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Abstract

BACKGROUND: Previous research has established that using high-quality plantingmaterial during the early phase of vegetable
production significantly impacts success and efficiency, leading to improved crop performance, faster time to harvest and bet-
ter profitability. In the present study, we conducted a global analysis of vegetable seedlings and transplants, providing a com-
prehensive overview of research trends in seedling and transplant production to enhance the nutritional quality of vegetables.

RESULTS: The analysis involved reviewing and quantitatively analysing 762 articles and 5248 keywords from the Scopus data-
base from 1971 to 2022. We used statistical, mathematical and clustering tools to analyse bibliometrics and visualise the most
relevant research topics. A visualisation map was generated to identify the evolution of keywords used in the articles, resulting
in five clusters for further analysis. Our study highlights the importance of the size of seed trays for the type of crop, the
mechanical seeder used and the greenhouse facilities to produce desirable transplants. We identified grafting and light-
emitting diode (LED) lighting technology as rapidly expanding technologies in vegetable seedlings and transplant production
used to promote plant qualitative profile.

CONCLUSION: There is a need for sustainable growing media to optimise resources and reduce input use. Thus, applying graft-
ing, LED artificial lighting, biostimulants, biofortification and plant growth-promoting microorganisms in seedling production
can enhance efficiency and promote sustainable vegetable nutritional quality by accumulating biocompounds. Further
research is needed to explore the working mechanisms and devise novel strategies to enhance the product quality of vegeta-
bles, commencing from the early stages of food production.
© 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
Vegetables are crucial for a balanced and healthy diet as a result of
their high nutritional value, including secondary metabolites, vita-
mins, minerals and dietary fibre, whereas they are low in calories
and fat. Their consumption has been linked to various health ben-
efits, such as reducing the risk of chronic diseases and promoting
overall well-being.1 The positive impact on health is attributed to
the range of biological substances in vegetables rather than indi-
vidual elements.2

Vegetables can be cultivated by different propagationmethods,
including direct sowing of seeds (e.g. beans and peas), transplant-
ing seedlings (e.g. lettuce, cabbage, tomatoes and peppers) or
using vegetative plant parts (e.g. garlic, rhubarb, chicory and
sweet potatoes). The quality of vegetable produce depends on
plant genotypes, the performance of environmental conditions
and applied agro-management practices.2 Although the
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importance of genetic material on vegetable quality is acknowl-
edged, seedlings primarily aim to enhance yield, optimise har-
vesting time, protect against plant diseases and mitigate abiotic
stress. Using high-quality planting material in the early phase of
vegetable production significantly impacts overall success and
efficiency. This can lead to improved crop performance, faster
time to harvest and better profitability, regardless of whether in
a greenhouse or open field setting. Although the impact of seed-
ling use on the size of the final vegetable product is widely
accepted, its effect on nutritional quality remains a topic of ongo-
ing debate because there need to be more comprehensive stud-
ies. Additionally, the long interval between transplanting and
harvest may diminish the potential benefits of seedling use
regarding nutritional quality. Thus, it is pertinent to ask whether
the potential exists to enhance the quality of consumable vegeta-
bles during the initial phases of plant cultivation. If so, to what
extent can these improvements be sustained over time?
Good production planning is necessary to coordinate with the

final crop production, which includes keeping records of seeding
dates, variety names, substrate types, tray types, irrigation and
chemical applications.3 The trend of commercial seedling
and transplant production in highly specialised nurseries is
increasing worldwide.4 Moreover, the production of plants in veg-
etable nurseries plays a strategic role in the agricultural sector. It
contributes to employment and local and sustainable develop-
ment as a result of high labour dependence.5,6

The location of commercial nurseries is crucial, as long distances
may preclude purchasing transplants. In addition, timely and
quality of the plantlets must be ensured.3 Therefore, optimal
growth conditions should be maintained through controlled
water, temperature, substrate and fertiliser operation.3,4 This
should also be respected for the new production methods, such
as vertical farming. Recent trends in research on vegetable seed-
lings and transplants have focused on various aspects, including
biotechnology, plant physiology and agronomy. For example, bio-
technological techniques have been used to develop plants of
agronomic interest that are more productive, more efficient in
nutrient uptake, resistant to different types of abiotic stresses
and biofortified.7,8

Moreover, researchers are exploring the potential of grafting,
biostimulants and plant growth-promoting microorganisms
(PGPMs) to improve the quality of planting materials. Grafting
and specific rootstock/scion combinations can significantly
impact themacro- andmicroelement profile, phytochemical com-
position and overall fruit quality of various vegetables.9 Further-
more, plant biostimulants have been demonstrated to enhance
the quality of plants and, additionally, the produce quality.
According to recent research studies, this improvement is evident
through the stimulation of the accumulation of secondary metab-
olites, vitamins, antioxidants and minerals.10,11 Finally, PGPMs
have demonstrated the ability to enhance nutrient uptake,
improve stress tolerance and minimise plant diseases. Addition-
ally, using PGPMs can reduce the usage of chemical fertilisers
and pesticides, promoting eco-friendly vegetable production.12-14

Furthermore, biofortification has emerged as a novel strategy
for improving the nutritional content of vegetables, making them
more beneficial to human health.15 Recent studies demonstrate
that combining different approaches can often boost final vegeta-
ble nutritional and functional traits.
Therefore, applying grafting, biostimulants, biofortification and

PGPMs during the early stages of vegetable production results

in more efficient utilisation of these techniques in a limited area
with the same plant numbers.
Although vegetable seedlings and transplants are vital to horti-

culture and significantly improve the efficiency of agricultural
practices, there needs to be a more comprehensive global analy-
sis and study on this topic. Hence, the present study aimed to
address this gap and provide an overview of recent advances,
evolution, and challenges in the vegetable seedlings and trans-
plant nursery industry. Additionally, the technical requirements
for producing high-quality vegetables highlight the crucial role
of research and development in this early phase of food
production.

