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Abstract: Correlation plenoptic imaging (CPI) is a technique capable of acquiring the light field
emerging from a scene of interest, namely, the combined information of intensity and propagation
direction of light. This is achieved by evaluating correlations between the photon numbers measured
by two high-resolution detectors. Volumetric information about the object of interest is decoded,
through data analysis, from the measured four-dimensional correlation function. In this paper, we
investigate the relevant aspects of the refocusing algorithm, a post-processing method that isolates
the image of a selected transverse plane within the 3D scene, once applied to the correlation function.
In particular, we aim at bridging the gap between existing literature, which only deals with refocusing
algorithms in case of continuous coordinates, and the experimental reality, in which the correlation
function is available as a discrete quantity defined on the sensors pixels.

Keywords: light-field imaging; quantum imaging; correlation imaging; 3D imaging

1. Introduction

A plenoptic (or light-field) device can measure, at the same time, both the light inten-
sity distribution and the propagation direction of the light rays that come out of a scene
of interest [1–5]. The latter kind of information, which is not available to conventional
imaging, endows a plenoptic device with three-dimensional imaging capabilities, allowing
one to “refocus“, in post-processing, details of the scene that were out of focus at the
moment of the capture. The operation of refocusing, if applied repeatedly to retrieve a
stack of many axial planes of the sample, allows one to reconstruct a three-dimensional
“cube“ that is very similar to the one obtained by 3D techniques relying on z-scanning
[6,7], without the obvious disadvantages stemming from having an experimental device
with moving parts. Plenoptic imaging is currently used in a variety of different applica-
tions such as photography [2,3], microscopy [8], real-time imaging of neuronal activity
[9], and wavefront sensing [10]. Conventionally, the directional information needed for
refocusing is obtained by inserting an array of micro-lenses within the optical setup; the
micro-lenses, however, impose a trade-off between the 3D capabilities of the device and
the maximum resolution that is attained [11]. Such tradeoff can be overcome through a
recent alternative approach, which entirely avoids the use of microlenses. This method,
called correlation plenoptic imaging (CPI), retrieves plenoptic information by measuring
correlations between the photon number (i.e., intensity) fluctuations measured by two
separate high-resolution sensors [12–14]. Combined spatial and directional information is
retrieved with the maximal optical resolution determined by wave-optics; the resolution
on the focused plane is thus only limited by the lens aperture [13] and the DOF extension
wider than in conventional plenoptic imaging [15,16]. Remarkably, the resolution limits
of images refocused by CPI are practically independent of the numerical aperture of the
imaging system; this provides an improvement with respect to both standard imaging
and traditional plenoptic imaging, at arbitrarily large distances from the focused plane
[16]. Though the main embodiment of CPI have so far been designed to exploit the cor-
relations of chaotic light [16,17], the technique is versatile enough to enable working also
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with the purely quantum correlations of entangled photon pairs [18], provided the setup is
adequately modified [19].

Despite the differences in both the setup architecture and in the performances of
traditional plenoptic imaging and CPI, the working principle of refocusing is unchanged: a
collection of sub-images, representing the scene as viewed from different points of view
(or different angles), must be realigned and integrated in order to get the refocused image
of a specific plane. In both cases, the finite size and the discrete structure of sensors entail
deviations from the ideal case (formulated in a continuous space); summing images with
different fields of view and pixel centering are further issues than needs to be addressed.
These problems have already been taken on in the context of traditional plenoptic imaging
(see, e.g., Refs. [20,21]). However, correlation imaging brings along peculiar issues: the
interplay between light propagating along the two correlated beams, and the crucial role of
coherence acquired during propagation. These specific aspects require a dedicated analysis,
as they are not encompassed in the research conducted for traditional plenoptic devices.
Moreover, the higher versatility of CPI makes it necessary to develop a comprehensive
theory, in which the problem of refocusing is tackled in the most general case (encompassing
even the intricate algorithms that arise in so called correlation plenoptic imaging between
arbitrary planes [15]).

In this work, we shall address these points and analyze the steps needed to obtain
the refocused image from the measured correlation function. Particular attention will be
devoted to the algorithmic complications that arise from its discrete nature.

