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Simple Summary: Imaging based on positron emission tomography (PET) is a crucial part of up-

to-date cancer care. For this purpose, PET employs and marks target structures at the cellular 

surface. Recently, C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein 

Alpha (FAP) emerged as clinically relevant PET targets. However, it is unclear whether high levels 

of CXCR4 and FAP represent distinct cancer states—especially in solid tumors. Therefore, we 

established a machine learning model based on 9242 samples from 29 different cancer entities. Our 

analysis revealed that—in most solid tumors—high levels of CXCR4 were associated with immune 

cells infiltrating these tumors. Instead, FAP-positive tumors were characterized by high amounts of 

tumor vessels. Our machine learning approach potentially can identify the Achilles’ heel of tumors 

in a non-invasive manner—by performing PET without having to obtain tumor tissue beforehand. 

Abstract: (1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation 

Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and 

FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using 

Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures 

related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas 

(TCGA) database—representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-

positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set 

Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor 

samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of 

immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene 

signatures representative for the majority of solid cancers. While CXCR4 positivity marked an 

immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated 

niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-

positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-

directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of 
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microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be 

transferred towards other theranostic targets. 

Keywords: machine learning; tumor microenvironment; immune infiltration; angiogenesis; mRNA; 

miRNA; transcriptome 

 

1. Introduction 

Positron emission tomography (PET) has become an essential part of cancer 

diagnostics and therapy due to its broad applicability in various cancer entities. Apart 

from PET-based imaging, radionuclide therapy evolved as a promising treatment option 

for many cancer patients—with tracers for Prostate-Specific Membrane Antigen (PSMA) 

and Somatostatin Receptors (SSTR) being at the forefront of this development [1–3]. In 

addition to these well-studied and clinically relevant genes, novel target structures for 

theranostic approaches such as C-X-C Motif Chemokine Receptor 4 (CXCR4) and 

Fibroblast Activation Protein Alpha (FAP) emerged, with a growing spectrum of 

radioligand therapies in different cancer entities [4,5]. However, there is still a lack of in-

depth studies on these two genes to determine whether different expression levels 

actually describe distinct tumor niches or tumor microenvironments. 

In malignancies, increased CXCR4 expression is associated with tumor growth, 

angiogenesis, and metastasis and may lead to resistance towards therapy [6]. In line with 

this trait, several solid cancers and hematologic malignancies exhibit CXCR4 upregulation 

on the cell surface [6], and radiotracer accumulation was shown to correlate with 

immunohistochemical CXCR4 expression of corresponding tissue samples [7]. Regarding 

cancer-associated fibroblasts (CAFs), membrane-bound FAP expression contributes to 

immune evasion and chemoresistance and appears to be crucial for invasiveness and 

metastasis [8,9]. Radiotracer accumulation was also shown to correlate well with immuno-

histochemical FAP expression in several solid cancers [10]. Despite their potential use in 

a wide spectrum of cancers [7,11–13], it is unclear whether CXCR4 or FAP expression 

clearly mark distinct tumor subgroups or certain tumor microenvironments. Potentially, 

non-invasive CXCR4- and FAP-directed PET imaging could enable entity-agnostic 

diagnosis and ideally therapy, especially in solid tumors. To clarify the role of CXCR4 and 

FAP, we utilized a pan-cancer machine learning (ML) approach based on transcriptomic 

data of 29 cancer entities from The Cancer Genome Atlas (TCGA) database, searching for 

entity-independent mRNA and microRNA (miR) signatures best characterizing CXCR4 

and FAP overexpression. In this study, we aimed to establish (for CXCR4) and evaluate 

(for FAP) a workflow demonstrating the utility and applicability of ML in the field of 

theranostics—by predicting ligand-related tumor microenvironments for other potential 

target structures. Of note, CXCR4- and FAP-related functions depend on a tight 

interaction between malignant and non-malignant cells in a certain microenvironment. 

Consequently, specific traits of CXCR4 and FAP cannot be exclusively attributed either to 

cancer cells or non-malignant immune cells or fibroblasts. However, as PET imaging also 

reflects the local microenvironment, we used bulk RNA data as input for our machine 

learning model instead of single-cell data. 

Our pan-cancer ML workflow could help with characterizing target-specific tumor 

microenvironments and contribute to a better understanding of the basic biology of PET 

tracer avidity in solid tumors. These insights could also serve as a basis for further 

refinement of combinatorial therapeutic approaches. 
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2. Materials and Methods 

2.1. Data Acquisition 

We examined publicly available data provided by The Cancer Genome Consortium. 

