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Abstract

Diffusion Tensor Imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure
integrity and it has greatly helped identifying white matter regions affected by Alzheimer’s Disease (AD) in its early stages. DTI
can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy
control (HC) subjects, AD patients and subjects with Mild Cognitive Impairment (MCI). Nonetheless, several studies have reported
so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed
DTI scans of 150 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We measured a significant
effect of the feature selection bias on the classification performance (p-value < 0.01), leading to overoptimistic results (10% up
to 30% relative increase in AUC). We observed that this effect is manifest regardless of the choice of diffusion index, specifically
fractional anisotropy and mean diffusivity. Secondly, we performed a test on an independent mixed cohort consisting of 119
ADNI scans; thus, we evaluated the informative content provided by DTI measurements for AD classification. Classification
performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were
both confirmed on the independent test.

Index Terms

Alzheimer’s disease, DTI, Random Forests, Feature selection.

I. INTRODUCTION1

ALZHEIMER’s Disease (AD) is the most common type of progressive neurodegenerative disorder, affecting millions of2

people worldwide. It is characterized by different stages, ranging from a pre-dementia phase to a final stage in which the3

patient is completely dependent from external assistance. Estimates indicate that 75% of dementia cases in the world, more4

than 25 million people, are of Alzheimer’s type [1]. Nevertheless, the investigation of novel biomarkers and strategies to predict5

and model its onset needs further investigation [2]. In particular, the investigation of biological markers aimed at diagnosing6

the disease promptly is crucial [3]. Mild Cognitive Impairment (MCI) is an intermediate state between healthy aging and AD,7

which represents an early state of abnormal cognitive function and is thus considered a good target for this investigation.8

Over the past twenty years, several studies based on structural magnetic resonance imaging (sMRI) highlighted the significant9

role played by brain atrophy in AD diagnosis [3], [4], [5]. Since 1980s it is also known that, besides a widespread gray matter10

atrophy, AD is characterized by a progressive disconnection of cortical and subcortical regions because of white matter (WM)11

injury [6], [7], [8]. However, conventional MRI is not able to highlight the structure of WM regions due to their homogeneous12

chemical composition.13

Diffusion Tensor Imaging (DTI) is able to track and quantify water diffusion along white matter fiber bundles and can thus14

provide useful information regarding their integrity [9], [10]. Fractional anisotropy (FA) and mean diffusivity (MD) are among15

the invariants derived from the diffusion tensor that are closely related to white matter integrity [11]. Water diffusion along a16

healthy axon is highly anisotropic, being constrained almost completely to one direction, that is the fibre axis, and thus high17

values of FA and low values of MD describe a non-pathological scenario. FA and MD maps can be visualized as conventional18

gray-scale images and can be subsequently analyzed by means of classification tools. In recent years, DTI has revealed itself19

as a very promising imaging modality to discriminate between healthy control (HC) subjects, AD patients and subjects with20

MCI. An analysis approach commonly found in literature consists in the computation of FA and MD maps (or other diffusion21

indices), followed by the identification of the most representative voxels; these voxels are then fed into machine-learning22

algorithms to automate the classification.23

For the discrimination HC/AD, Mesrob et al. [12] adopted a Support Vector Machine (SVM) classifier and a region of24

interest (ROI)-based approach; Dyrba et al. [13] used a ROI-based approach and a multimodal SVM combining DTI indices25

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf
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with gray matter volume derived from sMRI; Amoroso et al. [14] adopted topological measurements based on probabilistic26

tractography; Schouten et al. [15] used a ROI-based approach in combination with Elastic Net Regression. For the classification27