2. Materials and Methods

In CPI, the refocused images are obtained by applying a refocusing algorithm to the
measured correlation function

Γ(2)(ra, rb) = 〈IA(ra)IB(rb)〉 − κ〈IA(ra)〉〈IB(rb)〉, (1)

where IA and IB are the instantaneous light intensities measured by the two detectors,
with 2D coordinates ra = (xa, ya) and rb = (xb, yb), respectively, and 〈X〉 denotes the
expectation value of the observable X; κ is a constant that can either be 1 or 0, depending
on the statistical properties of the illumination source. A detailed discussion about how
the correlation function is calculated from the experimental data is reported in Ref. [22]. In
the same paper, is is also shown that, although the correlation function of Equation (1) is a
four-dimensional quantity, most of its properties still emerge by considering a simplified
two-dimensional scenario, in which the two detectors are one-dimensional. Throughout the
rest of the paper, the correlation function will be considered as a 2D quantity, with the two
coordinates xa and xb defined on 1D detectors that will be called DA and DB, respectively.
Given the correlation function, the object detail at coordinate x on the transverse plane of
the sample is reconstructed through the line integral

Σz(x) =
∫

γz(x)
Γ(2)(xa, xb)ds. (2)

The whole object is reconstructed by repeating this integral for all x coordinates within the
field of view (FOV). The curve γz(x) is a line in the (xa, xb) plane defined by the detectors,
whose slope depends solely on the the longitudinal position z of the sample along the
optical axis, while the intercept depends on the specific x coordinate [22]. The possibility
to implement a refocusing algorithm can be easily recognized by considering the form
Equation (1) assumes in the geometrical (ray-optics) approximation, that is

Γ(2)(xa, xb) ∼ |A(α(z)xa + β(z)xb)|2 P(p1xa + p2xb) χA(xa) χB(xb), (3)

where A(x) is the sample intensity profile (or field transmissivity, depending on whether
the object is placed in both optical paths or in only one of them [22]), P(x) is the dominant



Sensors 2022, 22, 6665 3 of 14

limiting aperture within the optical setup, χA(xa) and χB(xb) are the characteristic functions
of the detectors [22]. Both P and χ are vanishing outside of the transmissive area of
the main iris, for P , and the photosensitive area of the detectors for χA,B. The form
in which the intensity profile of the sample A appears in Equation (3) makes it easy to
understand refocusing: the sample detail at coordinate x is “spread” along a line of equation
α(z)xa + β(z)xb = x in the (xa, xb) plane defined by the detectors, the value of |A(x)|2
can thus be recovered by applying Equation (2). Figure 1 shows the simulation of the
correlation function (Figure 1b) measured by a single-lens CPI configuration (Figure 1a). In
this particular scheme, detectors imaging two planes that are slightly displaced from one
another along the optical axis are correlated (za 6= zb). If the detectors and the optical paths
leading to them are considered separately, the device behaves as two different single-lens
imaging systems, each retrieving the image of a given plane, with the DOF and resolution
defined by the lens; the object is placed out of the DOF of the two systems and thus cannot
be resolved. However, if the light intensity impinging on the two detectors are measured,
plenoptic information about the sample can be retrieved as from the equation reported in
the left hand side of Figure 1b (see Equation (3)).

(a) Setup parameters and object

(b) Measured correlation function

Figure 1. Simulation of a correlation function in the experimental setup shown in panel (a). The object
is composed of a set of equally spaced 200 µm-wide gaussian slits, centered 1 mm apart from each
other. Panel (b) shows the two-dimensional quantity that is reconstructed by measuring intensity
correlations in the setup shown in panel (a). Since the detectors DA and DB are identical strips of 50
pixels each, the result of the measurement is a square matrix of 50× 50 pixels. However, the optical
distances involved and the finite radius of the lens (here fixed at 50 mm), prohibits information to
be contained in the pixels outside of the two dashed green lines [22]. The red segment, spanning
the whole photosensitive area identified by the two detectors, represents the integration path for
recovering the information at coordinate x in the object plane. The simulated correlation function is
obtained by applying Equation (4) of Ref. [22] to the known object shape A; the function Φ is defined
by the optical distances and components involved. Discretization is then imposed by integrating over
the pixel size.
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In the next section, we shall discuss how to apply the refocusing algorithm to the
experimental correlation function, keeping into account the effect of the size of both the
detectors and their pixels.

3. Results

As we have already mentioned, in order to obtain a complete reconstruction of the
object, the line integral of Equation (2) must be performed for all coordinates x within
the FOV. Since the intensity measurements are performed with photodetectors having a
finite pixel size, the refocusing coordinate x spans the FOV in discrete steps that must
depend on the pixel size and the other experimental parameters. Before dealing with such
discretization, however, let us establish how the finite size of the detectors define the FOV
of CPI.