FPKM (Fragments per Kilobase Million) files for mRNA expression and isoform 

quantification files for miR expression were downloaded from the GDC portal 

(https://portal.gdc.cancer.gov). Regarding TCGA entities, we included cohorts 

comprising at least 60 samples. Moreover, we did not include the READ (Rectum 

adenocarcinoma) cohort due to its close transcriptomic proximity to the COAD (Colon 

adenocarcinoma) cohort. In total, 29 of 33 available TCGA cohorts (n = 9242) met our 

inclusion criteria (Supplementary Table S1). To select specimens with a relative 

overexpression of CXCR4 and FAP, the respective gene was queried for each included 

cohort in cbioportal to eventually retrieve all samples with high expression based on the 

RNA-seq by expectation-maximization (RSEM, [14]) values (threshold z = 1.5) as 

implemented in cbioportal [15,16]. For CXCR4, 352 specimens (3.79% of the cohort) met 

inclusion criteria. Regarding FAP expression, 414 samples (4.47%) were included. 

Additionally, we assessed nine independent validation cohorts of primary tumors and 

metastases (n = 1541 samples), representing hepatocellular carcinoma, prostate cancer, 

renal cell carcinoma, breast cancer, and melanoma [17–19]. Supplementary Table S2 

summarizes respective cancer entities, sample numbers, and data sources. For miRNA 

analysis, we used the same groups for high and low expression of CXCR4 / FAP as in the 

mRNA study. Protein expression data (Pan-Can 32 dataset) were downloaded from the 

TCPA (The Cancer Proteome Atlas) portal [20,21]. 

2.2. Machine Learning Model 

Calculation was implemented in a Jupyter Notebook environment (version 7.5.0)—

which is available upon request—using Python version 3.6.9, SciPy version 1.3.0 [22], and 

scikit-learn version 0.22.1 [23]. We applied the Random Forest (RF) Classifier 

(RandomForestClassifier of the sklearn.ensemble module) on unprocessed FPKM values 

to train 100 individual models in discriminating CXCR4- or FAP-overexpressing samples 

from the rest of the pan-cancer cohort, thereby adapting a procedure from a previous 

study [24]. Next, we split our dataset (50% training / 50% evaluation cohort), with 1000 

trees in the forest (n_estimators = 1000), obtaining a mean testing accuracy of 96.37 ± 0.2% 

(min. 95.95%, max. 96.82%) for CXCR4 and a mean testing accuracy of 95.61 ± 0.26% (min. 

95.05%, max. 96.34%) for FAP. As performed previously [24], the 200 most influential 

genes were determined based on the feature values of all 100 models (Supplementary 

Tables S3 and S4). For each model, the top 200 genes were determined, and occurrences 

of each gene in the top 200 were summed up. Thus, genes with the most frequent 

occurrences in the top 200 per model resulted in the final top 200 gene set. In analogy to 

the mRNA approach, we performed RF analyses for miR expression based on reads per 

million (RPM) miR mapped, resulting in mean testing accuracies of 96.11 ± 0.23% (min. 

95.56%, max. 96.66%) and 95.51 ± 0.19% (min. 94.97%, max. 95.96%) for CXCR4 and FAP, 

respectively. Partial lack of miR expression data caused minor differences in sample 

numbers. For further in-depth analysis of the mRNA RF model, a confusion matrix was 

used to assess prediction results for all samples. Based on the confusion matrix, F1-

measurement as well as Matthews correlation coefficients (MCC) [25] were calculated. In 

total, there were 8851 true negatives (TN), 195 true positives (TP), 154 false negatives (FN), 

and 2 false positives (FP) for CXCR4, yielding an F1 value of 0.72 and a MCC of 0.74. For 

FAP, the results were the following: TN = 8780, TP = 215, FN = 206, FP = 1, F1 = 0.68, MCC 

= 0.71. 
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2.3. Bioinformatical Analyses 

We used StringDB [26] to identify potential networks between the top 200 genes. 

Subsequently, genes overexpressed in CXCR4/FAP-high samples (according to the mean 

value of expression) were analyzed using EnrichR [27,28], Metascape [29], and the “inves-

tigate gene sets” module of the Gene Set Enrichment Analysis (GSEA) webpage [30,31]. 

Of note, StringDB focuses on GO-Term analysis, whereas Metascape also includes Reac-

tome and GSEA pathways. Moreover, TIMER2.0 web resource [32–34] was applied to de-

termine Spearman rank correlations for CXCR4 and FAP expression with infiltration lev-

els of immune and endothelial cells for TCGA tumor samples. 

2.4. Literature Search Regarding MicroRNA Functions 

For miRs identified within RF learning, a Google Scholar search 

(https://scholar.google.com, accessed on 2 March 2022) for miR-specific immune- and an-

giogenesis-related effects was performed. In addition, we screened four review articles 

[35–38] for previously reported immune-related functions (so-called ImmunomiRs) or an-

giogenesis-related functions (so-called AngiomiRs) of predicted miR candidates. 