HC/MCI, Cui et al. [16] used subcortical volumetric features extracted using a segmentation algorithm together with FA values28

obtained for white matter regions of interest. Dyrba et al., in [17], used a ROI-based approach and SVMs on a multicentric29

dataset and apply variance reduction methods.30

The best performances in literature for the HC/MCI classification, using a single DTI modality, can be found in Haller et31

al. [18] and O’Dwyer et al. [19]. In these works, a voxel-based approach is used considering as features the voxel intensities32

in the diffusion maps. However, as also remarked in [19], in each of the above mentioned work, the methodological procedure33

relies on an a priori feature selection performed on the entire dataset to be analyzed. This procedure, also known as non-nested34

feature selection, circular analysis, or double dipping, chooses the most discriminative voxels by using also the test set, thus35

introducing a bias in the classification model. A non-nested feature selection necessarily leads to overestimate the numerical36

values of accuracy and area under the ROC curve (AUC). On the contrary, a nested feature selection is obtained when the37

selection procedure is performed blind to the test set.38

The practice of double dipping and its dangers are well known to the statistics and computer science community, and have39

been extensively described in the literature [20], [21]. Although recommendations and best practices are available [22], the field40

of neuroimaging is still widely populated by studies that noticeably perform non-nested feature selection, claiming classification41

performances close to perfect accuracy. The effects of double dipping on classification performances in neuroimaging studies42

have been quantitatively assessed when dealing with functional brain data, such as fMRI [22] or MEG [23], and with data43

derived from structural T1-weighted MR imaging (cortical thickness) in [24]. However, some of the image classification studies44

involving DTI cited above seem to be affected by such feature selection bias, and to date no study has yet investigated to45

which extent the reported performances are inflated by its presence.46

In this work we used DTI images for classification tasks in AD; considering the profitability of using classification trees47

in the context of machine learning techniques applied to AD [25], [26], we used a Random Forest approach. The main aim48

of this work is to perform a comparative study between nested and non-nested feature selection on the same data set. To the49

best of our knowledge, this is the first study attempting to measure the bias introduced by non-nested feature selection, from50

now onward feature selection bias (FSB), in the classification of DTI images with a fair comparison, i.e., measuring the effect51

on the same fixed data set. We finally confirmed on an independent test set how the FSB impacts the reliability of estimated52

classification performances.53

II. MATERIALS54

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database55

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.56

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission57

tomography, other biological markers, and clinical and neuropsychological assessment can be combined to measure the58

progression of Mild Cognitive Impairment and early Alzheimer’s Disease.59

The images analyzed for this study are diffusion-weighted scans of 150 subjects (50 HC, 50 AD patients and 50 MCI),60

both males and females, aged 55 to 90, from the ADNI-GO and ADNI-2 phases. Scans were randomly selected from baseline61

and follow-up study visits. HC subjects show no signs of depression, mild cognitive impairment or dementia; participants with62

AD are those who meet the NINCDS/ADRDA criteria for probable AD; MCI subjects have reported a subjective memory63

concern, but without any significant impairment in other cognitive domains: they substantially preserved everyday activities64

with no signs of dementia. Two MCI levels (early or late) are usually distinguished according to the Wechsler Memory Scale65

Logical Memory II. For this study, we used a balanced group of 25 early and 25 late MCI, but these labels were not taken66

into account in the classification tasks. Further details about diagnostic criteria for ADNI study participants can be found at67

http://adni.loni.usc.edu/study-design/background-rationale/.68

In order to evaluate the proposed algorithm on an independent test set, a second different set of scans from the ADNI69

database was also considered, consisting of 40 HC, 40 MCI (22 early and 18 late) and 39 AD. This second test set included70

both male and female subjects, and was age-matched with the training sample. Diffusion-weighted scans were acquired using a71

3 T GE Medical Systems scanner with 41 gradient directions (b = 1000 s/mm2); in addition to these, 5 images with negligible72

diffusion effects (b0 images) were acquired as reference scans for subsequent analysis.73

III. METHODS74

The main steps of our analysis are outlined in the flowcharts in Fig. 1a and Fig. 1b.75

A. Image preprocessing76

Diffusion-weighted images were preprocessed using the FMRIB Diffusion Toolbox, included in the FSL software [27].77

Preprocessing comprised: (i) conversion to Nifti format; (ii) extraction of gradient directions and b-values; (iii) correction78

for eddy currents and head motion; (iv) skull-stripping using the Brain Extraction Tool (BET).79
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(a) Non-nested approach (b) Nested approach

Fig. 1: Flowcharts of the performed analyses: (a) non-nested feature selection and (b) nested feature selection. For readability,
they only consider the steps following the feature extraction phase.

