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Quantum energetics of a noncommuting measurement
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When a measurement observable does not commute with a quantum system’s Hamiltonian, the energy of the
measured system is typically not conserved during the measurement. Instead, energy can be transferred between
the measured system and the meter. In this work, we experimentally investigate the energetics of noncommuting
measurements in a circuit quantum electrodynamics system containing a transmon qubit embedded in a 3D
microwave cavity. We show through spectral analysis of the cavity photons that a frequency shift is imparted
on the probe, in balance with the associated energy changes of the qubit. Our experiment provides new insights
into foundations of quantum measurement, as well as a better understanding of the key mechanisms at play in
quantum energetics.
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I. INTRODUCTION

The incompatibility of different observables in quantum
mechanics is fundamental to its structure, and underlies its
mysteries and limitations. These include wave-particle dual-
ity, uncertainty relations [1–3], quantum measurement limits
[4], and nonlocality, and even govern the controllability of
quantum systems [5]. In particular, operator incompatibility
plays a key role in the energetics of quantum measurement.
Indeed, quantum measurements are energy preserving for the
system under measurement, provided that the measurement
observable commutes with the system Hamiltonian. Con-
versely, the noncommuting case has been theoretically studied
extensively in the literature, with the Wigner, Araki, and
Yanase (WAY) theorem [6–8] being one of the most notable
results. This theorem states that a perfect projective mea-
surement is not possible if the measurement observable does
not commute with additive conserved quantities, such as the
total energy of system and quantum meter. In contrast, when
there is an incompatibility between the total energy operator
and a measured observable, anomalous energy changes in
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the measured system can occur, sometimes dubbed “quantum
heat” or “measurement energy” [9,10]. The interplay between
measurement incompatibility and energy forms the basis for
new studies in quantum energetics where measurements can
be used as a source of fuel for quantum measurement engines
[11–23]. However, with few experimental studies so far in-
vestigating the detailed energy balance of such incompatible
measurements, the fundamental mechanisms at play in such
situations has remained elusive. In this article, we investigate
the energy balance of measurements that fail to commute with
the system Hamiltonian, offering experimental evidence of the
energy exchange between the measured quantum system and
the meter. Our work provides new insights into the energetics
of measurement and highlights connections between measure-
ment fuel and paradigmatic dynamical effects in quantum
measurement such as the quantum Zeno effect [24–27].

II. CONSTRUCTION OF A NONCOMMUTING
MEASUREMENT IN CIRCUIT QED

The recent advances in quantum science with the super-
conducting circuit quantum electrodynamics (circuit QED)
architecture [28,29] have been enabled by the ability to per-
form high-fidelity nondemolition measurements, despite the
low energy scale of the quantum bits. By and large, these
measurements rely on the dispersive interaction between the
qubit and a microwave resonator [30], where the interaction
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is approximately given by Hint = χa†aσz, where χ is the
dispersive shift, a†a is the resonator photon number operator,
and σz is the Pauli operator that acts on the qubit in the energy
basis, and we set h̄ = 1 in all equations for simplicity. This
dispersive interaction shifts the phase of the resonator photons
depending on 〈σz〉, thus providing a measurement observable
in the Z basis. As this interaction commutes with qubit energy
operator Hq = ωσz/2, where ω is the qubit frequency, this
interaction provides a system-energy-preserving observable
for quantum nondemolition measurements.

As the dispersive interaction yields a natural measurement
in the Z basis, we shift the qubit energy basis by continuously
and resonantly driving the qubit at the Lamb-shifted frequency
[29] to realize a Hamiltonian �σx/2 [28,31]. In the doubly ro-
tating frame of the qubit and resonator, the total Hamiltonian
is given by

HR = �σx/2 + χa†aσz, (1)

where � is the Rabi frequency of the qubit drive and is also
the new qubit energy with eigenstates in σx basis.