3. Results 

Pan-cancer RF learning revealed a gene signature most discriminative for CXCR4 

high- vs. low-expressing tumor samples (see Supplementary Table S3 for top 200 genes). 

Of note, CXCR4 emerged at the first position of the respective gene signature, thereby 

reaffirming the validity of our approach. Due to the unbalanced nature of the underlying 

dataset—only a minority of tumor samples strongly expressed CXCR4—we performed an 

internal validation step. Therefore, RF analyses were re-run without CXCR4 as gene of 

interest, to estimate a potential bias introduced by sample selection. The resulting top 200 

gene signatures displayed an overlap with the original signatures of 90.5% (181/200 

genes). 

3.1. Signaling Pathways and Drug-Specific Signatures Related to CXCR4 Overexpression 

Starting with CXCR4, StringDB analysis recognized a majority of top 200 genes as 

part of an immune-related cluster (Figure 1a). As illustrated in Figure 1b, genes were re-

lated to functions such as “immune system process” (GO:0002376—red), “immune re-

sponse” (GO:0006955—blue), “lymphocyte activation” (GO:0046649—green), and “leuko-

cyte activation” (GO:0045321—yellow). For Metascape analysis, we specifically selected 

genes from the top 200 gene list, which were overexpressed—having a significant higher 

mean expression according to Kruskal–Wallis test—in CXCR4 high-expressing tumor 

samples. In line with StringDB findings, the results confirm a highly significant role for 

immune-related functions (Figure 1c)—with “lymphocyte activation” (GO:0046649), 

“adaptive immune response” (GO:0002250), and “B cell activation” (GO:0042113) being 

top predicted pathways (p < 10−20). Additionally, applying the “investigate gene sets” func-

tion of the GSEA webpage to the top 200 genes further confirmed immune-related path-

ways as significantly overrepresented in CXCR4 high-expressing specimens (Table S5). 

In a next step, we searched for drug-specific signatures (via Drug Signatures database 

– DSigDB [39]) characterized by a significant overlap with the CXCR4-specific gene sig-

nature. Our search revealed isoguanine, arsenic, dexamethasone, and clonidine among 

the top predicted therapeutic compounds (Figure 1d). While certainly requiring further in 

vitro validation, identified compounds could be promising candidates for future combi-

natorial approaches together with CXCR4-directed radioligand therapy. 
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Figure 1. Gene networks, functions, and drug-induced gene signatures associated with CXCR4 ex-

pression. (a) StringDB network analysis for 141 genes included. StringDB network focused on (b) 

the main complex of the network with marked biological processes “immune system process” 

(GO:0002376—red), “immune response” (GO:0006955—blue), “lymphocyte activation” 

(GO:0046649—green), and “leukocyte activation” (GO:0045321—yellow). (c) Bar-graph summary of 

significantly enriched terms for genes overexpressed in CXCR4 high-expressing samples as pro-

vided by Metascape analysis. (d) Drug-induced signatures (predicted via Drug Signatures Data-

base) significantly related to CXCR4 expression within the Random Forest learning approach. Drug 

Signatures Database was accessed via the EnrichR web portal. 

3.2. CXCR4-Associated Tumor Microenvironment from a Pan-Cancer Perspective 

We further examined expression levels of CXCR4 and immune-related bona fide 

gene candidates within the pan-cancer cohort. In specific, we investigated the expression 

of the T cell co-receptors CD4 (Cluster of Differentiation 4) and CD8A (Cluster of Differ-

entiation 8 A) as well as CD274 (Cluster of Differentiation 274, also known as PD-L1/Pro-
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gramed Cell Death 1 Ligand 1), IRF1 (Interferon Regulatory Factor 1), and CTLA4 (Cyto-

toxic T-Lymphocyte Associated Protein 4). Results of correlation analyses are presented 

in Figure 2a. Most cancer entities exhibited significantly positive Pearson correlations co-

efficients, with the highest coefficients for CD4, CD8A, and CTLA4. Entity-wise, the pros-

tate cancer (PRAD) cohort displayed especially high correlation coefficients (Figure 2b). 

Beyond the TCGA database, we analyzed correlations of respective genes in nine valida-

tion cohorts from hepatocellular carcinoma; prostate, kidney, breast, and oral cancer; and 

melanoma. Six datasets represented primary tumors, while three datasets represented me-

tastases. Positive Pearson R values generally confirmed TCGA results in independent da-

tasets (Figure 2c). 

 

Figure 2. Pearson R values between CXCR4 expression and CD4, CD8A, CD274, IRF1, and CTLA4 

expression within (a) TCGA pan-cancer cohort and (b) specifically within prostate cancer samples 



Cancers 2023, 15, 392 7 of 20 
 

 

(PRAD cohort from TCGA database). (c) Pearson R values for respective genes in nine independent 

validation cohorts. FPKM: Fragments per Kilobase Million. 