B. Diffusion tensor fitting80

After preprocessing, a single diffusion tensor was fitted at each voxel in the image, using DTIfit. From the diffusion tensor,81

fractional anisotropy (FA) and mean diffusivity (MD) were then calculated. By definition, these two invariants are related to82

the eigenvalues of the diffusion tensor λ1, λ2, λ3 by [9], [11]:83

FA =

√
1

2

√(
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

)
√
λ21 + λ22 + λ23

(1)

MD =
λ1 + λ2 + λ3

3
(2)

FA and MD maps were computed for each subject in the study. FA quantifies the degree of anisotropy of any diffusion84

process, taking values in the range [0, 1]. Diffusion is said to be isotropic for FA = 0, whereas a value of 1 indicates that85

diffusion is fully constrained along one direction. Water diffusion in an healthy axon or fiber bundle is highly anisotropic and86

constrained almost exclusively to the fiber direction, due to the presence of the surrounding myelin sheath. FA is typically87

higher in white matter than in grey matter or cerebrospinal fluid (CSF), and is an established marker of microstructural fibre88

integrity, in the sense that its value decreases in presence of axonal degeneration or demyelination. MD instead relates to the89

mean free path of water molecules in all directions. It is typically of the same order of magnitude in gray and white matter,90

while being consistently higher in the CSF, and can be regarded as an inverse measure of membrane density. Increases in MD91

in white matter areas are therefore indicative of myelin disruption or loss [28], [29].92

C. Tract-Based Spatial Statistics93

After diffusion tensor fitting, FA and MD maps need to be carefully aligned to a group-wise space before any voxel-wise94

statistical analysis is carried out; in addition to this, it is desirable to restrict the analysis only to voxels belonging to white95

matter fiber bundles. All this was achieved by means of the Tract-Based Spatial Statistics (TBSS) algorithm implemented in96

FSL [30]. TBSS performs the following steps:97

• Identify a common registration target (it can be either a mean FA template provided with the software or the most98

representative subject of the cohort) and apply nonlinear registration to align all subjects FA maps to the selected target.99

The chosen target was the FMRIB58 FA standard-space FA template, generated by averaging 58 FA images from diffusion100

MRI data, in MNI152 space.101



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

• After the nonlinear registration, the entire aligned dataset undergoes an affine transformation to bring it into 1 × 1 × 1102

mm3 MNI152 space. Then, a mean FA image is created, averaging all the FA maps in the dataset, and the result is used103

to generate a mean FA skeleton of white matter fibre tracts common to all subjects. The mean skeleton is thresholded to104

exclude voxels belonging to gray matter or cerebrospinal fluid, as well as voxels from the outermost part of the cortex,105

which are zones of greater inter-subject variability. Fig. 2 shows an example of FA map (2a) and MD map (2b), and the106

FA skeleton mask overlapped onto the mean FA map (2c).107

(a) Example of FA map (b) Example of MD map (c) Mean FA skeleton

Fig. 2: From left to right: (a) a fractional anisotropy (FA) map and (b) a mean diffusivity (MD) map. For all subsequent
analyses both maps are projected onto the mean FA skeleton (c).