METHODS
Data for the 1971–2022 period, retrieved from the Scopus data-
base (https://www.scopus.com), were reviewed and analysed. In
addition, quantitative analyses were performed for the keywords
‘vegetable transplant production’, ‘specialised nursery’, ‘organic
vegetable transplants’, ‘seedbed’, seedling* and nursery* using
the search field ‘Article title, Abstract, and Keywords’, resulting in
a total of 762 articles and 5248 keywords.
We conducted an academically driven bibliometric analysis uti-

lising statistical, mathematical, and clustering tools to visualise
the most pertinent research topics. The analysis was based on
the keyword co-occurrence ratio and similarity index, with the
unit of analysis encompassing both author and indexed key-
words. A minimum keyword occurrence threshold of eight was
established to ensure the robustness of the analysis. Moreover,
we created a thesaurus file to enhance the consistency of the
prominent research topics.16,17 At the same time, an overlay visu-
alisationmapwas generated to identify the evolution of keywords
used in the articles analysed in the present study and the research
trends. Finally, these data were processed and analysed using the
clustering algorithm of the VOSviewer, version 1.6.18 (Centre for
Science and Technology Studies, Leiden University, The
Netherlands).18

From the total number of articles obtained (n = 762), a random
and representative sample was extracted and analysed by rele-
vance from the Scopus database. A quantitative, detailed and
meticulous analysis of the articles was performed to collect the
data of interest, such as the plant species under study and
the specific research areas.
Surveys were conducted in various agricultural regions to

address the absence of official statistics on vegetable transplant
production volume and area, and input was obtained from pro-
ducer groups and associations with expertise in producing vege-
table transplants. Additionally, data published in articles indexed
in the Scopus database were reviewed.

CLUSTERING ANALYSIS ON
BIBLIOMETRIC DATA
In all the publications analysed, of the total number of keywords
obtained (5248), only 131 reached the established threshold
above. This set of keywords was grouped, generating five clusters
in different colours in the network visualisation map (Fig. 1). Each
cluster shows closely related items from the same field or line of
research. According to recent reviews based on keyword analysis,
the size and number of clusters can identify trends and future
directions in a thematic line of research.16,19,20 Becaue of their
high occurrence and total link strength, the top-ranked keywords
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in the present study are vegetable crop, crop production, tomato,
crop yield, seedling, controlled study, vegetable seedlings and
organic farming. For the studied period, different lines of research
are highlighted; for example, Cluster 1 (red) with 31 items, includ-
ing studies related to production techniques, transplantation and
organic farming. Likewise, another line of research with 29 items
(cluster 2; green) includes topics such as seedling production,
controlled study, plant nutrition and plant growth. Compost, ferti-
liser application, irrigation and growingmedia were other primary
descriptors used as keywords, as shown in cluster 3 (yellow). The
most relevant and highest cited articles in this area are the publi-
cations of Raviv et al.21 Sánchez-Monedero et al.22 and Gruda and
Schnitzler,23 which develop a research topic concerning the use of
compost and alternative growing media to produce vegetable
transplants. Another line of research (cluster 4; purple) includes
current topics such as sustainable agriculture, alternative agricul-
ture, and water use efficiency. Indeed, they are research topics of
great interest in line with new research trends for sustainable agri-
culture development.24 Finally, a new approach (cluster 5; blue)
highlights current issues related to the quality and nutritional
composition of vegetables, where some cultural practices, such
as fertilisation levels and irrigation strategies, influence the accu-
mulation of some beneficial compounds (such as vitamin C,

anthocyanins and glucosinolate profile),25-27 as well as nitrate
levels, which, in excessive intake, can be phytotoxic to human
health.28

The overlay visualisation map shows the evolution of keywords
used to describe the main content of a research study, with the
most recent and relevant topics highlighted in green and yellow
(Fig. 2). These keywords are agricultural robots, agricultural
machinery, seed, seedling transplanting, organic farming, crop
rotation, food quality, compost, peat and sustainability. In addi-
tion, other topics that have received considerable attention from
2008 to the present in the Scopus database are grafting, organic
agriculture, biostimulants and light-emitting diodes (LEDs). The
most cited and relevant work in this category was published by
Lee et al.,29 who described grafting techniques, automation, and
prospects. Other examples relate to relatively recent trends, such
as the use of biostimulants30 and LED lights,31 in which the effects
on plant growth and development and their influence on improv-
ing the nutritional profile are described. Moreover, they are classi-
fied as environment-friendly agricultural practices. Figure 3 shows
the temporal trend in the number of scientific articles published
regarding biostimulants and LED lighting as transplant boosters
and strengthening agents for vegetable cultivation. The interest
in biostimulants in vegetable transplant nurseries increased over