Finally, the TIMER2.0 web resource was used to investigate CD8+ T cell infiltration 

related to CXCR4 expression in the TCGA pan-cancer cohort (Figure 3). TIMER2.0 analy-

sis revealed significantly positive Spearman correlation coefficients for the expression of 

this chemokine receptor and infiltration with CD8+ T cells (and T cell subgroups). Among 

cancer entities with significantly positive correlations were bladder cancer (BLCA cohort), 

papillary renal cell carcinoma (KIRP cohort), pancreatic adenocarcinoma (PAAD cohort), 

and thymoma (THYM cohort). In line with findings from transcriptomics (see Figure 2a), 

adrenocortical carcinoma samples from the ACC cohort displayed significantly negative 

correlations. Beyond CD8+ T cell infiltration, CXCR4 expression significantly correlated 

with B cell as well as monocyte and macrophage tissue infiltration in the majority of cancer 

entities investigated (Supplementary Figure S1). Of note, deviations in correlation coeffi-

cients for specific tumor entities are caused by the varying algorithms used for the esti-

mation of immune infiltration within TIMER analyses. 

 

Figure 3. Spearman correlation coefficients of CXCR4 expression and infiltration of CD8+ T cells 

(and T cell subgroups) within TCGA database. Analyses were performed with TIMER2.0 web re-

source. Color-filled boxes represent significant results (p ≤ 0.05)—with red fillings indicating posi-

tive and blue fillings indicating negative correlation coefficients. 
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3.3. FAP-Associated Signaling and Tumor Microenvironment 

After identifying a CXCR4-associated microenvironment in solid tumors using the 

ML-based workflow, we aimed to validate the general applicability of the approach by 

analyzing the FAP-related gene signature. Of note, FAP again emerged at the top of its 

ML-generated gene list. As for CXCR4, we re-ran the analysis without FAP as gene of 

interest. The resulting top 200 gene signature yielded an overlap of 95.5% (191/200 genes) 

with the original gene signature. 

Next, we examined FAP-related genes using the StringDB network (Figure 4a,b). 

Most genes were recognized as part of one cluster—representing biological processes such 

as “blood vessel development” (GO:0001568) and “blood vessel morphogenesis” 

(GO:004851). Additionally, genes from this network were involved in “extracellular ma-

trix organization” (GO:0030198) and “collagen fibril organization” (GO:0030199) (respec-

tive genes not color-coded in Figure 4b). As shown in Figure 4c, Metascape analysis con-

firmed previous network analysis, with “extracellular matrix organization” as top pre-

dicted and “vasculature development” as fifth-best-predicted pathways, when consider-

ing overexpressed genes (n = 183) within the FAP-specific signature. We also searched for 

drug-specific signatures related to the top 200 FAP-related gene list. Within this approach, 

the agents progesterone, cytarabine, phenytoin, estradiol, and dasatinib were best pre-

dicted (Figure 4d). 

In a further step, we determined Pearson R values between FAP and selected prom-

inent angiogenesis-related genes—specifically, FLT1 (Fms-related Receptor Tyrosine Ki-

nase; also termed VEGFR1), KDR (Kinase Insert Domain Receptor; also termed VEGFR2), 

KIT (KIT Proto-Oncogene), HIF1A (Hypoxia Inducible Factor Subunit Alpha), and ETS1 

(ETS Proto-Oncogene 1). As summarized in Figure 5a, we found significantly positive 

Pearson R values for the majority of tumor entities, especially regarding correlations be-

tween FAP and the angiogenesis-related genes FLT1, KDR, HIF1A, and ETS1. We ob-

served the highest correlation coefficients for colon adenocarcinoma (COAD), with R = 

0.62 for FAP and FLT1 and R = 0.55 for FAP and KDR. Scatter plots for the COAD cohort 

from TCGA are shown in Figure 5b. External validation confirmed positive correlations 

for FAP and angiogenesis receptors FLT1, KDR, and KIT as well as HIF1A and ETS1 in 

hepatocellular carcinoma but also in metastatic prostate cancer (Dream Team cohort) (Fig-

ure 5c). Of note, further in-depth analysis of correlations between FAP and angiogenesis-

related genes showed mostly similar results as the previously selected bona fide candidate 

genes, with PDGFRB and SERPINE1 displaying the highest correlation coefficients for all 

entities (Figure S2). 
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Figure 4. Gene networks, functions, and drug-induced gene signatures associated with FAP expres-

sion. (a) StringDB network analysis for 165 genes included. StringDB network focused on (b) the 

main complex of the network with marked biological processes “blood vessel development” 

(GO:0001568—red) and “blood vessel morphogenesis” (GO:0048514—blue). (c) Bar-graph summary 

of significantly enriched terms for genes overexpressed in FAP high-expressing samples as pro-

vided by Metascape analysis. (d) Drug-induced signatures (predicted via Drug Signatures Data-

base) significantly related to FAP expression within the Random Forest learning approach. Drug 