The expected energy exchange for a noncommuting mea-
surement can be described as follows. For the two eigenstates
of the qubit energy term, |+〉 and |−〉, the corresponding
energy is �/2 and −�/2, respectively. After a Z measure-
ment that completely dephases the qubit, without knowing
the measurement outcomes, the qubit would change to a fully
mixed state, with zero average energy. Therefore, the qubit
energy drops by �/2 for the initial |+〉 state and increases by
�/2 for the |−〉 state. Due to energy conservation, the change
of the qubit energy must be balanced by a corresponding
change in the resonator photons’ energy. As the dispersive
interaction commutes with the number operator n̂ = a†a, the
photon number in the measurement pulse remains the same.
Therefore, to achieve energy conservation, the energy change
of the qubit must occur as a frequency shift of the photons,
with a blue shift for qubit initially in |+〉 and a red shift
for qubit initially in |−〉, as illustrated in Fig. 1(a). We note
that this frequency shift originates from the dephasing of the
qubit during the noncommuting measurement. Thus, it is a
purely quantum effect due to measurement backaction, which
is fundamentally distinct from classical Raman scattering or
wave mixing processes. The observation and quantification of
this frequency shift is the central goal of this work.

The visibility of this frequency shift depends on the energy
dispersion of the pulse; for square pulses used in the experi-
ments, if the energy dispersion is sufficiently large (i.e., a very
fast measurement), the qubit state is projected in the Z axis
without intervening dynamics associated with the σx term in
the Hamiltonian, and the measurement is deemed to be ideal.
Correspondingly, the energy dispersion is such that the fre-
quency shift is not detectable. In this work, we are interested
in the opposite regime, where the bandwidth of the measure-
ment pulse is sufficiently narrow (i.e., a long pulse compared
to 1/�) to clearly resolve the measurement energetics in
terms of spectral shifts. Intriguingly, although the experimen-
tal hardware is constructed to produce a σz measurement,
the measurement photons acquire a spectral signature that is
sensitive to the eigenstates of σx. The measurement is now
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FIG. 1. (a) Illustration of the energy shift for the measurement
photons after a noncommuting measurement. If the qubit is initially
in the |+〉 state, the injected photon undergoes a blue shift, whereas
for the |−〉 state, it undergoes a red shift. (b) Schematic of the experi-
mental setup; a continuous qubit drive generates the Hamiltonian for
a noncommuting measurement in a 3D transmon system. The emitted
photons from the cavity are collected to obtain the time-domain
signals, which are then analyzed through Fourier transformation to
acquire the power spectrum of the photons.

far from ideal but reveals the physical mechanisms behind the
energy exchanges.

III. EXPERIMENTAL SETUP

The experiment is realized in a 3D transmon system, which
includes a superconducting transmon qubit embedded in a
3D aluminum cavity, as shown in Fig. 1(b). The frequency
of the qubit is 5.0178 GHz in the laboratory frame, and an
anharmonicity of ∼300 MHz allows us to focus exclusively on
the dynamics within the qubit submanifold of the transmon.
The qubit-cavity interaction is in the strong dispersive regime,
with a dispersive shift of χ/2π = −4.0 MHz which has a
magnitude significantly larger than the cavity dissipation rate
κ/2π = 0.9 MHz. Via this interaction, the frequency of the
cavity depends on the qubit state, with f (c)

g = 5.6959 GHz for
qubit in the ground state |g〉 and f (c)

e = 5.7039 GHz for qubit
in the excited state |e〉. The relaxation and dephasing time for
the qubit are T1 � 13.5 µs and T ∗

2 � 2.5 µs, respectively. See
Appendix A for further details on the experimental setup and
Hamiltonian engineering.