Figure 1. Network visualisation map generated from analysing the most repeated keywords in articles published from 1971 to 2022. Different colours
represent the diversity of thematic clusters found and associated keywords. Red (cluster 1), green (cluster 2), yellow (cluster 3), purple (cluster 4) and blue
(cluster 5).
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time, as demonstrated by the increasing number of scientific arti-
cles, particularly in the last 8 years (Fig. 3), with a total percentage
of 68% and a peak in the previous 3 years of 177 records per year.
In the same way, the adoption of LED lighting as a cultivation
technique shows a positive exponential trend (R2 = 0.97), with a
90.8% increase in the number of articles published in the last
5 years (Fig. 3). This may be because plant production in highly
controlled environments has increased dramatically.32 Supple-
mental lighting with light LED has been adopted in cultivation

techniques such as grafting, healing and acclimatisation
strategies.33,34

A BRIEF HISTORY AND A GLOBAL
PERSPECTIVE OF VEGETABLE TRANSPLANT
PRODUCTION SYSTEMS
The technique of producing transplants of vegetable species in
highly qualified nurseries has acquired relevance and gradual
evolution. In the mid-twentieth century, the most widespread
plant production method was through almácigas or nursery
beds,35,36 until the first large-scale plant production systems were
developed using cell containers, trays or pots of different sizes
and substrates as growing media.37-39 However, it was not until
the 1970s that nurseries and large-scale commercial sales of
plants saw global expansion. Figure 4 shows the main changes
that have taken place in vegetable transplant production over
the years, where the adoption of technological innovations has
allowed the development of specialised industrial nurseries and
increased efficiency in the agricultural production chain. Primarily,
it was driven by the advantages of obtaining high-quality plants
with uniform characteristics, robust root systems and increased
tolerance to biotic and abiotic stresses, making them ideal for field
or greenhouse transplantation.40,41 Likewise, the problems associ-
ated with cryptogamic soil diseases42 and the high value of the
hybrid seed used have promoted commercial nurseries.6

One of the significant challenges of modern vegetable trans-
plant nurseries is the production of quality plants, which depends

Figure 2. The overlay visualisation map shows the evolution of research keywords over time based on the average publication year. Earlier research
topics are coloured purple, and more recent items are shown in green and yellow.

Figure 3. Temporal trend in the number of scientific articles published
regarding biostimulants and light-emitting diodes (LED) lighting in vege-
table nurseries.
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to a great extent on the experience and agronomic management
of the nursery that produces them.43-45 In this regard, recent arti-
cles provide a detailed review of more than 10 indicators of plant
quality in vegetable nurseries.46-48 Finally, the implementation of
a circular economy and sustainability criteria in the transplant pro-
duction chain, without diminishing the high attributes of plant
quality, health and profitability, is an excellent challenge for the
nursery company.49,50

CURRENT SITUATION OF VEGETABLE
TRANSPLANT PRODUCTION WORLDWIDE
Vegetable transplant production varies widely according to agri-
cultural areas and level of specialisation. Globally, vegetable trans-
plant production is estimated at more than one trillion plants
annually.51 However, this estimate may be higher as a result of
the recent trend towards using grafted transplants as a sustain-
able cultivation strategy. Figure 5 shows an overall estimate of
the volume of transplant production of the main vegetable crops
in countries with intensive horticultural systems. For example, in
Asia, China led transplant production with an annual volume
exceeding 680 000 billion for 2015–2018.52,53 Additionally, the
amount of grafted vegetable plants is about 16 billion annually.54

On the other hand, in Southern European countries, the largest
producing countries in the Mediterranean are Italy and Spain,
with solid horticulture vocation, where grafted and non-grafted
plants in specialised nurseries are produced similarly.29,55 In
Spain alone, more than 8000 billion plants are produced annu-
ally.5,56-58 On the other side, in North America, the annual produc-
tion of grafted plants was more than 60 million in 2019,59 In
Mexico and Canada alone, an approximate production volume
of 30 and 20 million grafted plants was recorded, respectively. In
addition, they are the leading suppliers of grafted plants to the

USA. For example, Canada exports about half of its tomato and
watermelon production 100% grafted. Meanwhile, Mexico
exports only 1.7% of grafted tomato plants, probably because of
US import regulations.60

CULTIVATION TECHNIQUES: GENERAL
TOPICS
Importance of the design of trays used in a nursery
The design and choice of a seed tray play an essential role in the
vegetable transplant production industry. There is a wide diversity
of shapes, cell sizes, volumes, colours and materials. It must also
be inexpensive, durable and reusable.38 The choice of seed tray
depends mainly on the plantlet type, the mechanical seeder and
the greenhouse facilities (e.g. the type of benches and fertigation
system used).3 The size of the trays used in the nurseries is vari-
able and ranges between 20 and 40 cm in width, between
56 and 70 cm in length, and between 2.5 and 5 cm in depth.
Expanded polyethylene and rigid plastic trays are the most widely
used by commercial vegetable transplant producers. Additionally,
flexible plastic trays are used for mechanical transplanting. In
addition, a flexible outer plastic tray can be placed in the trays
to facilitate the extraction of plants and disinfection of trays. Fur-
thermore, it has small inner walls, which decreases mechanical
damage to the root and prevents root spiralling.61 Another novel
method for transplant production is the paper pot tray, generally
made from recycled paper.62,63

Cell size dimensions
Cell volume (cm3) and number of cells per tray (plant density per
tray) are two factors that influence plant quality in a wide range of
vegetable species. Table 1 shows the cell size, dimensions and
density of the trays used for different vegetable species.

