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 Abstract: Background: Evidence shows that a low-grade inflammation sustains type 2 diabetes 

(T2D). Pancreatic macrophages release cytokines and chemokines that play a fundamental role 

in the pathophysiology of islet damage and destruction of beta-cells. 

Methods: The authors discuss the main mechanism by which resident (pancreatic) and circulating 

macrophages regulate beta-cell development and survival in several scenarios, including T2D, 

type 1 diabetes mellitus, obesity, and insulin resistance. Data are mostly related to in vitro and 

animal studies.  

Results: Lastly, an overview of the role of the Mediterranean diet components (i.e., polyphenols, 

polyunsaturated fatty acids, prebiotics, probiotics, and vitamins) will be illustrated as potential 

agents for reducing inflammation and oxidative stress in patients with T2D when used along with 

antihyperglycemic treatments. 
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1. INTRODUCTION 

 Macrophages belong to the innate immune system and 
protect the host via phagocytosis and killing of pathogens, 
also acting as "Antigen Presenting Cells" (APCs) for trigger-
ing the T lymphocyte-mediated adaptive immunity [1, 2]. At 
the same time, macrophages contribute to organ development, 
disease progression, and tissue restoration. In a recent review 
[3], emphasis has been placed on macrophage properties to 
participate in the development of endocrine glands, maintain 
their homeostasis, respond to different types of injury, and, 
eventually, resolve inflammation. In this direction, op/op mice 
lacking colony-stimulating factor-1 (CSF-1), a differentiating 
factor for macrophages, do not produce macrophages [4]. 
These mice showed abnormalities in their endocrine gland 
morphology and function, supporting the role of macrophages 
in the morphogenesis and functioning of the endocrine system 
[5].  

 Herein, the authors focus on the multiple roles played by 
macrophages in the context of endocrine pancreas development 
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and function. Islet resident macrophages (yolk sac origin) and 
circulating monocyte-derived macrophages play a fundamen-
tal role in islet morphogenesis [6, 7]. Peri-islet macrophages 
express the surface marker F4/80, regulating islet homeostasis 
and glucose-induced insulin secretion. These cells can acquire 
an M1 phenotype profile involved in the pathogenesis of type 
2 diabetes mellitus (T2D). In addition, the modulation of pan-
creatic macrophage activity by food intake may be a target for 
dietary intervention. An appropriate nutritional approach in 
patients with T2D may reduce systemic inflammation and ox-
idative stress putatively acting on pancreatic macrophages. 

2. PANCREATIC DEVELOPMENT 

 Pancreatic organogenesis undergoes three transitional 
stages (mouse model) (Fig. 1). The proliferation of progenitor 
cells characterizes the primary transition during e9.0-e12.5 
[8]. During this early stage of development, glucagon-produc-
ing cells start to develop, and the "master regulator" pancre-
atic homeobox 1, Pdx1, is responsible for pancreatic tubu-
logenesis and E-cadherin expression [9]. The transcription 
factor Ptf1a leads to the expansion of multipotent progenitor 
cells and the formation of acinar cells [10]. Furthermore, Sox9 
regulates progenitor cells, contributing to the expression of the 
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neurogenin Ngn3, which mediates the differentiation of endo-
crine cells [11, 12]. 

 The secondary transition includes the development of hor-
mone-producing endocrine cells and amylase-producing aci-
nar cells, mediated by Ngn3 [13]. 

 The tertiary transition occurs from e16.5 through e19 and 
is featured by the clustering of Langerhans islets and acinar 
cells expansion [14]. The beta-cell formation is regulated by 
different molecules. Cdc42 mediates tubulogenesis, linking 
actin dynamics to beta-cell delamination and differentiation 
[15]. In this respect, Snail2/Slug, promoting epithelial to mes-
enchymal transition, plays an essential role in beta-cell delam-
ination and migration [16, 17]. Similar functions are also per-
formed by the transcription of co-repressor Grg3/Tle3 and 
EphB3 for beta cell development to occur [18, 19]. Parallelly, 
the pancreatic epithelium develops from e11.5 onwards, con-
tributing to acinar or bipotent endocrine/duct structures [20]. 