Before studying the power spectra of cavity probe pho-
tons, we first calibrate the qubit energy and resonator photon
number in Hamiltonian (1). Square-shaped drive and probe
pulses are used to respectively set the qubit energy � and
the total emitted photon numbers N [33] that interact with the
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FIG. 2. (a) Rabi oscillations are used to calibrate the qubit
Hamiltonian. The qubit population is measured after a qubit driving
pulse with varying durations. The solid line represents a sinusoidal
fit. (b) Rabi frequency as a function of the amplitude for the driving
pulse. The solid line represents a linear fit. (c) The pulse sequence
for the qubit (Q) and cavity (C) in a Ramsey measurement, with the
final qubit measurement performed using high-power readout [32].
(d) The measured qubit population as a function of the second π/2
pulse’s phase in the Ramsey measurement. The red solid dots (blue
open dots) correspond to the results for N = 0 (N = 1.9) photons.
The solid lines represent sinusoidal fits. The amplitude of the os-
cillation is proportional to the remaining qubit coherence after the
measurement-induced dephasing caused by the probing pulse. (e)
The remaining qubit coherence as a function of the amplitude of the
probing pulse in the Ramsey measurement. Note that the coherence
at N = 0 is normalized to 1. The solid line represents a Gaussian fit
with the center at zero. (f) The photon number N contained in the
probing pulse as a function of the pulse amplitude, calculated from
the fit curve in (e). The dashed lines indicate the probe amplitude for
N = 0.2, 0.8, 1.9, and 3.4 photons.

qubit, as illustrated in Fig. 1(b). For the qubit, the energy �

is the same as the frequency of the Rabi oscillations induced
by the driving pulse, which is measured at different driving
amplitude as shown in Fig. 2(a) and 2(b). For the resonator,
we determine the total emitted photon number N through
a Ramsey experiment, as presented in Fig. 2(c)–2(f). The
axis of the second π/2 rotation in the Ramsey sequence is
alternated by changing the phase of the corresponding mi-
crowave pulse, which results in a qubit population oscillation
with the oscillation amplitude proportional to the remaining
qubit coherence after the measurement-induced dephasing.
With the probe at frequency ( f (c)

g + f (c)
e )/2, the remaining

coherence is proportional to e−2N [33,34]. We use this de-
pendence to determine the photon number N versus probe
amplitude as shown in Fig. 2(e) and 2(f). In this work we
focus on probe amplitudes corresponding to N = 0.2, 0.8, 1.9,
and 3.4. Note that these photon numbers are obtained in the
absence of qubit drive and are denoted as N (� = 0) in the
following.

IV. POWER SPECTRUM

The power spectra acquired at photon numbers N (� =
0) = 0.2 and N (� = 0) = 3.4 are displayed in Fig. 3(a) and
3(c), respectively. The spectra include one central peak at
the probing frequency and two side peaks located around
detuning ±�. At a small photon number, the two side peaks
are precisely located at detuning ±� and there is a notable
distinguishability between the peak heights for qubit initially
in the |+〉 and |−〉 states. For the |+〉 state, the side peak pre-
dominantly appears at +�, indicating an average blue shift,
whereas for |−〉 state, the side peak predominantly appears at
−�, indicating an average red shift. At a large photon number,
the side peaks and the central peak are still present, but the
detuning between the two side peaks and the central peak is
less than �. This is reminiscent of the quantum Zeno effect,
whereby damping from the measurement reduces the energy
scale of the qubit—effectively slowing down the quantum
evolution of a system under frequent measurements [24–26].
Here, the applied cavity probing pulse serves as a continuous
quantum measurement.

As discussed previously, the expected maximum energy
change of the qubit is on average ±�/2 for a measurement
that completely projects the initial qubit state in its incom-
patible basis. However, we observe frequency shifts that are
quantized around −�, 0,+�. The three peaks reflect the
fundamental mechanisms at play while the probe photons
are scattered by the qubit-resonator system [35]. Typically,
the central peak stands for trajectories where the qubit state
remains unchanged, whereas the peak shifted by +� (resp.
−�) signals the qubit transition from |−〉 to |+〉 (resp. from
|+〉 to |−〉). Although these peaks look reminiscent to the cel-
ebrated Mollow triplet, they actually capture a quite different
physical situation. In particular, unlike for the Mollow triplet,
there is no exchange of excitation between the qubit and the
field—the photon number in the field is conserved at all times.
In a microscopic collision model analysis of the interaction
of photons with the qubit, we see that different photon num-
ber states acquire different frequency shifts, quantized by �.
The measurement pulse is a linear combination of different
Fock states and as such acquires a weighting of the three
possible frequency shifts [35]. This is particularly apparent
in the regime of strong measurement [Fig. 3(c)] where the
contrast between the two peaks is diminished for a large
photon number: multiple photons have probed the qubit, yet
the total energy change of the probe is limited to ±�/2.