• Finally, all subjects FA images are projected onto the mean FA skeleton, achieving an alignment between subjects in the108

direction orthogonal to the fibre bundle orientation.109

TBSS was performed also on MD maps. After applying TBSS, each subject’s map comprised about 7×106 nonzero voxels.110

D. Feature selection111

As a result of TBSS, the skeleton of main white matter fibre tracts was extracted from each subject, together with the112

corresponding values of FA and MD at each voxel in the skeleton. Approximately 120′000 voxels for each subject map were113

projected onto the skeleton.114

The following stage aimed at assessing which voxels are most significant for the purpose of discriminating HC from AD115

and MCI. It is important to note that it is not possible to rely on any assumption about the distribution of the test statistic116

under the null hypothesis; this implies that any statistical test has to be non-parametric. Wilcoxon rank sum test and the ReliefF117

algorithm were used both within a non-nested and nested approach. A Wilcoxon test compares the medians of the groups of118

data to determine if the samples come from the same population, and returns a p-value for the null hypothesis that samples are119

drawn from the same population [31], [32]. Then voxels are ranked selected by thresholding on p-values. The basic principle120

of ReliefF [33], [34] is to estimate features according to how well their values distinguish among data instances close to each121

other. Features are then ranked and sorted in order of decreasing importance.122

For each classification task, fifteen reduced datasets were created by selecting an increasing number of most discriminating123

voxels, depending on the feature selection’s output: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 750, 1′000, 2′000124

and 3′000 voxels.125

E. Classification126

In the present work, the learning and classification phase was accomplished by Random Forests. They constitute an ensemble127

learning method for classification and are known for producing highly accurate classifiers and for running efficiently on large128

datasets [35]. Random Forests operate by building a multitude of decision trees at training time and outputting the class that is129

the mode of the classes predicted by the individual trees at evaluation time. The training algorithm for Random Forests applies130

the general technique of bootstrap aggregating, or bagging, to tree learners. Given a training set X = x1, ..., xn, with classes131

Y = y1, ..., yn, the algorithm repeatedly (B times) selects a random sample with replacement of the training set and fits trees132

to these samples. More precisely, for b = 1, ..., B:133

• n training examples are sampled with replacement from X , obtaining Xb.134

• A subset of features is randomly chosen. Typically, for classification problems with m features,
√
m features are chosen.135

The reason for doing this is to reduce the high correlation of the trees obtained in an ordinary bagging.136
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• A decision tree is trained on Xb.137

It is worth noting that B (i.e., the number of samples/trees) is a free parameter. Since a few hundreds of samples represent138

the typical size of the forest, in this study a value equal to 300 for B was chosen. After training, predictions for unseen samples139

are made by taking the majority vote of all the predictions obtained by each individual tree. To perform the classification tasks,140

the implementation of Random Forests in MATLAB was used.141

To determine the classification performance of the Random Forests classifier, a 100 times repeated 5-fold cross-validation142

for each reduced dataset was adopted. More precisely, every subject was shuffled into one of five folds from which one fold143

was selected as the test set, while the remaining folds form the training set. The subjects were stratified by diagnosis, such144

that each fold contained the same number of subjects from each diagnostic group. The classification process was repeated145

until each of the five folds was used as test set once. Finally, the full cross-validation procedure was repeated 100 times, using146

different permutations, to shuffle the subjects into the folds for a more general approximation of the performance.147

It is worth noting that the non-nested approach employed a feature selection on the entire dataset before the dataset was split148

(Fig. 1a). Conversely, in the nested approach (Fig. 1b), for each cross-validation round, the dataset was split into a training149

and test set, then the feature selection was applied on the training set blind to the test set. As measures of performance, the150

widely used accuracy and AUC were calculated.151

IV. RESULTS152

A. The feature selection bias effect153

A primary question about the effects of excluding the feature selection from cross-validation procedures is whether or not the154

induced FSB is affected by the different kind of information employed, specifically FA and MD. Another question concerns the155

size of this effect. Besides, we also investigated whether or not the FSB was associated with the diagnosis, thus we separately156

studied the binary classification of HC/AD and HC/MCI. Finally, we included in our investigation two different feature selection157

techniques to assess whether the FSB effect could in some way depend on the methodology adopted to select the features.158

Mean AUCs for the classification involving both FA and MD measurements are plotted in Fig. 3 with both feature selection159

techniques.160

Fig. 3: Mean AUCs obtained varying the number of voxels.