Signatures Database was accessed via the EnrichR web portal. 
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Figure 5. Pearson R values between FAP expression and FLT1, KDR, KIT, HIF1A, and ETS1 expres-

sion within (a) TCGA pan-cancer cohort and (b) specifically within colon adenocarcinoma (COAD 

cohort from TCGA database). (c) Pearson R values for respective genes in nine independent valida-

tion cohorts. FPKM: Fragments per Kilobase Million. 
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Given the close relationship of FAP and angiogenesis-related genes, we finally 

looked at endothelial cell content in TCGA tumor specimens. Regarding FAP expression 

and endothelial cells, we also found significantly positive Spearman correlation coeffi-

cients in most tumor entities, e.g., in breast cancer (BRCA), colon adenocarcinoma 

(COAD), and head and neck cancer (HNSC). Analogous to transcriptomic expression 

analysis (see Figure 5a), thyroid carcinoma specimens (THCA) were characterized by sig-

nificantly negative correlation coefficients regarding FAP expression and endothelial cell 

counts (Figure 6). 

 

Figure 6. Spearman correlation coefficients of FAP expression and endothelial cell content within 

TCGA database. Analyses were performed with TIMER2.0 web resource. Color-filled boxes repre-

sent significant results (p ≤ 0.05)—with red fillings indicating positive and blue fillings indicating 

negative correlation coefficients. 
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3.4. MicroRNAs Characterizing CXCR4 and FAP Overexpression 

Due to the exploratory nature of our approach and based on the knowledge-confirm-

ing results of our RF models regarding the role of CXCR4 and FAP, which were charac-

teristic for mRNA high- vs. low-expressing datasets, we wondered whether our workflow 

was transferable towards the miRNome. Therefore, we performed RF analyses regarding 

miRs best discriminating CXCR4/FAP high- vs. low-expressing tumors. The 10 best pre-

dicted CXCR4-specific miRs are summarized in Table 1. Nine out of ten top predicted 

miRs were previously reported to regulate the expression of immune-related target genes 

such as SOCS1 (Suppressor of Cytokine Signaling 1) and IRAK1 (Interleukin 1 Receptor 

Associated Kinase 1) [40–52]. As these target genes only give an impression about a small 

subset of effects mediated by these miRs, we additionally checked established review ar-

ticles. In fact, five miRs were covered in review articles as so-called ImmunomiRs—miRs 

with established roles as regulators of immune pathways [35,36]. 

Table 1. MicroRNAs (miRs) predicted to best discriminate CXCR4 high- vs. low-expressing tumor 

samples. p values significant for p < 0.01 are highlighted in bold. 

Rank miR Candidate Mean High (+/−Std High) Mean Low (+/−Std Low) p Value 
Immune-Related Target  

Genes/In Vitro (Selection) 

Covered in  

Review Articles 

1 miR-150 2204.46 (+/−3768.76) 734.17 (+/−1402.81) 1.66 × 10−24 c-Myb [40], ARBB2 [41] [35,36] 

2 miR-4491 1.24 (+/−2.97) 0.50 (+/−3.06) 1.87 × 10−15 TRIM7 [42] - 

3 miR-155 992.76 (+/−1386.74) 515.66 (+/−1180.80) 2.17 × 10−25 SOCS1 [43,44] [35,36] 

4 miR-5586 5.08 (+/−4.77) 3.16 (+/−3.74) 3.29 × 10−17 - - 

5 miR-142 7184.13 (+/−18,169.54) 4084.70 (+/−14,505.49) 1.56 × 10−19 PD-L1 [45] [35,36] 

6 miR-210 994.59 (+/−1418.87) 1051.44 (+/−1527.88) 0.166973729 PTPN, HOXA1, TP53I11 [46] - 

7 miR-29c 2861.48 (+/-2863.31) 2195.79 (+/−2074.10) 0.000214287 B7-H3 [47] [36] 

8 miR-195 51.30 (+/−41.85) 40.86 (+/−36.79) 4.56 × 10−07 PD-L1 [48–50] - 

9 miR-146a 544.21 (+/−2503.58) 354.89 (+/−1622.84) 3.78 × 10−13 IRAK1, TRAF6 [51] [35,36] 

10 miR-1307 1652.20 (+/−1937.24) 1745.57 (+/−1999.00) 0.016754954 TRAF3 [52] - 

Regarding FAP-specific miRs (Table 2), eight out of ten candidates were previously 

reported targeting angiogenesis-related genes such as VEGFA (Vascular Endothelial 

Growth Factor A) and ZEB2 (Zinc Finger E-Box Binding Homeobox 2) [53–69]. Moreover, 

four miR candidates (miR-21, miR-128-2, miR-199a-1, and miR-199a-2) were previously 

mentioned as AngiomiRs within review articles [37,38]. 