To confirm our understanding of our measured results, we
conduct a simulation of the power spectra by solving the
Lindblad master equation for the system. The master equa-
tion includes the qubit T1 relaxation, the qubit T ∗

2 dephasing,
and the cavity dissipation. The power spectra can be obtained
by performing a Fourier transformation of the correlation
function:

s(ω) = κ

2π

∫ τ

0

∫ τ

0
dt1dt2e−iω(t1−t2 )c(t1, t2), (2)

where τ = 3 μs is the duration of the simulation, c(t1, t2) =
〈a†(t1)a(t2)〉 is the correlation function of the emitted photons,
and a(t ) (a†(t )) is the cavity lowering (raising) operator in the
Heisenberg picture. The simulated power spectra for photon
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FIG. 3. Power spectra of the emitted photons obtained from both experiment and simulation at photon numbers N (� = 0) = 0.2 and
N (� = 0) = 3.4. The left column displays single spectra for the qubit initially in the states |+〉 and |−〉 with a qubit energy of � = 3 MHz.
The middle three columns show spectra at different � for the qubit initially in the |−〉 and |+〉 states, denoted as s− and s+, and the difference
the power spectra s− − s+. The right column shows the photon number N as a function of �. The intensity of the simulated spectra is
proportional to that of the measured spectra, but the absolute values differ as the simulated spectra is obtained from the calculated correlation
function while the measured spectra is obtained from the measured voltage signal. To make the plots have similar intensity, we have multiplied
the simulated spectra by a scaling factor to match the measured spectra. (a), (b) Experimental and simulated results for N (� = 0) = 0.2. (c),
(d) Experimental and simulated results for N (� = 0) = 3.4.

numbers N (� = 0) = 0.2 and N (� = 0) = 3.4 at different
qubit energy frequencies are shown in Fig. 3(b) and 3(d),
respectively. The excellent agreement between the simulations
and experiments further validates the reliability of our inter-
pretation.

As shown in Fig. 3, the shape of the power spectra changes
with �. In particular, with the same strength of the probe
pulse, the transmitted photon number N is different at differ-
ent �. The measured and simulated N as a function of � are
shown in the right column of Fig. 3. For both N (� = 0) = 0.2
and N (� = 0) = 3.4, N increases with �, as the central peak
in the spectra becomes more predominant at larger �, leading
to higher transmission of the probe field. The measured N at
�′ �= 0 is obtained through multiplying N (� = 0) by the ratio
of the integrated spectrum intensity at �′ and the integrated
spectrum intensity at � = 0. The simulated N at different �

is directly obtained by calculating the total emitted photon
number by the cavity

∫ tend

0 κn(t )dt , where n(t ) is the instanta-
neous photon number in the cavity at time t . The experimental
results for the N (� = 0) = 0.2 case [the right-most panel of
Fig. 3(a)] show slight difference between |+〉 and |−〉 due to
relatively large noise as the signal is weak at a small photon
number.

V. ENERGY CONSERVATION

Finally, we investigate the energy conservation that must be
present between the energy changes in the qubit due to mea-
surement backaction and the detected frequency shift on the
probe. The qubit’s energy change is determined by measuring

the decrease in coherence of the qubit after the noncommuting
measurement. We use a Ramsey sequence to determine the
reduction in qubit coherence, similar to Fig. 2(c) but with
qubit drive continuously on. To eliminate the influence of
the intrinsic decoherence due to T1 and T ∗

2 of the qubit,
we perform two Ramsey measurements: one with the cavity
probe on and the other with the probe off. We estimate the
remaining qubit coherence, that is, the off-diagonal elements
of the qubit density matrix, by 2|ρ|g〉〈e|| = Aon/Aoff , where
Aon (Aoff ) is the measured Ramsey fringe amplitude with the
probe pulse on (off). The energy change of the qubit is then
calculated as 
Equbit = �(1 − 2|ρ|g〉〈e||), where the prefactor
is two times �/2 as we account for the summation of energy
changes obtained with qubit initially prepared in the |+〉 and
|−〉 states. Next, we obtain the energy change of the probe
photons, 
Ephoton, by multiplying the photon number N with
the average frequency shift obtained from the power spectra
with qubit initially in |+〉 and |−〉 states.

