geometry: 256 rows by 832 detection elements per 

row. High contrast spatial resolution: 0.23 mm. Slice thickness: 0.625; gantry rotation time, 

280 ms; prospective triggering; and iterative reconstruction algorithm (ASIR-V; GE 

Healthcare). Patients received a fixed dose of 50 ml bolus of contrast medium (400 mg of 

iodine per milliliter, Iomeprol; Bracco, Milan, Italy) despite the BMI via an antecubital vein at 

an infusion rate of 5 ml s−1 followed by 50 ml of saline solution at 5 ml·s−1.  Aquilion ONE 

Vision scans were acquired using the following parameters: peak tube voltage, 120 kV; tube 
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current–time product, 160 mAs; section collimation, 320 detector rows, 1.2-mm section 

thickness; gantry rotation time, 275 msec. The iodinated contrast material used in this case 

was iohexol (300 mg of iodine per milliliter Omnipaque 300; Nycomed Amersham, Oslo, 

Norway) at a standard dose of 1mL/kg and injection rate of 3ml/sec without a saline chaser. 

A body mass index (BMI)-adapted protocol was used for the tube current.  The bolus 

tracking technique was used to synchronize the arrival of contrast material at the aortic root 

with the start of acquisition. 

 

2.3. Images segmentation, preprocessing and radiomics features extraction 

For each patient, the left ventricular wall was manually segmented by expert cardiac imagers 

with level III European Association of Cardiovascular Imaging (EACVI) 27. 

Image preprocessing was performed to reduce the imaging-related variability: a 3D 

Gaussian filter with a 3x3x3 voxel kernel and σ=0.5 was used to denoise the images. Then, 

voxel size resampling to an isotropic resolution of 2 mm (as in 28) was performed with B-

spline interpolation. 

The extraction of radiomic features was performed using Pyradiomics 3.0 29. A total of 107 

features, belonging to different categories, were extracted: shape and size (14 features), 

first order statistics (18 features) and textural variables (75 features) 29. A fixed-bin width 

histogram discretization (0.5 Hounsfield units per bin) was used prior to features extraction. 

Since features were extracted with Pyradiomics, they were compatible with the Image 

Biomarker Standardization Initiative (IBSI) 30. 

Radiomic features underwent a series of features selection steps: 

a) Selection of stable and discriminant features 

Features stability and discrimination capacity were assessed using geometrical 

transformations (translations) of the ROIs as in 23. The entire workflow is implemented in 
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MATLAB 2017a (Mathworks, Natick, MA, USA) and applied to first order and textural 

features. 

Various entity translations were applied to the ROIs, along both the x (medial-lateral) and y 

(antero-posterior) directions. The minimal entity translation was 0.5% the length of the 

bounding box surrounding the ROI in the direction of interest (Figure 1A), and the maximal 

entity translation was 30% (Figure 1B). Eleven different translations ([0.5, 1, 2, 4, 6, 8, 10, 

15, 20, 25, 30] %) were defined and, for each of them, 4 shifts of the ROI were applied, one 

positive and one negative along both the x and y axis direction. Radiomic features were 

computed on each translated ROI and compared to the ones obtained with the original one 

segmented by expert cardiac radiologists. For each translation, the percentage of volume 

overlap was computed to assess whether most of the ROI was considered when 

transforming the ROI. 

b) Selection of non-redundant features 

The second step consisted of a correlation-based feature selection, performed to ensure a 

set of features with low internal redundancy.  

c) Selection of more relevant features 

Three feature selection methods were tested 31. The first method included only features 

statistically different between CA and AS (p-value < 0.05). The second method selected 

features using LASSO method. The third method combined the first two methods: only 

significant features were considered when applying LASSO algorithm. 

 

2.4. Machine Learning Classification  

Five machine learning classification models were implemented in Scikit-Learn Python library 

to identify the radiomic features that better distinguish patients with CA from patients 

affected by AS. 
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A stratified 7-fold cross validation was performed to split data into train and test set 

preserving the percentage of samples for each class. 