Table 2. MicroRNAs (miRs) predicted to best discriminate FAP high- vs. low-expressing tumor 

samples. p values significant for p < 0.01 are highlighted in bold. 

Rank miR Candidate 
Mean High (+/−Std 

High) 
Mean Low (+/−Std Low) p Value 

Angiogenesis-Related 

Target Genes/In Vitro 

(Selection) 

Covered in  

Review Articles 

1 miR-21 305,318.37 (+/−139,932.32) 226,877.88 (+/−143,668.68) 1.81 × 10−27 FASLG [53], KRIT1 [54] [37,38] 

2 miR-1245a 3.78 (+/−4.81) 1.68 (+/−3.34) 2.39 × 10−44 - - 

3 miR-214 48.98 (+/−49.57) 28.67 (+/−63.28) 1.89 × 10−48 QKI [55], VEGFA [56] - 

4 miR-493 41.20 (+/−119.60) 28.61 (+/−110.12) 1.87 × 10−42 MIF [57,58], ZEB2 [59], DKK2 [60] - 

5 miR-128-2 73.34 (+/−93.89) 134.96 (+/−364.17) 5.27 × 10−11 VEGFC [61], RPS6KB1 [62] [38] 

6 miR-199a-1 1910.74 (+/−1744.58) 1190.78 (+/−2028.65) 1.26 × 10−36 
VEGFA, VEGFR1, VEGFR2, HGF, 

MMP2 [63], APOE [64] 
[38] 

7 miR-199a-2 3107.70 (+/−2798.14) 1940.26 (+/−3134.63) 2.47 × 10−35 VEGFA [65], APOE [64] [38] 

8 miR-652 30.18 (+/−36.47) 36.92 (+/−41.11) 7.14 × 10−10 VEGFA [66], PRRX1 [67] - 

9 miR-337 61.72 (+/−130.58) 51.09 (+/−152.74) 1.69 × 10−37 - - 

10 miR-7-1 25.56 (+/−31.47) 40.47 (+/−65.27) 6.98 × 10−10 KLF4 [68], RAF1 [69] - 
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3.5. Transferability of Transcriptomic Results to Protein Expression and Theranostics 

In combination, our pan-cancer solid tumor approach showed that overexpression of 

CXCR4 or FAP lead to detectable transcriptional changes (in terms of mRNA and 

miRNA), reflected by gene signatures best distinguishing high- and low-expressing sam-

ples in RF models. Both mRNA and miR approaches confirmed previous knowledge 

about the impact of CXCR4 and FAP on tumor microenvironment. 

To obtain an impression of how CXCR4 and FAP expression affect the protein level, 

we further checked bona fide candidates (Supplementary Figure S3)—CD274 (PD-L1) and 

CTLA4 depending on CXCR4 expression, as well as HIF1A, ETS1, and VEGFR2 depend-

ing on FAP expression. Regarding CXCR4 high-expressing samples, we observed a sig-

nificant upregulation of PD-L1. Potentially due to low sample numbers available, upreg-

ulation of CTLA4 did not reach statistical significance. For HIF1A, ETS1, and VEGFR2, we 

detected significant protein levels in FAP-overexpressing tumor samples. However, it is 

important to be aware of the fact that the statistical significance is only of limited value 

due to the imbalance in group sizes but nevertheless indicates a certain tendency. 

The analysis of a single-cell sequencing dataset representing head and neck cancer 

[70] clearly showed the expression variation between different cell types (Figure S4 and 

S5), with a significantly increased expression of CXCR4 in T cells and of FAP in fibroblasts, 

as expected. The bona fide candidate genes CD8A, CD4, and CD274 showed increased 

expression in T cells and tumor cells, respectively. Consideration of the angiogenesis-as-

sociated genes FLT1, KDR, and KIT confirms expression in endothelial cells and mast 

cells, respectively. However, for both datasets, basal expression of all genes also was pre-

sent in tumor cells. 

4. Discussion 

Applying RF learning to transcriptomic data of 29 cancer entities, we identified the 

top 200 gene signatures, which were most discriminative regarding CXCR4/FAP high- vs. 

low-expressing tumor samples. For CXCR4, analysis recognized a majority of top 200 

genes as part of an immune-related cluster. For FAP, most genes were recognized as part 

of biological processes such as blood vessel development and extracellular matrix organ-

ization. RF learning based on miR expression confirmed results from mRNA learning. 

Further analyzing transcriptomic data exhibited significantly positive Pearson correlation 

coefficients for most cancer entities between CXCR4 and the T cell co-receptors CD4 and 

CD8A, as well as IRF1 and CTLA4. For FAP, significantly positive Pearson correlations 

coefficients for most cancer entities were found with prominent angiogenesis-related 

genes FLT1 (also known as VEGFR1), KDR (also known as VEGFR2), HIF1A, and ETS1. 