The top four panels presented in Fig. 4 depict the measured
values for four different photon numbers, along with their
corresponding simulated values obtained from the solutions of
the Lindblad master equation. The experimental data exhibits
a good agreement with the simulation; however, neither
demonstrates precise energy conservation between the qubit
and photon energy changes. This apparent violation of energy
conservation comes from the fact that the joint qubit-cavity
system is actually open through three main channels. First, the
experiment does not have access to the reflected measurement
pulse, which can carry a small energetic component. Second,
the qubit is continuously and resonantly driven, which can
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FIG. 4. Comparison of the qubit energy changes 
Equbit and photon energy changes 
Ephoton at different photon numbers: N (� = 0) = 0.2,
0.8, 1.9 and 3.4. The top four panels show the results from experimental measurements and the corresponding simulations using the master
equation. The error bars of 
Ephoton,Exp are from the fit error and the error bars of 
Equbit,Exp are the standard deviation from 5 repeated
measurements. The bottom panels show the results from simulation in the ideal case where the qubit intrinsic decoherence is ignored and the
energy changes of the reflected photons are also included (see Appendix B for details). In the ideal-case simulation, perfect energy conservation
between the qubit and photons is observed.

provide a small amount of energy as soon as the qubit
departs from the stationary states imposed by the drive.
Finally, the qubit also undergoes thermal relaxation and
dephasing, making the characterization of 
Equbit inaccurate.
Furthermore, a dynamical decoupling effect induced by the
qubit drive effectively reduces the coherence loss of the qubit,
which is not captured by the simulation using the master
equation. In the bottom four panels of Fig. 4, we present
the simulated results of an ideal model that includes the
photon energy change in the reflected pulse and assumes
no intrinsic qubit decoherence (see Appendix B), showing
perfect energy conservation. Our findings affirm that the
qubit energy change arising from measurement backaction
during a noncommuting measurement is perfectly balanced
by frequency shift of the photons utilized in the measurement.

VI. CONCLUSION

We investigated the nonresonant energetic exchange be-
tween probe and qubit arising from the incompatibility of the
qubit Hamiltonian with the measurement operator. Our obser-
vations show a clear frequency shift in the power spectra of the
measurement photons to ensure global energy conservation.
Our results demonstrate that the energy change in the qubit
is balanced by the frequency shift of the photons used in the
measurement. This study elucidates the mechanisms of energy
transfers between system and meter during noncommuting
measurements. They provide insights for the development of
future quantum measurement engines and related hardware
utilizing measurement fuel.
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APPENDIX A: EXTENDED DETAILS ABOUT
THE EXPERIMENTAL SETUP

The Hamiltonian described in Eq. (1) is implemented by
continuously driving the qubit, as depicted in Fig. 1(b). Note
that the qubit drive in the laboratory frame is time dependent
with a frequency of ∼5 GHz, thus the time-independent term
�σx/2 in Eq. (1) is only obtained in the rotating frame of
the qubit. In the main text, unless explicitly mentioned, we
study the system dynamics in the rotating frame and denote
� as the new qubit energy, which is of megahertz scale. To
realize the Z measurement, a probe tone at the frequency
( f (c)

g + f (c)
e )/2, located midway between the two cavity res-

onances, is applied to inject cavity photons and perform the
measurements. The cavity, equipped with input and output
coupling ports, is weakly coupled to the environment at the
input port and strongly coupled at the output port. Both the
cavity probe and qubit drive are applied through the input
port, with cavity photons emitted primarily through the output
port. Phase-preserving amplification of the emitted photons is
accomplished using a Josephson parametric amplifier (JPA),
a cryogenic amplifier, and several room-temperature ampli-
fiers. Down-conversion with a microwave I-Q mixer produces
time-domain signals for the in-phase quadrature I (t ) and
out-of-phase quadrature Q(t ) [31]. The phasor I (t ) + iQ(t )
is analyzed by Fourier transformation to obtain the photon
power spectrum [36,37]. The final spectrum is background
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subtracted to remove noise generated by different electronics
in the collection path, using a background spectrum obtained
with no cavity probing pulse. Due to the relatively high level
of experimental noise, we first fit the spectrum data with three
Lorentzian peaks and then extract the average frequency shift.
The experiment employs a 3 µs qubit drive pulse and a 2 µs
cavity probing pulse that are simultaneously initiated, with
a 1 µs gap provided to facilitate the dissipation of the cavity
photons. The collected signals during the 3 µs period are used
to obtain the power spectrum.