3.1. Field of View

In conventional imaging, the FOV is given by the portion of the object that is imaged
on the photosensor. If optical distortion and other artifacts such as vignetting are neglected,
the FOV is essentially determined by the detector size alone, and does not depend on the
size of the optical elements. As demonstrated in Ref. [22], the same is true in CPI, where
the finite size of the optical components can alter other properties of the final images, but
not the FOV. Still, since CPI is based on two detectors, the identification of the FOV is less
trivial than in standard imaging. In fact, based on Equation (3), the combination of the
two photosensitive surfaces of DA and DB is the rectangle of equation χA(xa) · χ(xb) 6= 0
in the (xa, xb) plane. The FOV of CPI can thus be defined as the set of the x coordinates
for which the line α(z)xa + β(z)xb = x intersects the rectangle defined by the detectors
(see Figure 1b and, for further details, Figure 4a of Ref. [22]), and can be obtained as the
difference between the maximum and the minimum values of x that produces a line in the
(xa, xb) plane having non-null intersection with the photosensitive area. By indicating with
Li = Ni · δi the linear size of the detectors, with Ni the number of pixels, δi the pixel size,
and i = a, b, the FOV of CPI is

FOV(z) = |α(z)|δa · NA + |β(z)|δb · NB. (4)

A comparison with the FOV of conventional imaging is provided in Appendix A.

3.2. The Refocusing Transformation

When reconstructed from experimental data, the correlation function of Equation (1)
is a NA × NB real matrix, whose rows correspond to pixels on DA and columns correspond
to pixels on DB. For adapting the refocusing integral of Equation (2) to such discrete and
finite case correlation function, two issues need to be addressed:

• for any given integration line (i.e., for any fixed value of x), choosing the appropriate
spacing between the points along the integration path to properly reconstruct the
image;

• for x varying in the FOV defined in Equation (4), choosing the adequate spacing
between neighbouring integration lines, which physically translates into the granular
resolution of the refocusing process.

The intuitive idea that smaller steps along both the integration lines and the distance
between lines lead to finer results is not really correct. In fact, the integration lines employed
for image reconstruction run through points, in the (xa, xb) plane, which do not coincide
with the discrete coordinates on which the correlation function is defined, but can rather
assume any value, obtained through four-dimensional interpolation of the experimental
dataset. During this interpolation stage, the correlation function should not be oversampled
to avoid needlessly long computation time. On the other hand, also undersampling aimed
at shortening the computation time must be avoided. One intuitive reason is that under-
sampling along the x direction would entail a loss of resolution, but also undersampling
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along the integration direction has less intuitive side-effects on the signal-to-noise ratio of
the refocused image. In fact, although the integration lines contain, in principle, “copies”
of the same object detail located at coordinate x, the availability of a large number of copies
and the choice of using all of them for refocusing offers the possibility to maximize the
signal-to-noise ratio of the final image [16].

In addition, due to the finite size of the detectors, integration along the lines γz(x) in
Equation (2) can only occur on the segments intercepted by the lines on the photosensitive
rectangle in the (xa, xb) plane (Figure 1b). The length of these segments, the integration
extremes, and the number of resampling steps, depend on both z, through the line slope,
and on the refocusing coordinate x. By choosing the following t-parametrization for the
integration segment,

γz(x, t) :

{
xa = xa(x, t)
ya = ya(x, t)

t ∈ [az(x), bz(x)] , (5)

Equation (2) can be rewritten as a Riemann integral

Σz(x) =
∫ bz(x)

az(x)
Γ(2)(xa(x, t), xb(x, t))

√(
∂xa

∂t

)2
+

(
∂xb
∂t

)2
dt, (6)

whose extremes depend on both z and the particular refocusing point x.
It is worth noticing that, although Equation (5) parametrizes γz(x) through the single

parameter t, it still carries an implicit dependence on the variable x. Therefore, Equation
(5) can be regarded as a coordinate transformation from the (xa, xb) plane to a new (x, t)
plane, in which the first coordinate is the “refocusing” coordinate and the second one is an
integration coordinate. In the transformed plane, all the contributions in the correlation
function related to the same object point are lined up along the vertical. In fact, if we
consider the transformed function Γ(2)

trans(x, t) = Γ(2)(xa(x, t), xb(x, t))
√
(∂txa)2 + (∂txb)2,

we see that Equation (6) is just an integration on vertical segments of the function Γ(2)
trans.