Moreover, comparing CXCR4/FAP gene signatures with drug-induced gene signatures 

identified active substances such as arsenic and dexamethasone for CXCR4. Regarding 

FAP, progesterone and estradiol were among predicted drug candidates. After further 

validation, these substances could serve as potential co-therapies in combinatorial ap-

proaches targeting CXCR4- and FAP-positive tumors. 

Extending our approach to the miRNome confirmed previous mRNA results, as most 

of the identified top 10 miRs are also well-known to regulate immune- or angiogenesis-

related pathways. Taken together, concordant results from studying the transcriptome 

and the miRNome not only confirm previous results but also provide an (admittedly in-

complete) approximation for CXCR4- and FAP-associated protein expression—when try-

ing to transfer the results to PET avidity and theranostic applications. 

4.1. CXCR4 as Immune-Related Biomarker in Solid Tumors 

In general, enhanced CXCR4 expression seems to be associated with a worse prognosis 

for patients suffering from cancer. For prostate cancer, high CXCR4 levels were associated 

with worse cancer-related survival [71]. For colorectal as well as breast cancer, meta-anal-

yses also confirmed poor prognosis for patients with strong CXCR4 expression [72,73]. 
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Functionally, StringDB cluster analysis implied an entity-agnostic role for CXCR4 by 

identifying a common immune-related gene network. This result appears in line with pre-

vious CXCR4 research and clinical applications in hematological malignancies [11,74,75] 

and infections [76,77]. Of note, our cluster analysis revealed this CXCR4-specific trait 

based on bulk RNA expression in solid cancer tissue. In addition, nine out of ten miR 

candidates best describing CXCR4 overexpression within the pan-cancer cohort were re-

ported to regulate immune-related target genes such as PD-L1 (CD274)—thereby confirm-

ing ML results based on mRNA expression. Correlation analyses confirmed results from 

RF learning by showing a significant co-expression of CXCR4 and immune-related genes 

within the TCGA database and several independent validation cohorts, especially in pros-

tate (PRAD) and liver cancer (LIHC). Accordingly, CXCR4-overexpressing specimens 

from TCGA database were characterized by higher levels of infiltrating CD8+ T cells—

especially in entities such as clear cell (KIRC) and papillary renal cell carcinoma (KIRP), 

pancreatic adenocarcinoma (PAAD), and thymoma (THYM). In summary, our pan-cancer 

approach showed a prominent role for CXCR4 as immune marker in solid tumors. 

This role might additionally offer a new form of PET interpretation. In a broader con-

text, CXCR4 could serve as an entity-agnostic Immuno-PET [78,79]—in order to detect an 

immune-related microenvironment in various malignancies. This could lead to a stratifi-

cation of tumor patients for the most suitable therapy approach and avoid unnecessary 

therapies. In line with this potential future application, researchers and clinicians have 

already evaluated the effect of CXCR4 inhibition on the immune response in various tu-

mor entities [80]. In specific, Biasci et al. investigated pancreatic and colorectal cancer and 

found that Plerixafor, a small molecule inhibitor of CXCR4, induced a tissue immune re-

sponse [81]. In pulmonary tumors, a CXCR4-inhibiting nanocomplex led to enhanced T 

cell infiltration and counteracted the previous immunosuppressive microenvironment—

thereby offering a rationale for a combination with an immune checkpoint blockade [82]. 

As an exception to the rule, adrenocortical carcinoma samples displayed negative 

correlations between CXCR4 expression and levels of infiltrating CD4+ and CD8+ T cells 

as well as PD-L1. A recent publication confirmed high tracer uptake in ACC tumors in 

CXCR4-directed PET/CT [83], and initial studies of immune checkpoint inhibitors in ACC 

were heterogeneous, with only few patients benefiting from treatment [84–88]. Conse-

quently, one may speculate that CXCR4 could serve as a gatekeeper for immune check-

point therapies in ACC. However, this assumption surely needs further investigation. 

4.2. FAP as Potential Biomarker for Anti-Angiogenic Therapy Stratification 

For FAP, intratumoral or stromal expression correlated with poor prognosis in sev-

eral cancer entities, such as ovarian cancer [89], non-small cell lung cancer [90], and colo-

rectal carcinoma [91]. 