It can be observed that switching from non-nested to nested feature selection, for the classification between HC and AD,161

accuracy considerably decreases from a maximum mean value of 0.87 to a maximum value of 0.75, while the best AUC162
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drops from 0.96 to 0.84. It is worth noting that the best performance is obtained using ReliefF, but for both feature selection163

techniques a significant drop in performance is consistently seen. The performance decrease switching from non-nested to164

nested approach is more evident for the classification between HC and MCI: the best classification performance changes from165

0.81 to 0.59 concerning accuracy, and from 0.90 to 0.65 concerning AUC.166

The same procedure was applied using MD. It is worth noting that moving from non-nested to nested feature selection, for167

the classification between HC and AD, best mean accuracy and AUC decrease respectively from 0.83 to 0.76 and from 0.90168

to 0.82. For the discrimination HC/MCI the best accuracy falls from 0.79 to 0.60, while AUC decreases from 0.88 to 0.65.169

Again in this case, ReliefF performed better and the same performance deterioration detected for FA is clearly recognizable.170

For each classification task and for each feature selection technique, the best performances in terms of mean accuracy and171

mean AUC are summarized in Table I.172

TABLE I: The first column refers to the classification task. Best average performances in terms of accuracy (Acc) and Area
Under the Curve (AUC) obtained in cross-validation with non-nested and nested feature selection are respectively reported in
the second and third column; values are affected by a standard error of the mean approximately equal to 0.01 and a standard
deviation approximately equal to 0.10. Non-nested feature selection always yields higher performances.

Classification Non-nested Nested

HC/AD with FA Acc = 0.87 Acc = 0.75
AUC = 0.96 AUC = 0.84

HC/MCI with FA Acc = 0.81 Acc = 0.59
AUC = 0.9 AUC = 0.65

HC/AD with MD Acc = 0.83 Acc = 0.76
AUC = 0.9 AUC = 0.82

HC/MCI with MD Acc = 0.79 Acc = 0.6
AUC = 0.88 AUC = 0.65

The Boxplot in Fig. 4 shows the distributions of the differences between the AUC values obtained in non-nested and nested173

best cases. It can be noticed that the FSB effect occurs regardless of the diffusion index (FA or MD) used for the classification174

and that this effect is more pronounced in the HC/MCI classification task.175

A Wilcoxon rank sum test was performed to assess differences between the performance distributions with the nested and176

non-nested approach in a non-parametric fashion. Statistically significant differences (p < 0.01) were found between the177

median best performance obtained in the two cases (nested and non-nested) for all classification tasks and for both FA and178

MD. However, it must be noted that, for a given diffusion index (FA or MD), classification task (HC/AD or HC/MCI) and179

approach (nested or non-nested), the 100 measured performance metrics are not independent samples: all the 100 repetitions180

make use of the same images, and within each repetition there is substantial overlap among the training folds used for the181

cross-validation. It has been shown that, in cases like the present one, no unbiased estimator exists for the variance of the k-fold182

cross-validation [36]. The dependence of the samples and the impossibility to get an unbiased estimation of the variance violate183

the main assumption behind the use of standard parametric and non-parametric hypothesis tests. Therefore, we acknowledge the184

violation of the main assumption of hypothesis testing, and we warn the reader to use caution when interpreting the reported185

p-values.186

Fig. 4: Distribution of the differences between the AUCs obtained in non-nested and nested best performances shows a consistent
increment.
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B. DTI measurements: evaluation on an independent test set187

It is worth noting that the information coming from the voxel selection can be used to identify the most disease-related brain188

regions concerning the fiber integrity. Therefore, in the present study, it was also investigated whether the voxels selected189

during the feature selection were localized in specific regions of interest of the brain.190

For each classification task (HC/AD and HC/MCI) and for each feature selection technique (Wilcoxon and ReliefF), we191

considered the 1′000 most discriminative voxels selected by the averaged nested feature-selection. They are “averaged” in192

the sense that they are the voxels that were more frequently selected throughout all the 500 rounds of the entire nested193

cross-validation procedure. Two selected clusters of FA voxels are shown as an example in Fig. 5.194

(a) (b)

Fig. 5: Clusters of voxels selected by ReliefF averaging all rounds of the nested feature selection (classification task HC/AD
with FA): (a) voxels in the Anterior Corona Radiata (left); (b) voxels in the Fornix.