Figure 4. Timeline and main innovations in the industry specialising in the production of vegetable transplants.
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Figure 5. Vegetable transplant production and global distribution.

Table 1. Density and cell volume in different cultivation trays commonly used in the transplant production industry

Solanaceous crops (tomato, pepper,
and aubergine)

Vine crops
(cucumber,

melons, squash
and

watermelon)

Brassica crops
(broccoli,

cabbage and
cauliflower)

Bulb crops
(leeks and
onions)

Leaf vegetables (basil, chard,
lettuce and spinach)

Number of
cells per tray

24 50 72 128 200 288 50 72 128 128 200 200 288 448 72 128 200 253

Cell volume
(cm3)

171 66 43 23 11 7 66 43 23 43 11 11 7 4 43 23 11 7

Note: Adapted from previous studies.64,65
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Transplants of species such as tomato, aubergine, cucumber and
watermelon are produced in large cell volume trays mainly for
greenhouse cultivation and grafting production (e.g. 43–
66 cm3). However, when the production is intensive in open fields
(for the processing industry), trays with small cells are used (e.g. 7–
23 cm3) (Table 1). Similarly, cabbage, vegetable and bulb produc-
tion are preferred in trays with small-volume cells, as transplant-
ing with automated planters is possible.66 According to
Leskovar,67 the growth and development of transplants can be
regulated through the container cell size or volume, having a pro-
portional relationship between cell volume and plant growth rate.
In this sense, plants grown in large volume cells show better
growth, robustness, and higher productive potential,64,68,69 prob-
ably as a result of the more significant amount of substrate for
root development, the greater availability of water and nutrients,
and the lower competition for light because of the low density of
plants per tray. Thus, other factors, such as irrigation and root
development of seedlings in wood fibre substrates, may contrib-
ute to the successful growth of lettuce seedlings and subsequent
yield in the field.70 These findings highlight the importance of
using appropriate tray features in nursery production to maximise
yield and ensure successful crop growth by efficiently using
resources such as substrate, water and nutrients. Therefore, it
could be concluded that the appropriate container geometry
can promote root development, reduce transplant shock and
improve the overall quality of the seedlings.

Transplant age
The time required to produce a quality plant in a vegetable nurs-
ery is relatively short. Vavrina71 reported that the age of trans-
plants could have a variable impact on crop productivity, owing
to the diverse range of cultivation techniques and methods
employed. For instance, Cucurbitaceae crops perform best when
transplanted at 3–4 weeks, whereas Solanaceae tend to have an
optimum transplant age of 5–7 weeks and Alliaceae typically
require a longer transplant age of 10–12 weeks.71 It is essential
to consider both the economic benefits of commercial vegetable
production and the quality of plantlets when determining the
appropriate transplant age for different crops.48,51,72,73 However,
the quality must be considered because it has more influence
on crop productivity than the age of the transplant.74 As a rule,
vegetable growers prefer young, actively growing transplants
with high-quality standards.71,75

By contrast, some research suggests crop productivity increases
linearly with transplant age.67 Extending the growing cycle of
plants using larger containers to produce larger plants (also called
big or jumbo plants) is a widespread growing technique in com-
mercial nurseries in central and northern Europe. For example, a
large tomato plant can reach a height of about 30–40 cm with
one or two stems, and even the first flower truss has developed.

Growing media
The vegetable nursery industry considers a wide diversity of sub-
strates. Various organic (e.g. peat, coconut fibre) and inorganic
[e.g. perlite (B12 0–5 mm), pumice, vermiculite, rockwool] sub-
strates or their mixtures are used in the commercial nursery indus-
try.76 For example, peat is the most widely used growing medium
in producing vegetable seedlings and transplants.77,78 Moreover,
according to Regulation (EU) 2018/848 on organic production
and labelling of organic products, its use is also allowed in organic
nurseries. However, because of the increasing concern about
climate change and the conservation of natural resources and

sustainable production, different methodologies have been
developed and evaluated to identify and facilitate the choice of
substrate or mixtures alternatives to peat.49,78-80 Recent reviews
discuss the physical, chemical and microbiological characteristics
of different growing media, organic amendments, compost and
agro-industrial residues extensively as an alternative to peat use,
with significant emphasis on the production of vegetable seed-
lings and transplants in organic nurseries.43,81,82 To this end, the
use of sustainable and low environmental impact growing media,
with an emphasis on optimising resources (such as water and sub-
strates) and reducing the use of inputs (such as chemicals and fer-
tilisers), without negatively impacting the economic efficiency of
the transplant production industry, is becoming increasingly cru-
cial in line with the current circular economy approach.