StringDB analysis also detected a common gene network characteristic for FAP. In-

terestingly, this cluster was not only associated with fibroblast products such as collagen 

and extracellular matrix. Instead, angiogenesis-related signaling pathways were also as-

sociated with FAP overexpression in solid tumors. Hormones such as progesterone and 

estradiol were predicted to be associated with FAP overexpression within our pan-cancer 

cohort—with both compounds being known regulators of angiogenesis [92,93]. In the next 

step, we found a significant co-expression of FAP and angiogenesis-related genes for most 

cancer entities from our TCGA dataset and our validation datasets. The strongest evidence 

was found for colon adenocarcinoma (COAD) tissue. Of note, previous research described 

a strong relationship between FAP expression and endothelial cells in this malignancy 

[94]. Results from miR-based RF learning supported these results—with a majority of the 

top10 miR candidates reported to target crucial angiogenesis-related genes such as 

VEGFA and KDR. Moreover, TIMER2.0 analysis confirmed higher endothelial cell content 

in FAP-positive tumor samples of cancer entities such as colon adenocarcinoma (COAD) 

and breast cancer (BRCA). Of note, prostate cancer metastases from the Dream Team co-

hort also displayed relatively high correlation coefficients of FAP with FLT1 and KDR—
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thereby potentially mirroring the importance of angiogenesis in high-risk prostate cancer, 

as previously reported [95]. We hypothesize that high FAP expression in cancer patients 

and subsequently uptake of tracer in FAP-directed PET imaging might serve as a whole-

body readout for tumor-associated angiogenesis. 

4.3. Limitations and Future Directions 

Our study surely has an exploratory character and several limitations. First, calcula-

tions are based on the TCGA database as one single data source. We aimed to reduce this 

bias by adding nine independent validation cohorts to our analysis. Second, transcriptom-

ics do not automatically represent proteomics, and proteomics do not automatically rep-

resent PET tracer uptake. However, at least for FAP, a recent study implied that immuno-

histochemistry (IHC) results were closely associated with PET tracer uptake [10,96]. Due 

to the limited availability of protein expression data, we further tried to obtain a better 

approximation of the potential proteomic features by extending the workflow towards the 

miRNome, which yielded comparable results regarding CXCR4- and FAP-related micro-

environment in solid tumors. 

Due to the unbalanced nature of our approach (only a minority of samples represented 

CXCR4/FAP overexpression), we also examined F1 and MCC values. Across all tumor enti-

ties, F1 and MCC displayed a moderate overall performance of RF learning, which might be 

partially caused by absolute expression differences between cancer entities. 

Due to the nature of the data (uneven distribution, no uniform therapies, therapy 

data not always available, etc.), only assumptions about the clinical relevance of CXCR4 

and FAP PET-positivity can be made at this stage, which is why we intentionally refrained 

from looking at survival data for individual cohorts but especially in the aggregated state. 

This further highlights the need for studies combining PET-CT status with RNA-sequenc-

ing data. Ideally, PET images should be combined with single-cell sequencing data—to 

elucidate a closer look at signaling networks [97,98] shaping the tumor microenvironment. 

Altogether, our approach might help open the door to a new form of PET interpreta-

tion. In a broader context, CXCR4 could be a suitable candidate for performing entity-

agnostic Immuno-PET [78,79] in order to detect an immune-related microenvironment in 

various solid malignancies, while FAP could be a suitable candidate for detecting a mi-

croenvironment characterized by increased angiogenesis. Thus, PET-based imaging of tu-

mor microenvironments could help with stratifying tumor patients towards most suitable 

therapeutic approaches while avoiding unnecessary therapies for others. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/cancers15020392/s1, Figure S1: Spearman correlation coeffi-

cients of CXCR4 expression and infiltration of B cells (a), monocytes (b), and macrophages (c) within 

TCGA database. Figure S2: Protein expression depending on CXCR4/FAP high vs. low expression 

in the TCGA database. Table S1: Proportion of tumor specimens overexpressing CXCR4 or FAP—

according to underlying tumor entities from the TCGA (The Cancer Genome Atlas) database. Figure 

S3: Protein expression depending on CXCR4/FAP high vs. low expression in the TCGA database. 

Figure S4: Cell-type specific expression of CXCR4 and a selection of immune-related genes within a 

single cell sequencing dataset representing head and neck cancer (GSE103322). Figure S5: Cell-type 

specific expression of FAP and a selection of angiogenesis-related genes within a single cell sequencing 

dataset representing head and neck cancer (GSE103322). Table S1: Proportion of tumor specimens 

overexpressing CXCR4 or FAP – according to underlying tumor entities from the TCGA (The Cancer 

Genome Atlas) database. Table S2: Independent validation cohorts with respective cancer entities, 

sample numbers, and data sources. Table S3: Top 200 genes identified by RF learning being most dis-

criminative for CXCR4 high- vs. CXCR4 low-expressing cancer samples. Table S4: Top 200 genes iden-

tified by RF learning being most discriminative for FAP high- vs. FAP low-expressing cancer samples. 

Table S5: CXCR4- (A) and FAP-specific (B) gene signatures analyzed using the “investigate gene sets” 

module of the Gene Set Enrichment Analysis (GSEA) webpage. FDR: false discovery rate. 
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