 In this framework, the HIPPO pathway is worthwhile to 
be mentioned. It consists of a kinase cascade that regulates 
proliferation, differentiation, survival, and organ size of the 
heart, lung, brain, liver, and pancreas. Phosphorylated 
MST1/2 kinases (p-Mst1/2) have been detected in the acinar 
and ductal areas of the developing murine pancreas and at 

higher levels in the islets [21]. In Mst1/2 KO mice, a branched 
ductal network formation failure has been found with leakage 
of digestive enzymes and subsequent autodigestion [21]. It has 
also been reported that loss of Mst1/2 causes de-differentia-
tion of acinar cells and leukocyte invasion before cell death 
and pancreatitis [22]. 

 In the early stage of embryonic development, multipotent 
progenitor cells differentiate into endocrine (mostly alpha 
cells), tubular and acinar cells (primary transition). During the 
secondary transition, endocrine-secreting and acinar cells dif-
ferentiate and give rise to primordial tubular-acinar structure 
and islets. During the tertiary transition, beta cells differenti-
ate, pancreatic islets evolve, and the exocrine pancreas devel-
ops. 

3. MACROPHAGE MIGRATION TO THE PANCREAS 

 In general terms, one can distinguish three different popu-
lations of pancreatic macrophages: 1) yolk sac-derived resi-
dent macrophages; 2) fetal liver-derived resident macro-
phages; 3) bone-marrow-derived infiltrating macrophages 
[23-25]. Tissue-resident pancreatic and infiltrating macro-
phages originate from three distinct stages of hematopoiesis 
in the developmental period and adulthood (Table 1) [26-29].  

 

 

Fig. (1). Simplified representation of the characteristic steps of pancreatic organogenesis (data from in vitro and animal studies) [8-12].  

(A higher resolution/colour version of this figure is available in the electronic copy of the article). 

Table 1. Three different waves of HSCs are described in the course of embryogenesis (data from in vitro and animal studies). 

Hematopoietic Wave Time Side Kind of Progenitor Cells Bi-

omarkers 

First e7.0 – e8.0 Posterior plate mesoderm, blood is-

lands of the extra-embryonic yolk 

sac 

Primitive erythroblasts and megakaryocytes, macro-

phages 

CSF-1R 

Second e8.25 – 10.5 Hemogenic endothelium in the yolk 

sac and subsequent migration into 

the fetal liver 

Erythromyeloid precursors (immature hemopoietic stem 

cells) –> give origin to monocytes 

c-Myb 

Third e10.5 Aorta, gonads, and mesonephros re-

gions 

Fetal hemopoietic stem cells –> give rise to adult hemo-

poietic stem cells (liver and bone marrow) 

c-Myb 
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 The first step corresponds to primitive hematopoiesis, 
originating from the extraembryonic yolk sac (yolk sac pro-
genitors) that will differentiate into primitive macrophages, 
erythroblasts, and megakaryocytes [26]. 

 The second wave is represented by erythromyeloid precur-
sors, which differentiate into yolk sac macrophages and mi-
grate to the fetal liver, ultimately differentiating into mono-
cytes [27, 28]. 

 The third wave contemplates the emergence of immature 
hematopoietic stem cells (HSCs) from the aorta-gonad-meso-
nephros, which migrate either to the fetal liver or to fetal bone-
marrow, thus, generating adult HSCs [29].   Murine studies 
have revealed that pancreatic macrophages derive from the 
yolk sac [30]. They are located in close contact with insulin 
and beta cells, involved in islet morphogenesis [31]. Pheno-
types of pancreatic macrophages depend on their location. 
The F4/80low CD11c+ subset has been detected within islets, 
while the F4/80hi CD11c- subset preferentially accumulates 
in the peripheral islet area [32]. 

4. INTERACTION BETWEEN MACROPHAGES AND 
PANCREATIC BETA-CELLS IN ISLET FORMATION 

 The involvement of macrophages in the development of 
islets is supported by a drastic reduction of beta-cell number 
in the osteopetrosis murine model op/op, which does not pos-
sess macrophages [33]. These mice lack CSF-1 and generate 
a restricted number of macrophages [31]. By contrast, alpha-
cells in the op/op mice are preserved, thus, suggesting that 
macrophages are required for developing glucagon-secreting 
cells [34]. 