The position of the voxels derived from the average cross validation was then investigated. In order to carry out the disease-195

related-regions analysis, a combination of three atlases (HarvardOxford-Subcortical, JHU-ICBM-labels, JHU-ICBM-tracts)196

was used. More precisely, using the voxels selected from the FA maps, the comparison of HC and AD reveals differences197

predominantly in the Anterior Corona Radiata (bilateral but more widespread in the left hemisphere) but also in the Superior198

Longitudinal Fasciculus (more widespread in the left hemisphere), Fornix, Cingulum (Hippocampus), Forceps Major and Minor,199

Inferior Fronto Occipital Fasciculus (right), Cortospinal Tract, Anterior Thalamic Radiation, Uncinate Fasciculus (right, only200

with Wilcoxon), Superior Corona Radiata and External Capsule (only with ReliefF). In the comparison between HC and MCI201

the FA changes are predominantly located in Forceps Minor, Superior Longitudinal Fasciculus, External Capsule (left) and, to202

a minor extent, in Inferior Fronto Occipital Fasciculus, Anterior Thalamic Radiation, Inferior Longitudinal Fasciculus, Cortical203

Spinal Tract, Fornix, Forceps Minor, Anterior Limb of Internal Capsule, Left Cerebral Cortex.204

Concerning the voxels selected from the MD maps, comparing HC and AD, the predominant changes are localized in205

Fornix, Superior Longitudinal Fasciculus (more widespread in the left hemisphere in the case of Wilcoxon), Anterior Thalamic206

Radiation, Splenium and Body of Corpus Callosum, Inferior Longitudinal Fasciculus, Anterior Corona Radiata, Superior Corona207

Radiata (left). In the case of HC versus MCI, the MD differences are predominantly in Anterior Thalamic Radiation, Inferior208

Fronto Occipital Fasciculus (right), Forceps Major, Superior Longitudinal Fasciculus, Posterior Thalamic Radiation (right),209

Inferior Longitudinal Fasciculus, Fornix, Forceps Minor.210

The effectiveness of the voxels selected by the nested cross-validation in discriminating the diagnostic groups was then211

evaluated on a second independent set of images from the ADNI database, consisting of new scans of 40 HC, 40 MCI and 39212

AD. We considered the classification tasks HC/AD and HC/MCI with FA and MD and adopted the classification tool obtained213

at the end of the training phase. In particular, we considered only those models constructed on the reduced sets of voxels214

corresponding to the best classification performance and by fixing the feature selection technique adopted, i.e. ReliefF.215

In order to evaluate the classification performances on the new data set, we calculated the mean scores, indicating the average216

predicted class posterior probabilities obtained by all models; then we calculated accuracy and AUC accordingly. The results217

obtained are reported in the third column of Table II. It can be noticed that they fall within one standard deviation of the218

corresponding mean value (second column).219

V. DISCUSSION AND CONCLUSION220

In this study we show that: (i) the use of non-nested feature selection techniques leads to overoptimistic classification221

performance; (ii) the FSB is manifest both for FA and MD, thus it does not depend on the features adopted; (iii) the FSB222

effect is more evident for the HC/MCI classification tasks.223
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TABLE II: Comparison between best average performances, both in terms of accuracy (Acc) and Area Under the Curve (AUC),
on the training sample with nested feature selection and on the independent test sample. Independent test results (third column)
are in good agreement with those obtained on the training set (training performances in the second column are affected by a
standard deviation approximately equal to 0.10).