SEEDING PROCESS METHODOLOGY
Seed-enhanced treatments
Uniform and high-quality seeds are indispensable to guarantee a
high germination rate and plant quality and increase the effi-
ciency of the sowing process in vegetable nurseries. However,
there is a great diversity of seeds (with different dimensions,
forms, textures and germination types) that are not protected or
coated, which makes mechanised sowing operations in nurseries
or direct sowing in the field difficult.83 Therefore, pelleting, prim-
ing and seed coating in vegetable transplant nurseries are widely
used.84 For example, seed pelleting is mainly carried out on small
and irregular seed species such as lettuce, herbs, onion, leek and
carrot. Applying a thick layer of pelleting material facilitates seed
handling and uniformity, increasing efficiency in the automated
sowing process.85 In addition, some seeds, such as celery, have
germination and conservation problems, which can be solved
by priming.86

Furthermore, seed coating treatments deliver compounds and
protective agents (e.g. micronutrients, germination promoters,
growth regulators and symbiotic microorganisms) that improve
seed and plant performance.87 Several studies reported better
growth and vigour88-90 and enhanced tolerance to drought and
heat stresses.91,92 However, another critical aspect regards the
effect that seed treatments may have on some nutritional charac-
teristics of the crop through biofortification that can be initiated in
the seeds via the nutripriming process, namely the soaking of
seeds in a solution containing nutrients, before planting.93-95

Indeed, nutripriming practice may be helpful in several ways, to
alleviate malnutrition96 or to enrich the concentration of valuable
elements in plants.97

Using PGPMs as a seed coating treatment for vegetables, such
as tomatoes, peppers, onions and cucumbers, is a sustainable
strategy with great potential in the organic and conventional/
integrated nursery industry.98 Furthermore, seeds coated with
PGPM could improve seed germination ratio, seed vigour, seed-
ling emergence and resistance to pathogens, with reduced use
of insecticides and fungicides. The most prominent microbial
inoculants are Rhizobium, Trichoderma, Pseudomonas and Bacillus.
Moreover, some seeds must be hydrated under controlled
conditions before sowing to homogenise and accelerate the ger-
mination process, known as priming. Different invasive and non-
invasive methods of seed priming offer several advantages, such
as homogenising germination, improving seedling vigour, reduc-
ing plant establishment time and enhancing the production of
quality plants.99 Also, seed priming technology enhances a
diverse range of physiological, biochemical and molecular
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responses in plants, can confer a beneficial effect on plant emer-
gence under environmental stress, pathogen resistance (pesticide
use is reduced) and improves field performance.100 However, it
can accelerate seed ageing and decrease seed quality after stor-
age, as treated seeds are usually not used immediately. The lon-
gevity of primed seeds is influenced by environmental factors
such as storage temperature, moisture content and seed quality.

GRAFTING AND ITS INFLUENCE ON PLANT
QUALITATIVE PROFILE
Currently, grafting in vegetables is primarily used in Cucurbitaceae
and Solanaceae species. It is rapidly spreading and expanding
worldwide.101 The grafting combination could be intraspecific; for
example, tomato/tomato or interspecific, for example, tomato/
aubergines.102 The initial objective of this techniquewas to achieve
protection against soil-borne diseases and soil fatigue provoked by
successive cropping.29 However, presently, this technique has been
widely used to improve yield and fruit quality under both biotic and
abiotic stress conditions.60 In addition, grafted plants provide a
robust and vigorous root system, which improves soil, water and
fertiliser use.103 Lastly, grafting is an environmentally friendly tech-
nique suitable for organic vegetable production by reducing chem-
ical inputs in cropping systems.104

An explication of the most common methods for grafting vege-
tables (splice, tongue or approach, cleft, pin and hole insertion),
comparing their main features and the vegetable species in which
they may be used, have been reported in some studies.60,105,106

However, sometimes it is difficult to achieve a good graft with

some cultivars when vigorous rootstocks are used (i.e. Cucurbita
maxima × Cucurbita moschata). In this particular scenario, it is
advisable to utilise the stenting technique, where cutting and
grafting are performed simultaneously.107 However, one major
drawback of this technique is the high price of grafted seedlings
caused mainly by the labour intensive required for this operation.
Yan et al.108 and Pardo-Alonso et al.109 stated that improving
machine vision, artificial intelligence and automation technology
will be crucial for developing high-performance universal grafting
robots.110 These advancements are expected to increase effi-
ciency and precision in the grafting process, improve crop yields,
reduce labour costs and enhance the nutritional quality of vegeta-
bles. The main rootstocks used in vegetable crop production and
the advantages of their use are summarised in Table 2. An
updated list of rootstock varieties for commercial solanaceous
and cucurbit crop production can be found in Rosskopf et al.106