 The exact mechanisms which lead to beta-cell differentia-
tion by macrophages need to be better elucidated. In this res- 

pect, evidence has been provided that fetal M2 macrophages 
allow embryonic pancreatic epithelial cells to migrate, pro-
moting endocrine differentiation from PDX1+ pancreatic pro-
genitors [35]. Moreover, when embryonic pancreatic explants 
were treated with CSF-1, the number of insulin-secreting cells 
increased considerably [31]. 

 Studying the mechanisms of beta-cell regeneration in-
duced by the connective tissue growth factor (CTGF/CCN2), 
it was found that this molecule also acts via the expansion of 
islet macrophages [36]. Macrophage death induced by clodro-
nate impaired the beta-cell regenerating effects by 
CTGF/CCN2. Other factors produced by islet macrophages 
are implicated in beta cell regeneration, including the insulin-
like growth factor-1, epidermal growth factor, and transform-
ing growth factor (TGF) 1-beta [37]. 

 Over recent past years, emphasis has been placed on pu-
rinergic receptors placed on the cell surface of islet macro-
phages (Fig. 2). These receptors play as sensors of ATP levels 
within islets [38]. Beta-cells release insulin and ATP in re-
sponse to serum glucose concentration [39]. When stimulated 
by ATP, purinergic receptors induce calcium release in mac-
rophages with consequent modifications in gene expression, 
increased motility, and retention of insulin-containing vesi-
cles released by beta cells [40]. 

 Furthermore, there is evidence that human islet macro-
phages are located close to blood vessels and secrete Interleu-
kin (IL)-10 and metalloproteinase (MMP)-9, which contribute 
to islet homeostasis [41]. 

 Conclusively, islet macrophages control the composition 
of the insular milieu, sensing beta-cell secretions and keeping 
tissue homeostasis. 

 

 
 

Fig. (2). Simplified illustration of the function of purinergic receptors located on the insular macrophage cell surfa0ce [38, 39, 40, 41]. (A higher 

resolution/colour version of this figure is available in the electronic copy of the article). 
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Fig. (3). Simplified representation of the leading mechanisms of insulitis in T1D. (A higher resolution/colour version of this figure is availa-

ble in the electronic copy of the article). 

 Insulin and Adenosine Triphosphate (ATP) is co-secreted 
from beta cells in response to a glucose load. ATP enters the 
islet microcirculation and binds to purinergic receptors ex-
pressed on the resident macrophage cell membrane. After the 
binding, ATP stimulates an intracytoplasmic increase in cal-
cium concentration, thus enhancing macrophage activation. 
Islet macrophages release several cytokines, such as IL-1beta, 
that stimulate (in acute but not chronic) insulin secretion from 
beta cells. However, overstimulation of insulin secretion and 
beta-cell activity (e.g., obesity, insulin resistance) increases 
the number of resident macrophages and facilitates a pro-in-
flammatory microenvironment, contributing to beta-cell 
apoptosis and decreasing insulin release. 

5. FUNCTIONS OF TISSUE RESIDENT MACRO-
PHAGES 

 In addition to their ability to act as APCs, tissue-resident 
macrophages exert other functions, such as clearance of cel-
lular debris and apoptotic cells [42]. As resident cells adapt to 
the milieu they harbor, acquiring novel functions. 

 Local macrophages regulate lipid, energy metabolism, and 
insulin sensitivity [43]. For example, macrophages acquire a 
distinct transcriptome in the gastrointestinal tract according to 
their exposure to short-chain fatty acids (SCFAs), bile salts, 
and microbiota composition [44]. 

 Classically, macrophages are divided into two main phe-
notypes: M1 macrophages which exert pro-inflammatory ac-
tivities, and M2 macrophages, which are rather anti-inflam-
matory [1]. Tissue-resident macrophages are M2 cells receiv-
ing pro-survival and self-renewal signals from environmental 
factors such as CSF-1, glucocorticoids, and specific I Ls, in-
cluding IL-4 and IL-13 [45]. 