In all ML models, training set was further split into learning and validation set (70% and 30% 

of the data, respectively) preserving the same class proportions observed in the original 

dataset. 

Before classification, data belonging to the three sets were z-scored. The mean and 

standard deviation were computed on the training set and re-applied on the validation and 

test set. Five ML models were considered: KNN, SVC, DT, LR, GB. In each train-test split, 

classifiers were trained on the learning set and applied to the validation set. Sensitivity, 

specificity, diagnostic accuracy, and area under the curve (AUC) of five ML models were 

calculated. 

The entire workflow is shown in Figure 2. 

 

2.5. Statistical Analysis 

Statistical analysis was performed using MATLAB 2017a (Mathworks, Natick, MA, USA). 

Descriptive statistics was used to characterize the study population and Student’s 

independent t-test, Wilcoxon Rank sum test tests, Chi-square, or Fisher’s exact test were 

used as appropriate to compare the distribution of continuous and categorical variables 

among AS vs CA groups.  

Radiomic features robustness was measured by the intraclass correlation coefficient (ICC). 

For each feature calculated from a single ROI, 4 ICCs with their mean (ICCmean) were 

calculated. A total of 11 ICCmean were computed. Minimal and maximal entity translation 

ICCs were employed to assess features stability and discrimination capacity. Following 

general guidelines 32, two ICC threshold values were identified to select robust features: ICC 

= 0.75, which indicates good agreement between data, and ICC = 0.5, which reflects poor 

similarity. Thus, features having an ICCmean higher than 0.75 for minimal entity translation 
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and an ICCmean lower than 0.5 for maximal entity translation, were considered stable and 

discriminative. 

To select the non-redundant features, Spearman correlation coefficient ρ was computed for 

each pair of features and in case a pair had |ρ| > 0.85, only the feature with the lower mean 

Spearman coefficient with all the others (n-2) features was selected, ‘n’ being the total 

number of features. 

 

3. Results 

A total of 42 patients were enrolled. Among the 21 patients with CA, 11 were affected by 

AL-CA and 10 by ATTR-CA. In twenty-one out of 42 patients with AS (AS group), CA was 

excluded by cardiac magnetic resonance and by cardiac tracer uptake on bone scintigraphy 

with Perugini grade  

< 2 when CMR was equivocal. 

Table 1 shows patients baseline characteristics. 

 

Regarding to feature selection, first step identified 76 radiomic features as robust (18 first-

order statistics and 58 textural features) as shown in Figure 3 Panel A. These features have 

an ICCmean higher than 0.75 at the minimal translation and an ICCmean lower than 0.5 at the 

maximal entity translation. Features not responding to the two previous criteria are shown 

in Figure 3 Panel B. After this first feature selection step, 90 features were considered, i.e., 

the 76 robust ones and the 14 shape-based features. Table 2 reports the list of all radiomic 

features with the ICC values for minimal and maximal translations. Figure 4 shows the 

percentages of overlap between the original and the translated ROI as a function of the 

different entity translation. The median overlap for the minimal translation entity was 96.7 % 

while the median overlap for the maximal translation was 8.9 %. At each train-test split, an 
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average of 24 radiomic features, ranging from 22 to 26, were further selected as non-

redundant with the second feature selection step. 

Finally, 101 features were selected using Wilcoxon Signed Rank test, 71 using the 

LASSO method and 71 using the combination of the two methods. (Table 3). 

Figure 5 shows the performance of the five ML classifiers in the validation set using the 

three different feature selection methods. Comparing the ML models, a general trend 

showing higher performance in LR can be observed. The LR classifier, applied with 

Wilcoxon signed rank-based method and its combination with the LASSO regression, shows 

the best performances (increasing mean accuracy of more than 0.10), resulting in 

statistically significant differences with DT and GB models. Thus, LR classifier, with these 

two feature selection methods, was selected to be used in the test set in each split. 

Figure 6 shows the ROC curve, with AUC 0f 0.94, for the test set considering the LR 

classifier used with Wilcoxon signed rank and LASSO regression combination as feature 

selection method.  