The coordinate transformation in Equation (5) shall thus be called a refocusing transformation
. Since it stems from the parametrization of a line, which can be obtained in infinite
equivalent ways, many equivalent refocusing transformations can also be chosen. For
simplicity, let us consider a transformation that is linear in both x and t, so that the square
root term in Equation (6) becomes a constant, common to all refocusing points x, and can
be disregarded. In this case Equation (5) can be conveniently written in the matrix form(

xa
xb

)
= A

(
x
t

)
, (7)

where A is a 2× 2 matrix, whose coefficients of B are determined by imposing that it is a
refocusing transformation. This implies, first of all, that the transformation parametrizes
the line x = α(z)xa + β(z)xb; this line represents a constraint on the first row of a matrix B,
involved in the inverse transformation(

x
t

)
= B

(
xa
xb

)
, (8)

where B11 = α(z) and B12 = β(z). In addition, since the refocusing matrix is the inverse of
B (A = B−1), as can be clearly seen by comparing Equations (7) and (8), the second row of
B must be chosen so as to guarantee that the matrix is non-singular and A is well-defined.
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3.2.1. Integration Extremes

With the considerations above, when a linear refocusing transformation is chosen, the
refocusing algorithm in Equation (6) can be expressed as

Σz(x) =
∫ bz(x)

az(x)
Γ(2)

[
A
(

x
t

)]
dt. (9)

We are now interested in finding an expression for the integration extremes az(x) and
bz(x), that are expected to depend on the refocusing transformation as well. In the (xa, xb)
plane, the boundary to the integration region is the rectangle enclosed by the four lines
xa = ±NA/2 · δa and xb = ±NB/2 · δb; the equations of these lines in the transformed (x, t)
plane will set the vertical boundaries to the Riemann integral in Equation (9). Thus, the
boundaries to the integration region are determined by the four lines

r1(x, t) : A11 x + A12 t = +NA/2 · δa
r2(x, t) : A11 x + A12 t = −NA/2 · δa
s1(x, t) : A21 x + A22 t = +NB/2 · δb
s2(x, t) : A21 x + A22 t = −NB/2 · δb

, (10)

where Aij are the coefficients of the 2× 2 matrix A. In fact, the four lines are those that
define the boundaries of the detection area in Figure 2. Since r1 ‖ r2 and s1 ‖ s2, it is
always possible to determine which one of the two lines in the pairs is greater than the
other at any given x, so that one can define the two lines defining the lower boundary of
the integration area as r↓(x, t) = min{r1, r2} and s↓(x, t) = min{s1, s2}, and the same for
the upper boundary, namely, r↑(x, t) = max{r1, r2} and s↑(x, t) = max{s1, s2}. Once the
upper and lower lines are identified, the integration extremes are easily defined. In fact,
the lower extreme is the greatest between the two values that the lines r↑ and s↑ assume at
the given x of interest, namely,

az(x) = max
{

t↓|r↓(x, t↓) = 0 or s↓(x, t↓) = 0
}

(11)

and, analogously,

bz(x) = min
{

t↑|r↑(x, t↑) = 0 or s↑(x, t↑) = 0
}

. (12)

For a better understanding of this reasoning, the left plot of Figure 2 shows how, for the
given transformation, the integration extremes change with the considered coordinate
x. For the sake of completeness, we should point out that this procedure for finding the
integration extremes does not work when either A12 = 0 or A22 = 0 (lines parallel to the t
axis). This two cases are actually trivial, both because the integration domain is completely
defined by the other two lines, and because these two scenarios correspond to the object
being at focus on either one of the two planes imaged by DA and DB, so that the “refocused”
image can be obtained by simply integrating on the other detector.

Figure 2. Three possible refocusing transformations applied to the correlation function of Figure 1b.



Sensors 2022, 22, 6665 7 of 14

Figure 2 shows the equivalence of three different refocusing transformations, applied
to the correlation function of Figure 1b. The corresponding matrices are, from left to right,

Arot =

(
cos θ sin θ
− sin θ cos θ

)
ADB =

(
3.64 −2.45

0 1

)
ADA =

(
0 1

1.48 −0.41

)
,

where θ = − arctan(0.41) is the slope of the integration paths; the coefficients are obtained
for the experimental parameters in Figure 1b. All the transformations line up the details
along the vertical direction; however, the first one does it through a simple rotation of the
(xa, xb) plane, the second one by applying a shear parallel to DA, and the third one through
a shear along DB. The transformations are equivalent in refocusing the object, but the three
boundaries defined by the lines in Equation (10) are rather different, implying a significant
difference between the integration extremes in Equation (9).