 For completion, M1 macrophages respond to various stim-
uli, including Interferon (IFN)-gamma and tumor necrosis 
factor (TNF)-alpha [46]. M1 and M2 macrophages produce 
different sets of cytokines when activated. M1 cells secrete 
pro-inflammatory mediators (e.g., TNF-alpha, IL-1, IL-6, IL-
8, and IL-12) while M2 cells release a classical anti-inflam-

matory product, namely IL-10 [47]. IL-10 dampens the ex-
pression of IFN-gamma in T helper-1 cells and neutralizes the 
production of other pro-inflammatory cytokines. 

 Another interaction mechanism between macrophages and 
environmental cells resides in their aptitude to release extra-
cellular vesicles. Vesicles can export proteins, metabolites, 
and nucleic acids to nearby cells or even at a distance, thus 
potentially playing a pathogenic role in chronic diseases [48]. 

6. TISSUE RESIDENT MACROPHAGES AND PATHO-
GENESIS OF TYPE 1 DIABETES (T1D) 

 The common cause of T1D is insulitis with loss of insulin-
secreting beta-cells [49, 50]. Experimental evidence supports 
the pathogenic role of macrophages in murine models of T1D 
since their depletion with silicon dioxide administration or in-
duced by monoclonal antibody treatment prevents insulitis 
[51, 52]. Interestingly, in mice and humans with T1D, predia-
betic islets produce chemokines, which attract macrophages 
[53-55]. In response to this wave of chemokines, pro-inflam-
matory blood monocytes may also infiltrate the islets at the 
initial stages of disease (Fig. 3). 

 In human T1D, post-mortem analysis of inflamed islets 
has confirmed the presence of macrophages in the early and 
late phases of insulitis [56]. Upon penetration into islets, mac-
rophages exert detrimental functions, either releasing pro-in-
flammatory cytokines or overcoming insulin-containing vesi-
cles delivered by beta cells [57-59]. 

 Furthermore, as APCs, macrophages recruit T cytotoxic 
cells, which, in turn, participate in beta-cell destruction. The 
fundamental role of macrophages in beta-cell killing has been 
demonstrated in the NOD.scid mouse model, where depletion 
of macrophages with clodronate abrogated the outcome of 
T1D [60]. Noteworthy, NOD.scid mice are deprived of T and 
B cells, and autoimmune diabetes can be induced by inocula-
tion of activated T cells.  In synthesis, T1D pathogenesis 
seems to result from a combined action of circulating mono-
cyte-derived macrophages, resident macrophages, and T cyto-
toxic cells, which contribute to beta-cell destruction. In this 
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last regard, a depletion of islet macrophages in NOD mice 
through monoclonal antibodies directed against CSF-1 recep-
tor avoided T-cell infiltration and diabetes onset. 

 Bulk RNA sequencing of islet macrophages from NOD 
mice revealed that, during the progression of insulitis, an up-
regulation of gene downstream of Interferon (IFN) gamma 
signaling and IL-2/STAT5 and IL-6/STAT3 pathways oc-
curred [61]. In the same experiment set, five subpopulations 
of macrophages were detected: two with stable transcriptomic 
signatures, the other two with pro-inflammatory activity, and 
one displaying anti-inflammatory capacity. 

 Evidence has been provided that islet inflammatory re-
sponse may depend on Pathogen-Associated Molecular Pat-
terns and Damage-Associated Molecular Patterns, which bind 
to TLR on beta-cells and activate NF-Kappa B and STAT-1 
pathways [62, 63]. Parallelly, TLR-2/-6 and TLR-4-activated 
macrophages suppress beta-cell insulin gene expression via 
the release of IL-1-beta and IL-6 [64]. 

 Insular macrophages directly damage beta cells via the re-
lease of pro-inflammatory cytokines or engulfment of vesicles 
delivered by beta cells. Indirectly, macrophages activate cyto-
toxic T cells, which destroy beta cells. 