 
4. Discussion 

The main finding of our study is that a CT dataset acquired for the usual planning of TAVI in 

AS patients can be used to extract radiomic features to diagnose subclinical CA. More 

specifically 90 radiomic features satisfied the robustness criteria and 10 were kept after 

feature selection. The best results were obtained using the LR classifier, combined with 

Wilcoxon signed rank and LASSO regression, obtaining an accuracy of our model of 

95%7% in the test set (86%  4% in the validation set). 

Endomyocardial biopsy is identified as the gold standard of CA diagnosis. However, it is 

invasive, and some risks are associated with this technique. Nowadays, it is widely 

recognized that bone scintigraphy represents a reliable diagnostic tool for CA, in particular 

for the ATTR variant, avoiding endomyocardial biopsy. Other imaging techniques have been 
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investigated. Echocardiography is valuable and widely accessible tool for investigating heart 

failure 33 but most echocardiographic parameters do not provide CA diagnosis in the early 

stages of disease and do not to allow to distinguish CA from other restrictive or hypertrophic 

cardiomyopathy 34. Cardiac magnetic resonance (CMR) imaging offers a greater diagnostic 

power in CA, but at the same time it is expensive, contraindicated in a substantial proportion 

of patients and could provide false-positive and false-negative results 33.  

Recently, several studies have also developed artificial intelligence algorithms aimed to 

diagnose CA.  

Goto et al. 35 developed two deep learning algorithms using electrocardiogram (ECG) and 

echocardiography data coming from respectively 3 and 5 academic medical centers. The 

ECG-based model reached a mean C-statistic of 0.86 in differentiating 587 CA patients from 

8612 controls while the echocardiography-based model achieved better performances with 

a mean C-statistics of 0.95 in distinguishing 609 CA patients from 303 controls. 

Also, CMR imaging was employed in different studies 36. Zhou et al. classified 139 patients 

(79 CA positive vs 60 controls) by employing CMR radiomics based machine learning 

algorithm with a mean accuracy of 80%, and Martini et al. 37 developed a deep learning 

model to diagnose CA in 206 patients achieving an accuracy of 88%. 

As compared with the previous experience, several points of strength could be considered 

in our study. First, our results based on CCT radiomics obtained an accuracy of 95%, 

significantly higher as compared previous studies. Second, to the best of our knowledge, 

this is the first study to employing CCT for amyloidosis identification.  

This has several clinical implications. Indeed, several studies showed that CA is frequent 

(11.8%) 38 in patients with severe AS referred for TAVI and the challenge, in this context, is 

to differentiate a wooden horse (lone AS) from a Trojan horse (AS with CA) 39. Nitsche et al. 

38 developed in this setting the RAISE [remodelling, age, injury, system, and electrical] 

score, in order to predict the presence of CA in patients with severe AS. This multiparameter 
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score assessed age >85 years (1 point), history of carpal tunnel syndrome (3 points), 

presence of right bundle branch block (2 points), Sokolow/Lyon index <1.9 mV (1 point), 

high sensitivity troponin level >20 ng/ml (1 point), and E/A ratio >1.4 (1 point), with a 

sensitivity and specificity of 84% and 94%, respectively. Alternatively to RAISE score, Oda 

et al. 40 propose the measurement of extracellular volume (ECV) by using CCT dataset. 

However, this approach requires triple scan acquisition (unenhanced scan arterial phase 

acquisition and late scan) and higher volume of contrast agent. On the contrary our 

approach is easily performed by using the single arterial phase CCT dataset acquired during 

the usual diagnostic work-up of these patients. 

Moreover, within radiomic workflow, assessing features robustness is an important 

preliminary step to improve generalizability of radiomic models. In most of the studies, 

radiomic features stability has been tested using multiple delineation method on a subgroup 

of patients 15,17,18, evaluating inter-observer agreement amongst different operators using 

the ICC index. These methods are very time-consuming. This is the first study performing 

features robustness assessment using image perturbations in cardiac CT based on small 

and large entity translation as in 23.  