We have thus shown that, due to the finite size of the detectors and the transformation
of the boundaries when the refocusing transformation is applied, the integration extremes
are a function of the particular x coordinate that is chosen. However, there are cases in
which keeping track of the x dependence is inconvenient: in fact, one can typically solve
the integral of Equation (9) by

• either generating, for each x, the list of integration points that will contribute to that
point, in which case it is not an issue to have a number of sampled points that varies
with x

• or by applying the transformation to the correlation function and resampling it on
a regular grid in the (x, t) plane, so that the refocused image is obtained by simply
collapsing the columns of the refocused matrix (i.e., the t coordinate).

The two operations above are, of course, completely equivalent from a mathematical
point of view. However, working on regular grids is typically much more convenient
computationally. This would entail choosing a fixed range [az, bz] for the integration
extremes, which, to avoid information loss, is determined by

az = minx∈FOV{az(x)} bz = maxx∈FOV{bz(x)} (13)

(see Figure 2). By doing so, the measured correlation function, that is intrinsically defined
on a rectangle with sides NA · δa and NB · δb, is transformed into a new rectangle having
sides of length FOV(z) along x, and bz − az along t, as in Figure 3. Notice that, although the
choice of working with a rectangular area might be convenient from a computational point
of view, it is surely inconvenient from the point of view of memory management, since
substantial zero-padding is required to fill-up points on which the correlation function is
not natively defined (Figure 2). As demonstrated in Appendix B, the maximum integration
range is given by

bz − az = |c|NAδa + |d|NBδb, (14)

where c and d are the coefficients of the second row of the inverse refocusing matrix
B = A−1, that can be chosen arbitrarily. From the Equation (14), we see that c and d play
the same role on the t axis that the coefficients α and β do in determining the FOV of the x
axis. This property can be exploited by taking advantage of their arbitrariness to “cut-off”
uninteresting regions of the measured correlation function and speed up the refocusing
process, as displayed in Figure 3.
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DA (10 mm)

DB (10 mm)

za'
zb'

za = 210 mm
zb  = 190 mm

z = 195 mm

Object

Lens (f=100 mm) 1
"!
+ 1
"!"
= 1
%

&' = 20*+

&, = 20*+

Γ ! 𝑥" , 𝑥# = 𝐴 0.275 𝑥" + 0.675 𝑥# ! ⋅ 𝑃 −10.45 𝑥" + 9.45 𝑥#

Lens boundary:
−10.45 𝑥! + 9.45 𝑥" = ±50 𝑚𝑚

Integration path:
0.275 𝑥! + 0.675 𝑥" = 𝑥

Zero padding for fitting to rectangle

Optimized integration on lens plane

Figure 3. Resampling of the correlation function of Figure 1b on a regular grid in the (x, t) plane.
The spacing between neighboring pixels is given by Equation (22) along the horizontal direction and
(20) along the vertical.

3.2.2. Optimized Integration Area

Depending on the particular CPI scheme and the features of the involved optical
components, the area defined by the aperture P in the (xa, xb) plane (see Equation (3))
can be smaller than the one defined by the photosensitive area of the detectors χA · χB.
In those cases, the experimental correlation function contains many points that should
be disregarded upon refocusing, since they only contribute to noise [22]. Let us suppose
the aperture function P(xp) is an iris with radius `, centered on the optical axis of the
system. In this case, the only relevant portion of the correlation function is the one in which
−` ≤ p1xa + p2xb ≤ +`. As long as the experimental parameters are known, this is easily
taken into account by exploiting the degree of freedom on the second line of the A−1 matrix
and by choosing c = p1 and d = p2. In these conditions, the refocusing formula reads

Σz(x) ∼
∫ bz(x)

az(x)
|A(x)|2P(t)dt, (15)

with the integrand being non-vanishing only for |t| ≤ `. Hence, for all the object coordinates
x for which the integration extremes defined by the detectors are larger than the limiting
aperture, the integration path can be cut at ±`, and the refocusing algorithm reduces to:

Σz,opt(x) =
∫ b′z(x)

a′z(x)
Γ(2)

[
A
(

x
t

)]
dt, (16)

with a′z(x) = min{az(x),−l} and b′z(x) = max{bz(x),+l}. Still, if one is interested in
resampling the transformed correlation function in a rectangular domain, the integration
extremes needs to be replaced with ±l, resulting in an integration length: 2l < |c|NAδa +
|d|NBδb, which enables sparing computation time.
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3.3. Resampling of the Correlation Funciton