APPENDIX B: DISPERSIVE MODEL

We now analyze how energy is conserved in a scattering-
type interaction involving two waveguides (A and B), a cavity
between these two waveguides. and a qubit inside the cavity.
We denote by HS the Hamiltonian of cavity, qubit, and their
dispersive interaction. As in the main text, we consider the
qubit Hamiltonian to be HQ = (�/2)σx.

The experiment takes place as follows. The cavity and
waveguide B are initially empty while a coherent pulse travels
in waveguide A. Since the interaction is dispersive, the qubit is
isolated until the cavity fills up with photons. When the pulse
arrives at the cavity, a great part is reflected and a small part
enters the cavity. In the long-time limit, the cavity is again
empty and therefore the only energy change of HS with respect
to the initial time is given by the energy change of the qubit.
Indeed, at the initial and final time we consider here, the cavity
contains no photons and light present in the waveguide is far
away from the cavity itself. This means that before the initial
time and after the final time, the coupling term between cavity
and waveguide has no effect whatsoever on the dynamics of
both. This is what makes the dynamics under examination a
scattering-type dynamics. It follows that the energy change of
HS has to be accounted for by the change of energy in the
waveguide. At initial and final times, the interaction energy is
zero in the sense that its average, its variance, and every other
moment of its distribution are zero.

Here we take care to analyze the role of the reflected pho-
tons in waveguide A on the energy balance of the experiment.
In the actual experiment, these photons are inaccessible, but
we show here that their energy shifts in a different way than
those emitted in waveguide B. The complete calculations are
made in the rest of the article. The final result, that is, the
correct formula for energy conservation, is

−
ES =
∫ +∞

−∞
dω ω

[(
1 + κA

κB

)
SB(ω,∞)

+ 2
√

κARe{αp(ω)〈c†(ω)〉0}
]
. (B1)

Here, 
ES is the qubit energy change in the long-time
limit, κA(B) is the dissipation rate of the cavity connected to
waveguides A and B, SB(ω,∞) is the output spectrum in
waveguide B, αp(ω) is the coherent input pulse in frequency
space, and 〈c†(ω)〉0 is the Fourier transform of 〈c†(t )〉0 which
is the average value of the creation operator in the cavity
at time t .

The formula of Eq. (B1) is valid for any HS . This could be
a cavity with N qubits inside or another cavity or something

else. The only assumption is that the interaction between
cavity and waveguide is the standard one used in input-output
theory and that the dynamics can be studied as a scattering-
type dynamics.

1. Calculations

Our model is governed by the following Hamiltonian:

H = HS + HA + HB + VAS + VBS, (B2)

where HS is the system Hamiltonian (cavity and qubit, but it
could be anything).

HA =
∫ +∞

−∞
dω ωa†(ω)a(ω), (B3)

HB =
∫ +∞

−∞
dω ωb†(ω)b(ω), (B4)

VAS = i

√
κA

2π

∫ +∞

−∞
dω(a†(ω)c − a(ω)c†), (B5)

VBS = i

√
κB

2π

∫ +∞

−∞
dω(b†(ω)c − b(ω)c†), (B6)

where c is the annihilation operator of the cavity in system
S, whereas a(ω) and b(ω) are the annihilation operators at
frequency ω for waveguides A and B, respectively.