Classification Nested Test (nested)

HC/AD with FA Acc = 0.75 Acc = 0.80
AUC = 0.84 AUC = 0.91

HC/MCI with FA Acc = 0.59 Acc = 0.56
AUC = 0.65 AUC = 0.58

HC/AD with MD Acc = 0.76 Acc = 0.73
AUC = 0.82 AUC = 0.86

HC/MCI with MD Acc = 0.6 Acc = 0.54
AUC = 0.65 AUC = 0.60

The results obtained show that the voxel-based approach adopted in this study, without the bias introduced by the a priori224

feature selection, does not improve the classification performance obtained with other methodological procedures, except for225

the AUC achieved in the discrimination of HC vs. AD using FA. For the latter, the best accuracy is higher than the accuracy226

achieved by Mesrob et al. [12] and slightly lower than the value obtained by Schouten et al. [15]. Conversely, the AUC227

achieved is slightly higher than the one obtained by Schouten et al. [15]. For the classification HC/MCI it can be noticed that228

the accuracy and the AUC achieved with nested feature selection is lower than the one obtained in Cui et al. [16]; similarly,229

for the same classification task, the outcome is lower than the value obtained by Dyrba et al. [17].230

If such detrimental effects on performance were somehow expected, it is worth noting that, as far as we know, no other study231

has measured this effect in the field of machine learning techniques applied to diffusion tensor imaging for AD. Furthermore,232

our findings regarding the significant regions for AD are consistent with several studies involving DTI, also when using other233

datasets than ADNI/ICBM, thus reassuring about the informative content of the voxel-based approach from the clinical point234

of view. Therefore the presence of the FSB in some studies using this approach is not detrimental to the anatomical and235

biological plausibility of the findings. In general, the existing literature provides evidence about the vulnerability of Fornix,236

Corpus Callosum and Cingulum to the early disease process involved in AD [37]. In particular, the white matter changes237

we found in the Fornix in all classification tasks (to a minor extent in the discrimination between HC and MCI using FA)238

have been reported in [38] and [39]. Indeed, FA reduction in the Fornix has been identified in the majority of whole-brain-239

TBSS studies applied to AD. Similarly, the predominant differences we observed in Cingulum, in the classification HC/AD240

using FA, are confirmed by looking, for example, at [40] and [41]. Additionally, the changes we observed in the Splenium241

of Corpus Callosum, when classifying HC vs. AD using MD, have been reported in [42] and [40]. The most consistent242

results with our findings are those reported in [43], where significant changes have also been found in Uncinate Fasciculus,243

Inferior Longitudinal Fasciculus, Superior Longitudinal Fasciculus and Forceps Major, and in [44], which identified changes in244

Anterior Corona Radiata, Inferior Fronto Occipital Fasciculus and Forceps Minor. Finally, we remark that [44] also confirms245

the predominance of differences in the left hemisphere we found in our analysis.246
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[25] D. Salas-Gonzalez, J. Górriz, J. Ramı́rez, M. López, I. Alvarez, F. Segovia, R. Chaves, and C. Puntonet, “Computer-aided diagnosis of alzheimer’s340

disease using support vector machines and classification trees,” Physics in Medicine and Biology, vol. 55, no. 10, p. 2807, 2010.341

[26] A. Lebedev, E. Westman, G. Van Westen, M. Kramberger, A. Lundervold, D. Aarsland, H. Soininen, I. Kłoszewska, P. Mecocci, M. Tsolaki et al.,342

“Random forest ensembles for detection and prediction of alzheimer’s disease with a good between-cohort robustness,” NeuroImage: Clinical, vol. 6,343

pp. 115–125, 2014.344

[27] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, “FSL,” NeuroImage, vol. 62, no. 2, pp. 782–790, 2012.345

[28] A. L. Alexander, S. A. Hurley, A. A. Samsonov, N. Adluru, A. P. Hosseinbor, P. Mossahebi, D. P. Tromp, E. Zakszewski, and A. S. Field, “Characterization346

of cerebral white matter properties using quantitative magnetic resonance imaging stains,” Brain connectivity, vol. 1, no. 6, pp. 423–446, 2011.347