Rootstock genotypes and specific rootstock/scion combinations
influencemacro- andmicroelement profiles and vegetable phyto-
chemicals. For example, grafting mini watermelon ‘Ingrid’ onto
the interspecific pumpkin hybrid ‘PS1313’ increased K and Mg
concentrations in the pulp.111 Additionally, melon cultivar ‘Kha-
tooni’ grafted onto ‘Ace’ and ‘Shintoza’ rootstocks showed
increased N, P and K concentrations.112 According to Consentino
et al.113 grafting of ‘Birgah’ eggplant onto Solanum torvum root-
stock significantly increased protein, K, Fe and Zn content by
22.9, 7.2, 20.0 and 2.4%, respectively, compared to non-grafted
plants. Furthermore, tomato fruits' ‘Big Red’ grafted onto ‘Heman’
had higher Ca contents as a result of improved water and nutrient
uptake from the rootstock's vigorous root system.9,114

Table 2. The main rootstocks used in vegetable crops production and the advantages of their use

Species Main rootstocks Advantages

Tomato (Solanum lycopersicum L.) Interspecific hybrid tomato (Solanum lycopersicum × Solanum
habrochaites S. Knapp & D.M. Spooner)

Better resistance to soil-
borne diseases

Intraspecific hybrid (S. lycopersicum L.) Better tolerant to salinity
Greater vigour

Sweet pepper (Capsicum annuum L.) Cultivated and wild pepper (Capsicum spp.) Better resistance to soil-
borne diseases

Soil fatigue prevention
Eggplant (Solanum melongena L.) Interspecific hybrid tomato (Solanum lycopersicum × Solanum

habrochaites S. Knapp & D.M. Spooner)
Better resistance to soil-
borne diseases

Devil's fig (Solanum torvum) Greater vigour
Watermelon [Citrullus lanatus (Thunb.)
Matsum. & Nakai]

Interspecific hybrid squash (Cucurbita maxima Duch. × Cucurbita
moschata Duch.)

Better resistance to soil-
borne diseases

Better tolerant to salinity
Bottle gourd [Lagenaria siceraria (Molina) Standl.] Greater vigour
Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]

Melon (Cucumis melo L.) Interspecific hybrid squash (Cucumis maxima Duch. × Cucumis
moschata Duch.)

Better resistance to soil-
borne diseases

Melon (Cucumis melo L.) Better tolerant to salinity
Greater vigour
Better fruit quality

Cucumber (Cucumis sativus L.) Interspecific hybrid squash (Cucumis maxima Duch. × Cucumis
moschata Duch.)

Better resistance to soil-
borne diseases

Cucumber (Cucumis sativus L.) Better tolerant to salinity
Greater vigour

Note: Adapted from a previous study.105
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Another study found that combining grafting with applying
Ascophyllum nodosum seaweed extract and Trichoderma atroviride
significantly improved the mean weight of marketable eggplant
fruits, as well as the fruit dry matter, chlorogenic acid, protein, K
and Fe concentrations. This approach also resulted in higher-
quality fruits with higher ascorbic and chlorogenic acid and lower
glycoalkaloid concentrations.115

Verzera et al.116 reported increased lutein concentration in
melon fruit, whereas some combinations led to eight times more
⊎-carotene in fruit from grafted melon plants than non-grafted
plants. In watermelon, grafting onto selected bottle gourd geno-
types and triploid watermelon onto zucchini squash and cushaw
pumpkin rootstocks led to an 11–27% increase in lycopene con-
tent.117,118 By contrast, grafting did not affect the lycopene
content in a study by Walubengo et al.119 The use of specific root-
stock varieties also impacted the fruit quality, with tomato ‘Prof-
itto’ grafted onto the ‘Beaufort’ rootstock showing higher
phenolic acid content than non-grafted plants.120 Furthermore,
the genotype of the rootstock and rootstock-scion combinations
significantly impacted the fruit quality, as evidenced by the higher
ascorbic acid content in tomato plants grafted onto ‘Beaufort’
rootstock compared to ‘Arnold’.121 Also, grafting influences aroma
compounds. However, there is still limited information on the
effects of grafting on aroma volatiles.9

LED LIGHTING TECHNOLOGY IN VEGETABLE
TRANSPLANT PRODUCTION
Supplemental lighting in producing vegetable transplants in
closed and controlled systems is experiencing exponential
growth in agriculture.17 This technology has helped increase pro-
ductivity and improve the product quality of short-cycle
vegetables,122 as well as medicinal,123 ornamental,124 herbs and
leafy vegetables.125,126 It has been considered a positive alterna-
tive for obtaining quality young plants and diminishing natural
resources,127,128 considering the climate change era and simulta-
neously enhancing the nutritional quality of healthy products.
Light plays an essential factor because, for plants to perform

photosynthesis properly, they must be provided with the right
environmental conditions. Therefore, supplemental lighting
and/or total artificial lighting with different lamps [LED, high pres-
sure sodium (HPS), fluorescent] has been investigated with
respect to achieving efficient horticultural seedling production.
Table 3 shows the main parameters of light quality and quantity
[such as photosynthetic photon flux density (PPFD), photoperiod,
and daily light integral (DLI)] and their effects on the growth of dif-
ferent vegetable species. The results show that cucumber and
tomato are the most evaluated species in the selected articles,
with 50% and 25% of the total, respectively. Seedling production
in closed and controlled cultivation chambers, also called plant
factories, predominates (75%), and the rest carry out production
under greenhouse structures (25%). The environmental condi-
tions of the research vary depending on the crop and the produc-
tive structure. The relative humidity was 70% on average, with a
CO2 concentration of 400 μmol·mol−1. The temperature ranged
from 24 to 28 °C during the day from 16 to 22 °C at night.
Twenty-four different PPFD values were found, with 195 to
200 μmol m−2 s−1 being the most repeated value, representing
19% of the total, and 17% of the investigations were carried out
with a PPFD between 145 and 150 μmol m−2 s−1. Concerning
photoperiod, photoperiods of 12, 16 and 18 h were used,
accounting for 30%, 22% and 11%, respectively. The DLI values