7. OBESITY AND INDUCTION OF T2D 

 Nowadays, obesity represents a pandemic [65]. Obese in-
dividuals are at higher risk of developing insulin resistance 
and T2D. Obesity leads to a low-grade chronic inflammation 
with adipocytes as significant players. These cells recognize 
insulin secreted by beta-cells and respond by storing triglyc-
erides and glycogen [66]. Then, adipocytes release leptin, re-
ducing food intake and increasing lipolysis and thermogene-
sis. This virtuous cycle is interrupted by overnutrition, which 
accumulates pro-inflammatory macrophages and gives rise to 
insulin resistance (IR) and hyperglycemia [67]. In particular, 
obese murine macrophages release exosomes, whose injection 
into lean mice accounts for glucose intolerance, IR, and higher 
glucose-stimulated insulin secretion [68].   

 In supporting the association between overnutrition and 
T2D, saturated fatty acids (i.e., palmitate) can bind to TLR-4 
on both beta-cells and islet macrophage cell surfaces and con-
sequently trigger the release of pro-inflammatory cytokines 
and chemokines. Such a chain of events accounts for islet in-
flammation, beta-cell dysfunction, and further infiltration of 
macrophages into islets [69, 70]. In this framework, as re-
cently reviewed by Liang et al. [71], different lipids (e.g., ox-
idized low-density lipoproteins, cholesterol crystals, saturated 
fatty acids, and sphingolipids) can activate the NLRP3 inflam-
masome on macrophages via mitochondrial stress and gener-
ation of reactive oxygen species (ROS).   

 From a pathogenic viewpoint, IR represents a fundamental 
event in the inflammatory process in the course of T2D. Since 
the reduced insulin response at tissue levels leads to an extra 
insulin production by beta-cells, islets undergo more signifi-
cant oxidative stress and are prone to apoptosis and necrosis 
[72]. Upon insulitis, increasing waves of pro-inflammatory 
cytokines (e.g., TNF-alpha and IL-6) hamper insulin receptor 
tyrosine kinase to proceed downstream insulin signaling, 
eventually exacerbating IR [73]. 

 Overnutrition-induced hyperinsulinemia is intended to 
compensate for systemic hyperglycemia, but, at the same 
time, it down-regulates the expression of the purinergic recep-
tor genes IL-10 and MMP-9 that are implicated in anti-inflam-
mation and tissue repair, respectively. Increased beta-cell 
death generates a switch of macrophages towards a reparative 
profile, as also observed after streptozotocin administration 
alone or in combination with a high-fat diet (HFD) [37].    

 Pancreatic stromal macrophages seem to play a pathogenic 
role in T2D too. KrasG12D mice fed with HFD gain weight, 
have hyperinsulinemia and hyperleptinemia, and exhibit a 
high release of pro-inflammatory cytokines [74]. An expan-
sion of pancreatic stromal macrophages has been detected in 
these mice with polarization towards the M1 phenotype upon 
binding of lipopolysaccharides or endotoxins to TLR-4 [75]. 
In this context, the synergistic effect of lipopolysaccharides 
and leptin in the attraction of blood monocytes to the pancreas 
and hypersecretion of cytokines should be mentioned [76]. 

8. A DIETARY APPROACH FOR T2D 

 It is known that hypercaloric diets rich in saturated fatty 
acids, as in the western diet, profoundly affect lipid metabo-
lism, leading to the activation of the inflammatory pathway 
and inhibition of insulin receptor signaling [77]. On the other 
hand, consumption of whole-grain foods and vegetables, as in 
the case of the Mediterranean diet, improves insulin resistance 
and may prevent T2D outcomes [78-81]. 

 Some components of the Mediterranean diet will be illus-
trated for their capacity to prevent or attenuate inflammation 
and oxidative stress that characterize obesity and T2D [82]. 

9. POLYPHENOLS 

 Polyphenols (flavonoid and non-flavonoid compounds) 
are contained mainly in fruits, vegetables, cereals, red wine, 
and extra virgin olive oil [83]. Regularly consuming polyphe-
nols through diet leads to beneficial effects given their anti-
inflammatory and anti-oxidant capabilities (Table 2). Notably, 
they inhibit the NF-kappa B pathway with reduced pro-in-
flammatory cytokine release, induce human T regulatory 
(Treg) cells with the production of IL-10, and decrease ROS 
generation by human neutrophils and monocytes [84, 85]. 