[29] H. M. Feldman, J. D. Yeatman, E. S. Lee, L. H. Barde, and S. Gaman-Bean, “Diffusion tensor imaging: a review for pediatric researchers and clinicians,”348

Journal of developmental and behavioral pediatrics: JDBP, vol. 31, no. 4, p. 346, 2010.349

[30] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols, C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews,350

and T. E. Behrens, “Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data,” NeuroImage, vol. 31, no. 4, pp. 1487–1505, 2006.351

[31] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John Wiley & Sons, 2013.352

[32] E. Whitley and J. Ball, “Statistics review 6: Nonparametric methods,” Critical Care, vol. 6, no. 6, p. 1, 2002.353

[33] K. Kira and L. A. Rendell, “The feature selection problem: Traditional methods and a new algorithm,” in AAAI, vol. 2, 1992, pp. 129–134.354

[34] I. Kononenko, E. Simec, and M. Robnik-Sikonja, “Overcoming the myopia of inductive learning algorithms with ReliefF,” Applied Intelligence, vol. 7,355

pp. 39–55, 1997.356

[35] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.357

[36] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-fold cross-validation,” Journal of Machine Learning Research, vol. 5, no.358

Sep, pp. 1089–1105, 2004.359

[37] J. Acosta-Cabronero and P. J. Nestor, “Diffusion tensor imaging in Alzheimer’s disease: insights into the limbic-diencephalic network and methodological360

considerations,” Frontiers in aging neuroscience, vol. 6, 2014.361

[38] K. Oishi and C. G. Lyketsos, “Alzheimer’s disease and the fornix,” Frontiers in aging neuroscience, vol. 6, 2014.362

[39] M. A. Nowrangi and P. B. Rosenberg, “The fornix in mild cognitive impairment and Alzheimer’s disease,” Frontiers in aging neuroscience, vol. 7, p. 1,363

2015.364

[40] S. J. Teipel, R. Stahl, O. Dietrich, S. O. Schoenberg, R. Perneczky, A. L. Bokde, M. F. Reiser, H.-J. Möller, and H. Hampel, “Multivariate network365
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SUPPLEMENTARY DATA381

All the elaborations and analyses presented in this work require huge computational resources, with preprocessing and diffusion382

tensor fitting time of about one hour per subject. The present study was carried out on the distributed computing infrastructure383

ReCaS-Bari computing farm1. This data center has been built by the ReCaS project, funded by the Italian Research Ministry384

of Education, University and Research to the University of Bari and INFN (National Institute for Nuclear Physics), whose goal385

is to empower preexisting computing infrastructures located in Catania, Cosenza, Napoli and Bari. In particular the data center386

offers 128 servers, 64 cores per server, for a total amount of 8′192 new cores, reaching 12′000 cores with the old computing387

farm. Each new server hosts 256GB RAM, 4GB RAM per core per server. Additionally, it offers about 3.5PB of disk space388

and 2.5PB of tape space.389

To implement our analysis on distribute infrastructure we used LONI Pipeline, one of the most used workflow manager for390

medical image processing developed by the Laboratory of Neuro Imaging2. The LONI Pipeline (LP) is widely used by the391

scientific community since it has proved to be a convenient and powerful tool. In particular XML resource description facilitates392

the integration of disparate resources and provides a natural and comprehensive mechanism to support data provenance. It393

also enables the broad dissemination of resource metadata descriptions via web-services and the constructive utilization of394

multidisciplinary expertise by experts, novice users and trainees. We have developed a general approach to submit and monitor395

LP workflows on distributed infrastructures [45]. This framework is based on a meta-scheduler, the Job Submission Tool (JST)396

[46], that is able to submit jobs to different computing architectures, exposing to the end users only a simple Web Service397

interface based on the Representational State Transfer (REST) protocol.398

1https://www.recas-bari.it/index.php/it/
2http://pipeline.loni.usc.edu/