depended on the amount of illumination and photoperiods pro-
vided, obtaining a significant variability, ranging from 1.5 to
28.8 mol m−2 s−1. This dispersion is a result of the combinations
of photoperiods and illumination because they are closely related.
A high-light photoperiod with a high PPFD value results in a high
DLI. Some studies consider that a DLI between 10 and
12 mol m−2 s−1 is recommended for young plants because a
higher DLI may cause burns in the plant canopy141 and thus will
not produce seedlings that can be used for transplanting.
Regarding the specific spectrum used, more than 60% of the

researchers have used a combined spectrum of blue and red
LED lamps, which is in absorption peaks between 450–495 and
620–750 nm, respectively. Incorporating and specifying spectra
in research has concluded that LED lamps positively increase
plant dry weight142,143 and improve plant photosynthetic activity.
These factors are essential for young plants because they can uti-
lise water and nutrients more efficiently to convert them into
plant material.144 In addition, other studies138 have also deter-
mined that blue/red ratio (2:1) LED lamps produce more compact
plants, indicating resistant and high-quality plants in nurseries,
ensuring future productivity and product quality. Furthermore, a
combination of red and blue is also suggested as the suitable light
spectrum to promote plant growth and photosynthetic perfor-
mance in grafted tomato seedlings.145

BIOSTIMULANTS AND MICROORGANISMS
AS SEEDLINGS AND TRANSPLANT
BOOSTERS AND STRENGTHENING AGENTS
FOR SUSTAINABLE CROP PRODUCTION
The interest in biostimulants and growth-promoting micro-
organisms for vegetable cultivation and their application in vege-
table nurseries increased over time. Environment-friendly farming
practices and quality plants are a prerequisite for successful plant-
ing and, subsequently, for uniform plant growth and
development.43

The plant biostimulants fall into different categories, such as
‘Plant beneficial microbes’ (PBMs), ‘Plant growth-promoting rhizo-
bacteria’ (PGPR),13,14 natural substances (humic and fulvic acids,
macro and microalgal extracts, silicon),146 arbuscular mycorrhizal
fungi (AMF), compost and compost teas, agro-industrial by-prod-
ucts43 and some more, as reported in other studies.9,147

Below, we report the most significant results of the application
in vegetable nurseries.

Microbial and non-microbial plant biostimulants
Regulation (EC) 2019/1009 lays down the rules on the marketing
of fertilising products in the EU. The microbial biostimulants com-
prise both AMF and PGPR. The application of plant biostimulants
and microorganisms in nurseries unveiled several advantages: it
has a relatively low cost, is effective at low dose rates and only a
single treatment is required.148 In addition, the PBMs may
enhance the growth of plants and improve their resistance
towards biotic and abiotic stress.149,150

PBMs can be inoculated at the seed stage using a minimal
amount of inoculum placed at the interface between the seed
and soil or growingmedia. During early growth, this direct contact
between roots and PBMs can benefit plant growth, health and
vegetable nutrient quality.151,152 Some recent researchers have
focused on applying AMF in vegetables to improve seedling char-
acteristics, such as dry matter content and root system in
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watermelon,153 onion154 and tomato.155 Also, rhizobacteria have
shown some positive effects in increasing the resistance to salt
stress on tomato,154 aubergine,155 lettuce156 and zucchini seed-
lings.157 Moreover, there is a significant improvement on growth
and some morphometric parameters, such as root length, fresh
and dry weight, in tomatoes, lettuce, cucumber and some
brassica.158,159

Microbial biostimulants may also help face abiotic stresses, such
as salt stress, particularly when poor-quality (brackish) water is
used. Micelli et al.160 found that inoculating the substrate with
microbial biostimulants may represent a sustainable way to
improve lettuce and tomato seedlings in vegetable nurseries by
limiting the negative effect of brackish water on seedling growth.
Fungi are used to some extent to improve the quality of seed-

lings because of their biostimulants activity. For example, using
Trichoderma saturnisporum on melon seedlings improved crop
productivity, by increasing the average fruit weights and by
increasing the average fruit weights without negatively affecting
fruit quality.161 Additionally, Pascual et al.162 used Trichoderma
harzianum-enriched compost as a growing medium for melon
seedling production in the greenhouse nursery and found a pos-
itive effect on plant fresh weight and lower pathogen incidence.
Concerning non-microbial plant biostimulants, such as humic

acid and macro and microalgal extracts, several studies have
reported not only that the application of algae produced several
advantages in lettuce,163 tomato164 and broccoli seedlings,165

but also humic substances yielded positive results.166 Further-
more, some studies167,168 reported the feasibility of replacing syn-
thetic auxins to produce seedlings for transplantation in the
organic nursery. This is an essential facet of producing seedlings
for organic agriculture, an actively growing sector in which syn-
thetic growth-promoting substances are not allowed.