 With particular reference to ROS, beta-cells, having low 
glutathione peroxidase levels, are susceptible to oxidative 
stress, and excessive oxidative stress is implicated in beta-cell 
injury and destruction [86]. In addition, endogenous regener-
ation of beta-cells is usually scarce, and the regeneration of 
preexisting beta-cells seems to decline over time. 

 Consumption of a polyphenols-enriched diet lowered the 
risk of developing T2D by 14% in one study [87]. According 
to the EPIC-INTERACT study, intake of flavanols reduced 
the risk of T2D in European populations [88]. Apple and pear 
are rich in flavanols, and regular consumption of these fruits 
reduces the risk of T2D [89]. 

 A series of papers have reported a lower risk of T2D and 
improvement in IR in consumers of caffeinated beverages 
[90]. Similarly, intake of anthocyanidin and flavones im-
proved IR and inflammation in women [91]. 
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 In vitro studies have also confirmed the beneficial effects 
of polyphenols on T2D development. Using white adipocyte 
3T3-L1 cells, (-)-epicatechin reduced Mitogen-Activated Pro-
tein Kinase, NF-kappa B, and Activator Protein-1 pathway ac-
tivation by TNF-alpha implicated in inflammation and insulin 
sensitivity [92]. 

 INS-1 cells were derived from rat pancreatic beta-cells 
when stressed; they were protected by quercetin, increasing 
glucose-induced insulin secretion via activation of ERK 1/2 
[93]. Furthermore, quercetin could preserve beta-cell mass 
and function in fructose-induced hyperinsulinemia, regulating 
the activation of pancreatic Protein Kinase B (Akt)/Forkhead 
Box Protein O1 [94]. 

 Epicatechin has also been shown to enhance insulin secre-
tion in INS-1 cells treated with saturated fatty acids or under 
oxidative stress [95, 96]. In the same cells, anthocyanins in-
creased insulin secretion in the presence of glucose and pro-
tected autophagic cell death mediated by H2O2 [97]. 

 In conclusion, only (-)-epicatechin and (-)-epicatechin-
rich foods and anthocyanins are very effective in reducing IR. 
Abrogation or mitigation of IR could reduce inflammation in 
the islet milieu, even though modulation of resident and infil-
trating macrophage's activity. 

 

Table 2. Summary of the leading mechanisms by which polyphe-

nols may reduce the inflammatory milieu within pancreatic islets 

in T2D. 

Inhibition of NF-kappa B with reduced release of pro-inflammatory 

cytokines 

Induction of Treg cells with a release of the anti-inflammatory cytokine 

IL-10 

Decreased release of ROS by human neutrophils and monocytes 

Abrogation or mitigation of IR 

10. POLYUNSATURATED FATTY ACIDS (PUFAS) 

Omega-3 is a family of PUFAs and includes longer n-3 fatty 
acids, such as eicosapentaenoic acid (EPA), docosapentaenoic 
acid (DPA), and docosahexaenoic acid (DHA) [98]. In animal 
studies and human trials, PUFA administration has been 
demonstrated to exert anti-inflammatory activity, especially 
by inhibiting the arachidonic acid and the NF-kappa B path-
ways and triggering the anti-inflammatory response via G-
protein coupled receptor (GPCR) [99,100]. 

According to a meta-analysis conducted by Lin et al. [101], 
N-3 PUFAs supplementation in T2D patients reduced inflam-
mation markers such as C-reactive Protein (CRP). In the other 
two studies, EPA and DHA reduced TNF-alpha concentra-
tions while improving IR [102]. However, in another report, 
EPA and DHA failed to reduce TNF-alpha levels [103]. 

 The consumption of fish oil enriched in EPA and DHA has 
been shown to decrease the risk of T2D and improve insulin 
sensitivity via inhibition of adipocyte-mediated inflammation 
[104]. 

11. PREBIOTICS/PROBIOTICS 

 There is evidence that alteration of gut microbiota is asso-
ciated with the development of T2D [105]. Both prebiotics 
and probiotics may normalize the gut microbiota and repre-
sent suitable nutritional solutions for the management of T2D 
(Table 3) [106]. Inulin-based fructose oligomers or galactic 
oligosaccharides represent the major prebiotics. Prebiotics 
provide the host health benefits, including protection against 
pathogens, regulating satiety, improving mineral absorption, 
bowel function, and immune modulation [107]. 