As the experimental correlation function is available in discrete “steps” (δa, δb), de-
fined by the pixel pitch of the sensors, the refocusing process must also involve discrete
steps in the process of image reconstruction. In this section, we deal with the aspects of
the refocusing process related with discretization. We shall suppose that refocusing is
performed in steps of δx along the refocusing direction, and of δt along the integration
direction. The integral of Equation (9) thus entails resampling the correlation function in
steps of δx, along the horizontal direction, and δt, along the vertical. The refocusing process
for a given object coordinate x thus becomes

Σz,disc(x) =
Nz(x)−1

∑
i=0

Γ(2)
trans(x, az(x) + i · δt), (17)

where N(x) is the closest integer to (bz(x)− az(x))/δt. This operation must be repeated by
sweeping the whole FOV in steps of δx, namely, assuming x0 is the lower bound of the FOV,
for x = x0 + j · δx with j = 0, ..., Mz − 1, where Mz is the closest integer to FOV(z)/δx.

The choice of the sampling steps must at least take into account that the transformed
correlation function can only be resampled in its non-zero area, and that both undersam-
pling and oversampling should be avoided. The most simple solution is to choose δx and
δt such that the number of points for refocusing is approximately equal to the initial points
within the relevant area, namely ∑Mz−1

j=0 Nz · (x0 + j · δx) ' NA · NB. However, a more
rigorous and effective solution consists in imposing a requirement on the point density
rather than on the total number of points; this is performed by transforming each “unit”
cell of area δa · δb, in the original plane, into a unit cell of area δx · δt, in the transformed
plane, that contains the same number of experimental points (one). Unlike the condition
on the total number of points, this condition has the advantage of holding also when the
number of points is modified by either zero-padding or by cutting uninteresting parts of
the function.

We shall now determine the δx and δt that are obtained by choosing that a single
point in the measured space is mapped into a single point in the transformed space. To do
so, rather than considering the transformations A and B that transform coordinates from
the detector and the refocused planes and vice versa, we consider the matrices A′ and B′,
mapping pixels indices, in place of the coordinates, on the refocused plane, and vice versa.
The matrix B′ is obtained by simply including the pixel size inside of the coefficients

B′ =
(

δa α(z) δb β(z)
δa c δb d

)
; (18)

A′ is given by its inverse. By doing this, B′ maps the integer coordinates nA and nB in
the discrete space of pixel indices onto the (x, t) plane, with nI = 1, ..., NI , I = A, B. This
is aimed at normalizing the cell area in the detector plane to unity, and making sure that
the “weight” of pixels is kept into account when applying the transformation to and from
the refocused plane. To understand how this is useful, let us start by calculating δt. To do
so, we consider that a refocusing transformation satisfies a condition on the integration
direction, that is given by the coefficients α(z) and β(z). This implies that the B′ matrix
transforms a vector oriented along the integration direction into a vector having only the t
component in the (x, t) plane. This property can be used to impose a condition on δt. In
fact, since we want an integration step in the transformed plane to have the same “weight”
as in the original plane, we must impose that a vector having norm ‖δt‖ and oriented along
the vertical be transformed into a unit-vector in the (nA, nB) plane. That means requiring∥∥∥∥A′

(
0
δt

)∥∥∥∥ = 1. (19)
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This condition is an equation in δt and binds it to the coefficients of the refocusing matrix
A in Equation (7), or, alternatively, to the coefficients of its inverse B. The solution of this
equation is

δt =
1√( a2

δa
)2

+
( a4

δb
)2

=
|det B|√(

β(z)
δa

)2
+
(

α(z)
δb

)2
. (20)

Now, to determine δx we impose the condition that the point density is conserved by
the transformation B′. To do this, we must impose that B′ transforms the unit cell of the
(nA, nB) plane into a cell having area δx · δt in the transformed space. This is performed by
transforming the canonical basis of (nA, nB), evaluating the area of the cell it defines in the
transformed space, and imposing that the point density is conserved, namely,∥∥∥∥B′

(
1
0

)
× B′

(
0
1

)∥∥∥∥ =
∣∣det B′

∣∣ = δa · δb|det B| = δx · δt. (21)

In this equation, the transformed unit cell area is evaluated by calculating the norm of the
cross product between the transformed vectors. This defines an equation for δx, that, upon
plugging-in the value of δt obtained from Equation (20), has solution

δx =

√
(α(z)δa)2 + (β(z)δb)2. (22)

As one might expect, the step on the refocusing axis depends only on the coefficients α and
β, and not on the particular refocusing transformation that has been chosen (the coefficients
c and d). Figure 3 shows the resampling of the correlation function in Figure 1b on a
rectangular grid. The refocusing transformation and its inverse have been chosen as

A =

(
0.98 −0.069
1.08 0.028

)
A−1 =

(
0.275 0.675
−10.45 9.45

)
.