Compost and compost tea
Compost is the most used in the nursery sectors because of its
positive effects on the quality and growth of plants, its biostimu-
lant and suppressive effects on pathogenic microorganisms, and
the improvement of physical and chemical properties when
blended, for example, with peat.169,170 Furthermore, composts
may decrease the incidence of disease in the telluric zone due
to their suppression activity, caused by pathogens such as Verticil-
lium dahlie, Fusarium oxysporum, and Fusarium oxysporum f. sp.
melonis.43 Compost may also be used to realise (utilising extrac-
tion process) of ‘compost tea’ (CT), an organic liquid for which sev-
eral advantages have been reported (such as improved plant
nutrition and productivity), even if the results in nurseries are lim-
ited so far.43 Nevertheless, Villecco et al.171 used several types of
CT that were sprayed on tomato, pepper, and melon seedlings
during the nursery growing stage and their results showed that
CT increased plant growth and quality parameters.

BIOFORTIFICATION AS A NUTRITIONAL
QUALITY PLANT ENHANCER
Biofortification is a promising approach to enhance the nutritional
quality of vegetables, which involves increasing the density of
specific essential micronutrients in their edible parts. Various
agronomic approaches have been explored to achieve biofortifi-
cation.172 Even though such a practice is more common in staple
crops such as rice,173,174 it is also becoming commonplace in veg-
etables and has been shown to be effective. For example, Funes-
Collado et al.175 found that selenium enrichment of peat during
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the seedling stage improved the selenium content of crops such
as cabbage, lettuce, chard and parsley without adverse effects
on biomass production. Similarly, Businelli et al.176 reported that
seedlings of cucumber, tomato and lettuce biofortified with sele-
nium had significantly higher selenium concentrations in their
edible parts than untreated controls. Puccinelli et al.177 reported
that supplementing the growing substrate with sodium selenate
immediately after sowing could effectively increase the levels of
selenium and iodine in lettuce and sweet basil, resulting in
improved nutritional value. Likewise, self-grafting combined with
iodine biofortification at a concentration of 600 mg L−1 improved
total anthocyanin concentration in eggplants by 8.5% compared
to the combination of no grafting and no iodine biofortifica-
tion.113 These findings suggest that biofortification can be a viable
strategy to address micronutrient deficiencies in populations with
limited access to diverse and nutritious diets.
Customised vegetables can now be produced to meet the spe-

cific needs of individuals with metabolic disorders. This method,
called ‘tailor-made’ or ‘personalised vegetables’, involves enhanc-
ing the nutritional content and reducing anti-nutritional sub-
stances such as phytates, oxalates, nitrates, histamine and some
heavy metals. In addition, the early application in seedling pro-
duction of grafting, biostimulants, biofortification and PGPMs
can promote the sustainable enhancement of vegetable nutri-
tional quality by accumulating secondary metabolites, vitamins,
antioxidants and minerals.

CONCLUSIONS
The recent and growing need to boost global vegetable produc-
tion worldwide has spurred the development of more efficient
and effective agricultural techniques, with a particular emphasis
on the critical seedling stage.
The seedling stage emerges as a crucial juncture inmodern agri-

culture, significantly influencing the quality of adult plants, overall
crop success and the quality of the final product. Ongoing devel-
opments in research underscore the growing importance of sus-
tainable practices and the integration of new technologies.
Critical practical issues and research directions are identified,
encompassing aspects such as seed tray design, environmentally
sustainable growing media, grafting techniques, and the integra-
tion of LED lighting and biostimulants to augment the nutritional
quality of vegetables. The combination of sustainable and effi-
cient vegetable transplant production systems positions itself as
a valuable resource for future research efforts in horticulture.
As advancements continue to bolster the quality and resilience
of vegetable seedlings and transplants, the pursuit of increased
nutritional quality in vegetable produce stands as a focal point
for ongoing and future agricultural investigations.
In conclusion, this comprehensive analysis of global research on

vegetable seedlings and transplants could provide valuable statis-
tical, technical and scientific insights to shape the trajectory of
future investigations. Although extant studies suggest the poten-
tial of seedlings to enhance nutritional quality, the presence of
conflicting results underscores the imperative for further explora-
tion into the intricate relationship between seedlings and trans-
plants on one side and the nutritional quality of vegetables on
the other.
Further research is essential to explore operational mechanisms,

devise novel strategies for early-stage vegetable production, and
optimise transplant processes. The analysis revealed the need to
develop research that applied innovative techniques to optimise

transplant production, selection and mass screening for high-
quality vegetables. Thus, a comprehensive understanding of the
major pathways involved in quality and the identification of early
markers would shed light into the cultural requirements to
improve product quality. There is a need to focus on breeding
techniques to develop cultivars with improved nutritional profiles,
focusing on essential vitamins, minerals and antioxidants. In addi-
tion, investigating the role of beneficial microorganisms, such as
bacterial, mycorrhizal fungi or algae, in promoting seedling
health, improving nutrient absorption, and their impact on nutri-
tional content in mature plants is a potential avenue for future
research.
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