Considering radiomics features, five appeared in each split of each features selection 

method (10th percentile, signal maximum, small area emphasis, shape elongation and 

maximum 2D diameter column). Five additional features (energy, major axis length, flatness, 

sphericity, and small dependence emphasis) were included in all the splits using Wilcoxon 

signed rank-based method and excluded by LASSO regression in most.  

Having high values of sensitivity represents a promising result from the clinical point of view 

as recognizing CA, whose prognosis results worse compared to AS, is the main interest of 

this study. 

 



 14 

Several study limitations should be considered. First, the sample size employed in the study 

is limited thus these results are only preliminary and should be confirmed by a larger dataset. 

In addition, the considered patients were randomly extracted from a cohort of AS and CA 

patients referred for CCT. Finally, CA and AS were explored separately without including 

patients affected by both pathologies, this latter group of patients might be included in a 

further study.  

 

5. Conclusions 

In conclusion in the current study a set of stable and robust radiomics features, able to 

discriminate CA and AS patients, has been found. Features robustness assessment has 

been performed using small and large transformations of the ROIs. This method overcomes 

time-consuming intrinsic limits which affect the most applied techniques evaluating feature 

reliability. This study shows promising results in differentiating CA from AS that might be 

applied to clinical routine available images. 
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Figure legends 

Figure 1: Example of translations applied to the ROIs. (a) Minimal entity translation: 

dashed red line represents a translation of 0.5% in the x direction. (b) Maximal entity 

translation: dashed red line represents a translation of 30% in the x direction. In both figures, 

continuous black lines represent the contours of the original ROIs. ROI: region of interest. 

Figure 2: Machine learning workflow. (a) Visual representation of the learning, validation 

and test split using 7-fold cross-validation. (b) Visual representation of machine learning 

workflow. 

Figure 3: ICCs as a function of the translation entity. (a) Stable and discriminative 

features: ICCs at the minimal entity translation (0.5%) is higher than the threshold value 0.75 

(ICCmin) and ICCs calculated at the maximal entity translation (30%) are lower than the 

threshold value 0.5 (ICCmax). superimposed in red, ICC mean and standard deviation. (b) 

Non-valid features: black lines represent ICC trend for features whose ICC at the maximal 

entity translation is higher than ICCmax; grey lines represent ICC trend for features whose 

ICC at the minimal entity translation is lower than ICCmin. 

Figure 4: Boxplots representing the overlap percentage between translated ROIs and 

original ROIs, at each translation value.  

Figure 5: Accuracy, sensitivity, and specificity for the validation set. (a) Features selection 

based on the Wilcoxon signed rank-based method. (b) Features selection based on the 

LASSO regression method. (c) Features selection based on the combination of Wilcoxon 

signed rank-based method and LASSO regression. KNN: K-nearest neighbor, SVC: support 

vector classifier, DT: decision tree, LR: logistic regression, GB: gradient boosting. 

Figure 6: Receiver Operating Characteristics (ROC) curve computed from the test set 
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Table 1. Baseline characteristics of study population 

 

Values are expressed as absolute number and percentage or median and IQR  

 

LVEDVi: left ventricle end-diastolic volume index;  LVEF: left ventricle ejection fraction; 
LVESVi: left ventricle end-systolic volume index; ns: not significant 
LVEF: left ventricle ejection fraction 
 
 

 
 
 

All 
(n=42) 

AS 
(n=21) 

ATTR-CA 
(n= 21) 

P 
value 

Age, years 77 (72-82) 82 (78-84) 74 (67-76) p<0.01 

Female 17 (40%) 10 (48%) 7 (33%) ns 

Body Surface Area, m2 1.9 (1.7-2) 
1.8(1.7-

1.9) 
1.9 (1,7-2) ns 

Body Mass index, kg/m2 26 (23-31) 27 (24-30) 26 (22-32) ns 

     

     

     

     

     

     

LVESVi, ml/m2 19 (15-24) 21 (16-24) 18 (15-24) ns 

LVEDVi, ml/m2 46 (36-59) 57 (45-65) 36 (29-54) p<0.01 

     

     

LVEF, % 58 (45-66) 65 (58-66) 48 (43-58) p<0.01 
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Table 2. ICC values for the minimal (0.5% translation) and maximal (30% translation) 

perturbation. In bold, the robust features, i.e., with ICC (0.5% translation) > 0.75 and ICC 

(30% translation) < 50%. ICC: intraclass correlation. 