 Lactobacilli and Bifidobacteria contribute to the intestinal 
microbial balance or improve the properties of indigenous mi-
croflora [108]. Following ingestion, probiotics exert several 
functions by modulating the immune response, protecting the 
intestinal barrier permeability, reducing bacterial transloca-
tion, and interacting with resident microbiota to improve in-
testinal performance [109]. 

 As far as the mechanisms of action of prebiotics are con-
cerned, they mainly act by increasing the generation of SCFAs 
such as acetate, butyrate, and propionate [110,111]. SCFAs 
are transported to the colonic epithelium and are in close con-
tact with mucosal immune cells via monocarboxylate trans-
porters 1 and 4 and GPRCs [112]. 

 Butyrate inhibits histone deacetylase with the regulation 
of JAK2/STAT3 and vascular endothelial growth factor path-
ways and seems to exert beneficial effects on inflammatory 
bowel disease and cancer [113,114]. As recently reviewed by 
Jana et al. [115], gut microbiota may be involved in the path-
ogenesis of T2D. Fusobacterium, Ruminococcus, and Blautia 
are defined as diabetogenic bacteria, while Bacteroides, Ak-
kermansia, Roseburia, and Faecalibacterium may decrease the 
risk of T2D [116]. In this direction, rice husk-derived xylooli-
gosaccharides (XOS) display antihyperglycemic effects on a 
T2D rat model [117]. In this specific instance, XOS decreased 
the expression of glucose transporter type 4 to the plasma 
membrane. In patients with prediabetes, both XOS and man-
nooligosaccharides (MOS) increased the population of intes-
tinal bacteria, such as Blautia, Akkermansia, and Bifidobacte-
rium, thus, reducing systemic inflammation, IR, and high glu-
cose uptake, while attenuating endotoxemia [118]. 

 Furthermore, MOS up-regulated the expression of the lep-
tin-associated protein while down-regulating the negative reg-
ulators of the insulin signaling pathway [119]. Several studies 
have confirmed that patients with diabetes mellitus harbor a 
so-called "diabetic microbiota", characterized by a loss of bu-
tyrate-producing bacteria with an abundance of opportunistic 
microorganisms [120, 121]. 

 Experimentally, the administration of probiotics to HFD 
mice has provided a wealth of information on the effects of 
probiotics on metabolic and inflammatory biomarkers. For in-
stance, Lactobacillus (L.) casei supplementation improved 
high-fructose-induced altered glucose tolerance in hyperinsu-
linemic rats [122]. Administration of L. reuteri in HFD obese 
rats decreased inflammation and insulin resistance-related 
gene expression [123]. L. casei administration decreased in-
sulin resistance, TNF-alpha and IL-6 concentrations, and in-
creased numbers of Lactobacillus and Bifidobacterium in 
T2D mice [124]. L. rhamnosus supplementation ameliorated 
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IR in HFD obese mice, reducing inflammatory parameters and 
oxidative stress [125, 126].   

 With particular reference to clinical trials in T2D patients, 
the effects of supplementation of a mixture of probiotic strains 
and the so-called "ecologic barrier" have been reported. This 
mixture is composed of Bifidobacterium Bifidum (B.) W23, 
B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei 
W56, L. salivarius W24, L. lactis W29, and Lactococcus lactis 
W58 [127]. While short-term administration (12 weeks) did 
not reduce levels of endotoxins in T2D patients, a prolonged 
supplementation was very effective in decreasing endotoxins, 
triglycerides, and total cholesterol to high-density lipoprotein 
ratio TNF-alpha, IL-6, CRP, resistin, while elevating adi-
ponectin concentration [128]. 