By definition, the spectrum SA(ω) is equal to SA(ω) =
〈a†(ω)a(ω)〉. In the Heisenberg picture, this means that
SA(ω, τ ) = 〈a†

τ (ω)aτ (ω)〉0, where τ denotes the time. In the
Heisenberg picture, we get that

aτ (ω) = e−iωτ a0(ω) +
√

κA

2π

∫ τ

0
e−iω(τ−t )c(t )dt, (B7)

a†
τ (ω) = e+iωτ a†

0(ω) +
√

κA

2π

∫ τ

0
e+iω(τ−t )c†(t )dt, (B8)

and similarly for the operators in waveguide B. Note that by
definition, the average energy of a waveguide at time τ is
given by

〈HA〉τ =
∫ +∞

−∞
ω〈a†

τ (ω)aτ (ω)〉0dω (B9)

=
∫ +∞

−∞
ωSA(ω, τ )dω. (B10)

Our dynamics takes place under the assumption that there
are no photons in the cavity at t = 0 and that this cannot
change until photons arrive from the waveguides. Additionally
in the long-time limit, the cavity is again empty. It follows
that the interaction is zero (in the scattering theory sense,
as explained before Eq. (B1)) at t = 0 and at t = τ for τ

sufficiently high. Thus, we get that in the long-time limit,

〈H〉0 = 〈H〉τ ⇒ 〈HS〉0 + 〈HA〉0 + 〈HB〉0

= 〈HS〉τ + 〈HA〉τ + 〈HB〉τ

⇒
∫ +∞

−∞
ω[SA(ω, τ ) + SB(ω, τ )]dω = −
ES, (B11)

where 
ES = 〈HS〉τ − 〈HS〉0. This result is obtained under the
assumption that 〈HA〉0 = 〈HB〉0 = 0. For 〈HB〉, this happens
because the waveguide is initially empty. For 〈HA〉, this hap-
pens because we put ourselves in the rotating frame such that

033045-6
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the initial pulse has average frequency ωp = 0. If this is not
the case, we just have to write that

−
ES =
∫ +∞

−∞
ω[SA(ω, τ ) − SA(ω, 0) + SB(ω, τ )]dω.

(B12)

For the spectrum in waveguide B, we get that, at any time,

SB(ω, τ ) = κB

2π

∫ τ

0

∫ τ

0
e−i(t−s)

〈
c†(t )c(s)

〉
0dtds, (B13)

because any occurrence of b0(ω) and b†
0(ω) gives zero on the

vacuum state. Regarding the waveguide A, the formula is a bit
more complex as we get

SA(ω, τ )

= 〈a†
0(ω)a0(ω)〉0 + κA

2π

∫ τ

0

∫ τ

0
e−i(t−s)〈c†(t )c(s)〉0dtds

+
√

κA

2π

〈
a†

0(ω)

(∫ τ

0
eiωt c(t )dt

)

+
(∫ τ

0
e−iωt c†(t )dt

)
a0(ω)

〉
0

. (B14)

The first term is the input spectrum in waveguide A and the
second term is the output from the waveguide in the case when
there is only emission from the cavity. We are interested in the

long time limit so we can say that τ → ∞. Since 〈c(t )〉 = 0
for t � 0, we can write

SA(ω,∞) = 〈a†
0(ω)a0(ω)〉0+ √

κA〈a†
0(ω)c(ω) + c†(ω)a0(ω)〉0

+ κA

2π

∫∫
e−i(t−s)〈c†(t )c(s)〉0dtds, (B15)

where we defined c(ω) = √
1/2π

∫ +∞
−∞ eiωt c(t )dt .

Exploiting the fact that 〈a†
0(ω)c(ω) + c†(ω)a0(ω)〉0

= 2Re{〈c†(ω)a0(ω)〉0} and that the input field in waveguide
A is a coherent field, we obtain

SA(ω,∞) = 〈a†
0(ω)a0(ω)〉0

+ 2
√

κARe{αp(ω)〈c†(ω)〉0} + κA

κB
SB(ω,∞),

(B16)

where 〈c†(ω)〉0 = √
1/2π

∫ +∞
−∞ eiωt 〈c†(t )〉0dt . Notice that

SA(ω, 0) = 〈a†
0(ω)a0(ω)〉0. Finally, the energy conservation

reads

−
ES =
∫ +∞

−∞
dω ω

[(
1 + κA

κB

)
SB(ω,∞)

+2
√

κARe{αp(ω)
〈
c†(ω)

〉
0}

]
.

(B17)
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