 

Feature name 
ICC (0.5% 

translation) 
ICC (30% 

translation) 

firstorder 10Percentile 0.9760 0.0404 

firstorder 90Percentile 0.9975 0.3870 

firstorder Energy 0.9909 0.2208 

firstorder Entropy 0.9801 0.0786 

firstorder InterquartileRange 0.9882 0.0367 

firstorder Kurtosis 0.9768 0.0035 

firstorder Maximum 0.8334 0.1303 

firstorder MeanAbsoluteDeviation 0.9579 0.0388 

firstorder Mean 0.9925 0.0627 

firstorder Median 0.9986 0.0000 

firstorder Minimum 0.9594 0.1515 

firstorder Range 0.9580 0.1365 

firstorder RobustMeanAbsoluteDeviation 0.9856 0.0365 

firstorder RootMeanSquared 0.9924 0.0586 

firstorder Skewness 0.9303 0.0252 

firstorder TotalEnergy 0.9909 0.2208 

firstorder Uniformity 0.9926 0.0649 

firstorder Variance 0.9399 0.0625 

glcm Autocorrelation 0.9952 0.2149 

glcm ClusterProminence 0.9699 0.0475 

glcm ClusterShade 0.9367 0.0522 

glcm ClusterTendency 0.8723 0.0608 

glcm Contrast 0.9042 0.0658 

glcm Correlation 0.9720 0.0040 

glcm DifferenceAverage 0.9853 0.1422 

glcm DifferenceEntropy 0.9847 0.1761 

glcm DifferenceVariance 0.7925 0.0605 

glcm Id 0.9967 0.3672 

glcm Idm 0.9970 0.3929 

glcm Idmn 0.7337 0.0570 

glcm Idn 0.7941 0.0929 

glcm Imc1 0.9839 0.0225 

glcm Imc2 0.9737 0.0012 

glcm InverseVariance 0.9925 0.2651 
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glcm JointAverage 0.9597 0.1835 