 This last probiotic regimen ameliorated the health status 
of T2D patients in relation to cardiometabolic and inflamma-
tory control. Supplementation of a mixture of L. acidophilus, 
L. plantarum, L. paracasei, L. delbrueckji subsp, Bulgaricus, 
B. breve, B. longum, B. infantis, and S. thermophilus could 
reduce IL-6, CRP, and TNF-alpha levels in patients with ges-
tational diabetes mellitus [129]. Other studies denied the ben-
eficial effects of probiotics on the health status of T2D, as re-
ported by Linsday et al. [130]. In a more recent meta-analysis 
of randomized clinical trials [131], further evidence has been 
reported of a supplementary therapeutic effect with probiotics 
in T2D patients with improved lipid profile and metabolic 
control. 

Table 3. Summary of prebiotics and probiotics contribution in 

experimental models and patients with T2D. 

Prebiotics Probiotics 

Increase in SCFAs (acetate, butyr-

ate and propionate) 

Modulate the intestinal immune 

response, improve intestinal per-

meability and reduce bacterial 

translocation, interfere with the 

resident microbiota 

Inhibit histone deacetylase and 

regulate the JAK2/STAT3 path-

way 

Reduce IR and inflammatory bi-

omarkers in HFD mice 

Normalize gut microbiota in pre-

diabetic individuals, reducing IR 

and attenuating endotoxemia 

Reduce inflammatory biomarkers, 

insulin and endotoxin levels while 

increasing circulating adiponectin 

12. VITAMINS  

The role of vitamin D in preventing T2D has been investigated 
because of the association of low serum levels of the 25-hy-
droxylated metabolite with the risk of diabetes in European 
and Chinese adults [132]. Other studies have revealed a high 
inflammatory status, IR, and beta-cell dysfunction in individ-
uals with low serum vitamin D concentration [133,134]. On 
these bases, supplementation of vitamin D in adults prevented 
T2D development and ameliorated beta-cell function [135]. 
More recently, an interesting investigation did not confirm the 
aforementioned results in prediabetes after a 24-month sup-
plementation of cholecalciferol [136]. 

 Interestingly, there is evidence that vitamin D binds to vit-
amin D receptors on intestinal dendritic cells that activate 

Treg cells with the release of IL-10 and induction of the anti-
inflammatory pathway [137]. A recent meta-analysis [138] of 
10 studies with 34,882 participants strongly suggested a sig-
nificant association between vitamin D levels and T2D even 
if its supplementation did not prevent the future development 
of T2D. 

CONCLUSION AND FUTURE PERSPECTIVES 

 T2D is a metabolic disorder characterized by hyperglyce-
mia, IR, and oxidative stress. Conventional anti-hyperglyce-
mic medications are involved in glucose and lipid metabo-
lism, insulin secretion, and signaling [139]. However, the in-
flammatory status maintained by intra-insular and peri-insular 
macrophages has been less investigated by interventional 
studies. Components of the Mediterranean diet, i.e., polyphe-
nols, PUFAs, prebiotics, probiotics, and vitamin D, can re-
duce inflammation and oxidative stress in T2D and modify 
gut microbiota composition. 

 Therefore, along with antidiabetic drugs, food components 
may be beneficial in T2D. In this respect, personalized medi-
cine to identify the nutritional needs of T2D individuals is to 
be encouraged. 

LIST OF ABBREVIATIONS 

APCs = Antigen Presenting Cells 

CRP = C-Reactive Protein 

CSF-1 = Colony Stimulating Factor-1 

CTGF = Connective Tissue Growth Factor 

DHA = Docosahexaenoic Acid 

EPA = Eicosapentaenoic Acid 

DPA = Decosapentaenoic Acid 

GPCR = G Protein Coupled Receptor 

HFD = High Fat Diet 

HSCs = Hematopoietic Stem Cells 

IFN = Interferon 

IL = Interleukin 

IR = Insulin Resistance 

MOS = Mannooligosaccharides 

PUFAs = Polyunsaturated Fatty Acids 

ROS = Reactive Oxygen Species 

SCFAs = Short-Chain Fatty Acids 

T1D = Type 1 Diabetes 

T2D = Type 2 Diabetes 

TGF = Transforming Growth Factor 

TLR = Toll Like Receptor 

TNF = Tumor Necrosis Factor 

TREG = T Regulatory 

XOS = Xylooligosaccharides 
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