The parameters of the inverse matrix are exactly the four experimental parameters reported
in Figure 1a. The first line of the inverse matrix is the one responsible for refocusing,
while the second line becomes the vertical direction in the transformed plane. Thus, if
the parameters of the second row are matched to those appearing in the limiting aperture,
the aperture coordinates “line up” along the horizontal in the same fashion as the object
features line up along the vertical because of the choice of the first line. Furthermore, the
resampled function shown in Figure 3 has been adapted to fit a rectangle in the transformed
plane, spanning the whole FOV along the x axis, and, the maximum integration range given
by Equation (14) along t. The operation requires substantial zero-padding to extend the
refocused function outside of the domain defined by Equation (10); however, as highlighted
by the red rectangle, the same refocusing would be obtained by limiting the integration
range to the lens size ([−50 mm,+50 mm]). Also, because of the particular transformation
that has been chosen, limiting the resampling to the lens extension would also result in a
convenient rectangular shape in the transformed plane.

4. Discussion

The purpose of this work is to offer a thorough understanding of the refocusing process,
used to reconstruct an out-of-focus object from the correlation function measured by CPI.
In particular, the aspects of refocusing related with the discrete nature of the measurement
have been analyzed to bridge the gap between the theoretical refocusing algorithm in
Equation (2), formulated in a continuous space, and the practical steps required to retrieve
the final image from experimental data, captured by a pixel structure. To summarize the
results of this work, we report below the procedure for extracting the refocused image from
the measured data, which, interestingly, works in general for any CPI implementation.
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1. The two parameters α and β of Equation (3) are estimated, as in Figure 1, through the
knowledge of the experimental setup and the position z of the plane one wishes to
refocus. If the lens aperture plays a significant role in limiting the non-zero area of the
correlation function, also the parameters p1,2 will be of interest, albeit independent of
z.

2. The coefficients α and β, the number of pixels NA and NB, and the pixels sizes δa and
δb, determine the FOV of the refocused image through Equation (4). Typically, the
pixel size is the same for DA and DB, but sometimes binning is applied to either one
of the two detectors; such binning must be taken into account when determining δa
and δb.

3. An inverse refocusing matrix is chosen

A−1 =

(
α β
c d

)
,

where α and β are the object parameters of Equation (3), and c and d are arbitrary
numbers, whose value determine the amount of zero-padding needed to obtain a
rectangular refocused function. When the limiting aperture is relevant in determining
the non-zero area of the correlation function, the most convenient choice is: p1 = c,
p2 = d.

4. To obtain a rectangular refocused function without loss of information, the resampling
range along the vertical axis must be the one given in Equation (14). This operation,
however, requires zero-padding. When integrating on the aperture (p1 = c, p2 = d),
the range is given by the diameter of the aperture.

5. The resampling step along the horizontal direction of the refocused function is in-
dependent of the refocusing transformation and is given by Equation (22). The step
along the vertical direction is transformation-dependent and is calculated through
Equation (20).

6. The rectangular grid on which the refocused function must be resampled is obtained
by spanning the FOV in discrete steps of δx and the integration range in discrete steps
of δt.

7. The value of the resampled correlation function is obtained through interpolation of
the experimental correlation function. In particular, to obtain the value of the trans-
formed function in the point (x, t), the experimental function must be interpolated in

the point A−1
(

x
t

)
.

8. A rectangular refocused function is obtained when interpolation is applied to the
whole rectangular domain in the transformed plane. The final image is obtained by
summing together all the values within a column.

9. Often, to fully recover the object features with the correct relative intensity, the correc-
tion algorithm described in Equation (16) of Ref. [22] should be applied.
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Abbreviations
The following abbreviations are used in this manuscript:

CPI Correlation plenoptic imaging
FOV Field of view

Appendix A. Field of View Comparison between CPI and Standard Imaging

We report the expression for the FOV of CPI as in Equation (4):

FOV(z) = |α(z)|δa · NA + |β(z)|δb · NB

and compare it with the FOV of standard imaging in the case of two specific CPI architectures.