glcm JointEnergy 0.9970 0.1143 

glcm JointEntropy 0.9882 0.1216 

glcm MCC 0.8092 0.0037 

glcm MaximumProbability 0.9988 0.1952 

glcm SumAverage 0.9597 0.1835 

glcm SumEntropy 0.9783 0.0652 

glcm SumSquares 0.8739 0.0606 

glrlm GrayLevelNonUniformity 0.9993 0.2126 

glrlm GrayLevelNonUniformityNormalized 0.9891 0.0573 

glrlm GrayLevelVariance 0.9272 0.0455 

glrlm HighGrayLevelRunEmphasis 0.9953 0.2158 

glrlm LongRunEmphasis 0.9991 0.5656 

glrlm LongRunHighGrayLevelEmphasis 0.9928 0.1976 

glrlm LongRunLowGrayLevelEmphasis 0.7614 0.0901 

glrlm LowGrayLevelRunEmphasis 0.7410 0.0915 

glrlm RunEntropy 0.9580 0.0462 

glrlm RunLengthNonUniformity 0.9998 0.9243 

glrlm RunLengthNonUniformityNormalized 0.9984 0.5213 

glrlm RunPercentage 0.9988 0.5588 

glrlm RunVariance 0.9994 0.4987 

glrlm ShortRunEmphasis 0.9984 0.5337 

glrlm ShortRunHighGrayLevelEmphasis 0.9957 0.2211 

glrlm ShortRunLowGrayLevelEmphasis 0.7373 0.0925 

glszm GrayLevelNonUniformity 0.9967 0.3324 

glszm GrayLevelNonUniformityNormalized 0.9579 0.0298 

glszm GrayLevelVariance 0.7339 0.0467 

glszm HighGrayLevelZoneEmphasis 0.9957 0.2193 

glszm LargeAreaEmphasis 0.9947 0.1799 

glszm LargeAreaHighGrayLevelEmphasis 0.9922 0.0702 

glszm LargeAreaLowGrayLevelEmphasis 0.7743 0.0180 

glszm LowGrayLevelZoneEmphasis 0.7074 0.1064 

glszm SizeZoneNonUniformity 0.9926 0.4355 

glszm SizeZoneNonUniformityNormalized 0.9033 0.1671 

glszm SmallAreaEmphasis 0.9038 0.1650 

glszm SmallAreaHighGrayLevelEmphasis 0.9952 0.2220 

glszm SmallAreaLowGrayLevelEmphasis 0.6920 0.1015 

glszm ZoneEntropy 0.9445 0.0403 

glszm ZonePercentage 0.9888 0.3438 

glszm ZoneVariance 0.9947 0.1785 

ngtdm Busyness 0.7901 0.0175 

ngtdm Coarseness 0.9996 0.5760 

ngtdm Complexity 0.7857 0.0960 



ngtdm Contrast 0.9202 0.0331 

ngtdm Strength 0.8659 0.1475 

gldm DependenceEntropy 0.9819 0.0480 

gldm DependenceNonUniformity 0.9999 0.8447 

gldm DependenceNonUniformityNormalized 0.9993 0.5797 

gldm DependenceVariance 0.9995 0.4636 

gldm GrayLevelNonUniformity 0.9994 0.2354 

gldm GrayLevelVariance 0.9394 0.0622 

gldm HighGrayLevelEmphasis 0.9952 0.2152 

gldm LargeDependenceEmphasis 0.9993 0.5956 

gldm 
LargeDependenceHighGrayLevelEmphasis 0.9860 0.1717 

gldm LargeDependenceLowGrayLevelEmphasis 0.7972 0.1084 

gldm LowGrayLevelEmphasis 0.7419 0.0864 

gldm SmallDependenceEmphasis 0.9921 0.3534 

gldm 
SmallDependenceHighGrayLevelEmphasis 0.9973 0.2672 

gldm SmallDependenceLowGrayLevelEmphasis 0.7102 0.1202 

 
 
ICC: intraclass correlation coefficient 
 
GLCM: gray level co-occurrence matrix 

GLRLM: gray level run length matrix 

GLSZM: the gray level size zone matrix 

NGTDM: neighbouring gray tone difference matrix 

GLDM: gray level dependence matrix 

 



Table 3. Features selected in each of the 7 splits as final input to the ML classifiers 

using the Wilcoxon test, the LASSO or their combination. In bold, features which have 

been selected in each split by all the features selection methods employed. LASSO: least 

absolute shrinkage and selection operator. 

 

Feature name Wilcoxon LASSO Wilcoxon + LASSO 

Firstorder 10Percentile 7/7 7/7 7/7 

Firstorder Maximum 7/7 7/7 7/7 

Firstorder Energy 7/7 3/7 5/7 

Glszm SmallAreaEmphasis 7/7 7/7 7/7 

Shape MajorAxisLength 7/7 2/7 1/7 

Shape Flatness 7/7 4/7 2/7 

Shape Elongation 7/7 7/7 7/7 

Shape Maximum2DDiameterColumn 7/7 7/7 7/7 

Shape Sphericity 7/7 1/7 6/7 

Gldm SmallDependenceEmphasis 7/7 0/7 3/7 

Shape SurfaceVolumeRatio 2/7 0/7 0/7 

Glcm MCC 0/7 1/7 0/7 

Ngtdm Contrast 0/7 1/7 0/7 

Gldm DependenceEntropy 0/7 4/7 0/7 

Glszm LargeAreaHighGrayLevelEmphasis 0/7 1/7 0/7 

 

 
GLSZM: the gray level size zone matrix 

GLDM: gray level dependence matrix 

GLCM: gray level co-occurrence matrix 
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NGTDM: neighbouring gray tone difference matrix 

GLDM: gray level dependence matrix 

 