Appendix A.1. Correlation Light-Field Microscopy

Correlation light-field microscopy (CLM) is a CPI architecture oriented to microscopy,
as in Ref. [16]. For this experimental realization,

α(z) = − z
f

xa
MA

β(z) =
(

1− z
f

)
xb

MB
,

where z and f are the distance of the sample from the objective lens and the focal length of
the objective, respectively, and MA and MB are the microscope magnification and the imag-
ing magnification on DB, respectively. Assuming detectors DA and DB are approximately
the same size (δaNA ' δbNB = L), the FOV is

FOVCLM(z) = L
[

z
f

1
MA

+

∣∣∣∣1− z
f

∣∣∣∣ 1
MB

]
,

whereas the FOV of a conventional microscope built with the same optical specifications is

FOVMIC =
L

MA
.

Thus, the FOV of CLM is the same as a conventional microscope when the object is at
focus (z = f ), and becomes increasingly larger as the object is moved out of focus. If the
FOV is expressed in the canonical form of the detector size over an equivalent magnification
FOVCLM(z) = L/M(z), then the equivalent magnification of CPI is

M(z) =
f
z

[
1

MA
+

∣∣∣∣1− f
z

∣∣∣∣ 1
MB

]−1
, (A1)

which is always smaller than the native microscope magnification.

Appendix A.2. CPI between Arbitrary Planes

In the single-lens configuration of CPI between arbitrary planes (Ref. [15]), the coeffi-
cients α and β are

α(z) = z−zb
za−zb

1
MA

= c(z)
MA

β(z) = − z−za
za−zb

1
MB

= 1−c(z)
MB

,

where z is the distance of the object from the lens, za and zb are the distances from the lens
of the two planes that are imaged onto DA and DB, and

Mi =
f

zi − f
, (A2)
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i = a, b are the two magnifications of the planes that are imaged on the detectors if the lens
has focal length equal to f . Thus, in the approximation of same detector size,

FOVCLM(z) = L
[∣∣∣∣ c(z)MA

∣∣∣∣+ ∣∣∣∣1− c(z)
MB

∣∣∣∣],

whereas the FOV of a single-lens focused imaging system would be

FOVSTD(z) =
L

M0(z)
,

where M0(z) = f /(z− f ). As in the previous case, when the object is at focus on either one
of the two focused planes (z = za, zb), the FOV of CPI is the same as in standard imaging,
while, for za < z < zb (if za < zb) the FOV interpolates linearly the two FOVs at focus. For
z < za and z > zb, the FOV increases linearly with the distance from the focused plane.

Appendix B. Maximum Integration Range

In this appendix, we demonstrate Equation (14). As from the discussion preceding
this formula in the text, the maximum integration range is given by the difference between
maximum upper extreme bz and minimum lower extreme az. However, if one is only
interested in the minimum (maximum) possible t coordinate on which the transformed
correlation function is defined, an easier path can be followed instead of minimizing az (and
maximizing bz). In fact, the extremal points of the transformed domain of the correlation
function must be defined by the four vertices of the parallelogram defined by the lines
r1,2 and s1,2. Since A is non-singular by definition, both s-lines intersect both r-lines, and
viceversa, so that the four points are always well defined. Their coordinates are:

P11 :
(

α(z)NA
2 δa + β(z)NB

2 δb, c NA
2 δa + d NB

2 δb
)

P12 :
(

α(z)NA
2 δa− β(z)NB

2 δb, c NA
2 δa− d NB

2 δb
)

P21 :
(
−α(z)NA

2 δa + β(z)NB
2 δb,−c NA

2 δa + d NB
2 δb

)
P22 :

(
−α(z)NA

2 δa− β(z)NB
2 δb,−c NA

2 δa− d NB
2 δb

) ,

where c and d are the coefficients of the second line of the matrix B = A−1, that are
arbitrary for refocusing. Thus, by defining az and bz as the minimum and maximum of the
t coordinates, one gets

bz = max
{
±c

NA
2

δa± d
NB
2

δb
}

= |c|NA
2

δa + |d|NB
2

δb

and

az = min
{
±c

NA
2

δa± d
NB
2

δb
}

= −|c|NA
2

δa− |d|NB
2

δb,

which demonstrates that the maximum integration range is the one reported in Equation (14).
Interestingly, the FOV of Equation (4) can be obtained by applying the same reasoning on
the x coordinates.
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